
EI331 Signals and Systems
Lecture 27

Bo Jiang

John Hopcroft Center for Computer Science
Shanghai Jiao Tong University

May 30, 2019



1/35

Contents

1. Evaluation of Definite Integrals Using Residues

2. Z-transform

3. Properties of Z-transform

4. Analysis of DT LTI Systems by Z-transform



2/35

∫∞
−∞ R(x)dx

R(x) = N(x)
D(x) is a rational function of x, where N, D are polynomials

with degD ≥ degN + 2, and R has no singularity on the real axis.

x

y

−r r

Cr

z1

z2

z3

1. Pick a r large enough s.t. the upper
half disk centered at 0 contains all
the singularities z1, . . . , zK, of R(z) in
the upper half plane (we don’t care
about those in the lower half plane)

2.
∫ r

−r
R(x)dx +

∫
Cr

R(z)dz = j2π
K∑

k=1

Res(R, zk)

3. lim
r→∞

∫
Cr

R(z)dz = 0 by the condition degD ≥ degN + 2

4.
∫ ∞
−∞

R(x)dx = j2π
K∑

k=1

Res(R, zk)
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∫∞
−∞ R(x)dx

x

y

θ1

θ2
γr

r−r R−R

Lemma. Suppose f (z) is continuous on
D = {z : R < |z| <∞, θ1 ≤ arg z ≤ θ2},
where 0 ≤ θ1 < θ2 ≤ 2π. Let γr be the
arc z(t) = rejθ, r > R, θ ∈ [θ1, θ2]. If
lim sup
D3z→∞

zf (z) = 0, then

lim
r→∞

∫
γr

f (z)dz = 0

Proof. Since lim sup
D3z→∞

zf (z) = 0, given any ε > 0, there exists an Rε

s.t. |zf (z)| < ε
θ2−θ1

for z ∈ D and |z| > R0. For r > R0,∣∣∣∣∫
γr

f (z)dz
∣∣∣∣ ≤ ∫

γr

|f (z)| ds ≤
∫
γr

ε

(θ2 − θ1)r
ds = ε

NB. Item 3 of the previous slide follows from the lemma with
θ1 = 0 and θ2 = π.
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Example

Evaluate I =
∫ ∞
−∞

x2dx
(x2 + a2)(x2 + b2)

, where a, b > 0

Solution. R(z) =
z2

(z2 + a2)(z2 + b2)
has four simple poles at

z = ±ja,±jb. Two of them, ja, jb, are in the upper half plane. The
residues are

Res(R, ja) = lim
z→ja

(z− ja)R(z) =
a

2j(a2 − b2)

Res(R, jb) = lim
z→jb

(z− jab)R(z) =
−b

2j(a2 − b2)

Thus
I = j2π[Res(R, ja) + Res(R, jb)] =

π

a + b
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∫∞
−∞ R(x)ejaxdx (a > 0)
R(x) = N(x)

D(x) is a rational function of x, where degD ≥ degN + 1,
and R has no singularity on the real axis.

x

y

−r r

Cr

z1

z2

z3

1. Pick a r large enough s.t. the upper
half disk centered at 0 contains all
the singularities z1, . . . , zK, of R(z) in
the upper half plane

2.
∫ r

−r
R(x)ejaxdx +

∫
Cr

R(z)ejazdz = j2π
K∑

k=1

Res[R(z)ejaz, zk]

3. lim
r→∞

∫
Cr

R(z)ejazdz = 0 by the condition degD ≥ degN + 1 and

Jordan’s Lemma

4.
∫ ∞
−∞

R(x)ejaxdx = j2π
K∑

k=1

Res[R(z)ejaz, zk]

NB. If a < 0, use the lower half disk instead.

x

y
−r r

C′r

z′1
z′2

z′3
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Jordan’s Lemma

x

y

Cr

r−r R−R

Lemma. Suppose f (z) is continuous on
D = {z : R < |z| <∞, Im z ≥ 0}. If
lim

D3z→∞
f (z) = 0, and a > 0, then

lim
r→∞

∫
Cr

f (z)ejazdz = 0

where Cr is z(t) = rejθ, r > R, θ ∈ [0, π].

Proof. Let Ir =
∫

Cr
f (z)ejazdz and Mr = maxz∈Cr |f (z)|. Then

|Ir| ≤
∫
γr

|f (z)ejaz|ds ≤ Mr

∫ π

0
e−ar sin θrdθ = 2Mr

∫ π/2

0
e−ar sin θrdθ

Using sin θ ≥ 2
π
θ for θ ∈ [0, π2 ] and lim

r→∞
Mr = 0,

|Ir| ≤ 2Mr

∫ π/2

0
e−ar 2

π
θrdθ =

πMr

a
(1− e−ar)→ 0, as r →∞

NB. If a < 0, the lemma still holds if we replace D and Cr by
{z : R < |z| <∞, Im z ≤ 0} and z(t) = re−jθ, r > R, θ ∈ [0, π].
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Example

Evaluate I =
∫ ∞

0

x sin x
x2 + a2 dx, where a > 0

Solution. R(z) =
z

z2 + a2 has two simple poles at z = ±ja. The

pole ja is in the upper half plane,

Res[R(z)ejz, ja] = lim
z→ja

(z− ja)R(z)ejz =
e−a

2

Thus ∫ ∞
−∞

xejx

x2 + a2 dx = j2πRes[R(z)ejz, ja] = jπe−a

Since x sin x
x2+a2 is even,

I =
1
2

∫ ∞
−∞

x sin x
x2 + a2 dx =

1
2

Im
∫ ∞
−∞

xejx

x2 + a2 dx =
π

2
e−a
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Example

x

y

−r r

Cr

Xja

x

y

−r r

C′r

Xja

Find the inverse CTFT of X(jω) = 1
a+jω , where a > 0

Solution.
x(t) =

1
2π

∫ ∞
−∞

1
a + jω

ejωtdω

R(z) =
1

a + jz
has a simple poles at z = ja in the upper half plane.

For t > 0,

x(t) =
1

2π

∫ ∞
−∞

R(ω)ejωtdω = jRes[R(z)ejzt, ja]

= j lim
z→ja

(z− ja)R(z)ejzt = e−at

For t < 0, R(z) is analytic in the lower half plane,
so

x(t) =
1

2π

∫ ∞
−∞

R(ω)ejωtdω = 0

Therefore, x(t) = e−atu(t).
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Z-transform

Recall the response of a DT LTI system to the input x[n] = zn is

y[n] = (x ∗ h)[n] = H(z)zn

where h is the impulse response of the system and

H(z) =
∞∑

k=−∞

h[k]z−k

The system function H(z) is called the z-transform of h.

In general, the z-transform of a DT signal x[n] is

X(z) =
∞∑

n=−∞

x[n]z−n

also denoted by

X = Z{x}, or x[n] Z←−−→ X(z)
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Z-transform

Note

X(z) =
∞∑

n=−∞

x[n]z−n =
∞∑

n=−∞

cnzn

is a Laurent series at z = 0 whose coefficient for zn is cn = x[−n].

As a Laurent series, the z-transform converges on an annulus
centered at z = 0, called its region of convergence (ROC)

Relation with DTFT

z = rejω =⇒ X(rejω) =
∞∑

n=−∞

{x[n]r−n}e−jωn = F{x[n]r−n}

If the ROC includes the unit circle, setting r = 1 yields

X(z)
∣∣
z=ejω = X(ejω) = F{x}(ejω)
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Example

1
Re

Im

Xa

1
Re

Im

Xa

For x[n] = anu[n],

X(z) =
∞∑

n=0

anz−n =
1

1− az−1 =
z

z− a
,

with ROC |z| > |a|.

If |a| < 1, the ROC contains the unit circle,

F{x}(ejω) = X(ejω) =
1

1− ae−jω

If |a| > 1, the DTFT does not exist.

If |a| = 1, the DTFT exists as a distribution,

F{x}(ejω) 6= X(z)
∣∣

z=ejω
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Example

Re

Im

1
Xa

1
Re

Im

Xa

For x[n] = −anu[−n− 1],

X(z) = −
−1∑

n=−∞

anz−n =
1

1− az−1 =
z

z− a
,

with ROC |z| < |a|.

If |a| > 1, the ROC contains the unit circle,

F{x}(ejω) = X(ejω) =
1

1− ae−jω

If |a| < 1, the DTFT does not exist.

If |a| = 1, the DTFT exists as a distribution,

F{x}(ejω) 6= X(z)
∣∣

z=ejω
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Importance of ROC

1
Re

Im

Xa

Re

Im

1
Xa

x1[n] = anu[n] Z←−−→ X1(z) =
z

z− a
, |z| > |a|

x2[n] = −anu[−n−1] Z←−−→ X2(z) =
z

z− a
, |z| < |a|

Different signals can have the same X(z)
but different ROCs, consistent with the
fact a function has different Laurent
series in different annuli of analyticity.

Always specify ROC for z-transforms!
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Example

1
Re

Im

3
2

X
1
2

X
1
3

For x[n] = 7
(

1
3

)n u[n]− 6
(

1
2

)n u[n],

X(z) =
∞∑

n=0

[
7
(

1
3

)n

− 6
(

1
2

)n]
z−n

=
7

1− 1
3z−1

− 6
1− 1

2z−1

=
1− 3

2z−1

(1− 1
3z−1)(1− 1

2z−1)

=
z(z− 3

2)

(z− 1
3)(z−

1
2)

with ROC |z| > 1
2 .

R = lim sup
n→∞

n
√
|x[n]| = 1

2
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Example

1
Re

Im

1
3

X

X

For x[n] =
(

1
3

)n
sin
(
π
4 n
)

u[n] = 1
2j

(
1
3ejπ4

)n u[n]− 1
2j

(
1
3e−jπ4

)n u[n],

X(z) =
1
2j

1
1− 1

3ejπ4 z−1
− 1

2j
1

1− 1
3e−jπ4 z−1

=

1
3
√

2
z

(z− 1
3ejπ4 )(z− 1

3e−jπ4 )

with ROC |z| > 1
3 .

Simple poles at z = 1
3ejπ4 and z = 1

3e−jπ4

A simple zero at z = 0

By ζ = 1
z , X(ζ) =

1
3
√

2
ζ

(1− 1
3 ejπ4 ζ)(1− 1

3 e−jπ4 ζ)
, so X(z) also has a simple

zero at∞.
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Rational Transforms
A rational transform X has the following form

X(z) =
N(z)
D(z)

where N, D are polynomials that are coprime, i.e. they have no
common factors of degree ≥ 1.
By the Fundamental Theorem of Algebra,

X(z) = A

∏n
k=1(z− zk)∏m
k=1(z− pk)

with the convention
∏0

k=1 · = 1.

• z1, . . . , zn are the finite zeros of X
• p1, . . . , pm are the finite poles of X
• If n > m, X has a pole of order n− m at∞
• If n < m, X has a zero of order m− n at∞
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Rational Transforms
A rational function X is determined by its zeros and poles in C,
including their orders, up to a multiplicative constant factor.

A rational z-transform is determined by its pole-zero plot and
ROC, up to a multiplicative constant factor.

Re

Im

ej π6

−2

X
3
2

X
1
2 ej 5π

4

X
2e−j π4

Example.

X(z) = A
(z + 2)(z− ejπ6 )

(z− 3
2)(z−

1
2ej 5π

4 )(z− 2e−jπ4 )

Four possibilities for ROC
• |z| < 1/2
• 1/2 < |z| < 3/2
• 3/2 < |z| < 2
• 2 < |z| <∞
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Properties of ROC

• The ROC1 of X(z) is an annulus R1 < |z| < R2

• X(z) is analytic in the ROC

• If x is of finite duration, then R1 = 0 and R2 =∞

X(z) =
N2∑

n=N1

x[n]z−n, where x[N1] 6= 0, x[N2] 6= 0

I if x causal, i.e. N1 ≥ 0, ROC = C̄ \ {0}
I if x is anticausal, i.e. N2 ≤ 0, ROC = C
I if x is neither causal nor anticausal, ROC = C \ {0}

1X may also converge at some points on the boundary, but for
simplicity, we do not include them in the ROC, except for 0 and∞.
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Properties of ROC

• If x[n] is left-sided, then R1 = 0

• If x[n] is right-sided, then R2 =∞

• If x[n] is two-sided, then R1 > 0 and R2 <∞

Re

Im

left-sided

Re

Im

right-sided

Re

Im

two-sided
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Properties of ROC

• If X(z) is rational, the ROC is bounded by poles or extends
to 0 (inward) or∞ (outward).

• If x[n] is also right-sided, then
R2 =∞ and R1 = maxk |pk|,
where pk are the poles in C,
e.g. region IV

• If x[n] is also left-sided, then
R1 = 0 and R2 = mink |pk|,
where pk are the poles in
C \ {0}, e.g. region I

I
II

III
IV

Re

Im

X X
X

X
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Inverse Z-transform

Recall x[n] is the coefficient of z−n in the Laurent series of X(z),

X(z) =
∞∑

n=−∞

x[n]z−n =
∞∑

n=−∞

cnzn

For any positively oriented circle C centered at 0 in the ROC,

x[n] = c−n =
1

j2π

∫
C

X(z)
z−n+1 dz =

1
j2π

∫
C

X(z)zn−1dz

which can be evaluated directly or using the Residue Theorem.

Alternatively, we can use any other method to find the Laurent
series expansion of X(z), e.g. partial fraction expansion, and
power series expansion for some known functions.

Remember x[n] is the coefficient of z−n, not zn!
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Properties of Z-transform

Linearity

If
x[n] Z←−−→ X(z) with ROC1

y[n] Z←−−→ Y(z) with ROC2

then

ax[n] + by[n] Z←−−→ aX(z) + bY(z) with ROC ⊃ ROC1∩ ROC2

Time shifting

If
x[n] Z←−−→ X(z), R1 < |z| < R2

then
x[n− n0]

Z←−−→ z−n0X(z), R1 < |z| < R2

NB. The convergence property at 0 and∞ may change.
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Properties of Z-transform

Scaling in the z-domain

If
x[n] Z←−−→ X(z), R1 < |z| < R2

then for z0 6= 0,

zn
0x[n] Z←−−→ X

(
z
z0

)
, |z0|R1 < |z| < |z0|R2

Time reversal

If
x[n] Z←−−→ X(z), R1 < |z| < R2

then
x[−n] Z←−−→ X(z−1),

1
R2

< |z| < 1
R1
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Properties of Z-transform

Time expansion

Recall the time expansion of x is

x(k)[n] =

{
x[n/k], if k | n
0, otherwise

If
x[n] Z←−−→ X(z), R1 < |z| < R2

then
x(k)[n]

Z←−−→ X(zk), R1/k
1 < |z| < R1/k

2

Conjugation

If
x[n] Z←−−→ X(z), R1 < |z| < R2

then
x∗[n] Z←−−→ X∗(z∗), R1 < |z| < R2
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Properties of Z-transform

Differentiation in the z-domain

If
x[n] Z←−−→ X(z), R1 < |z| < R2

then
nx[n] Z←−−→ −z

d
dz

X(z), R1 < |z| < R2

This follows from term-by-term differentiation of Laurent series.

Example. 1
1− az−1 =

∞∑
n=0

anz−n, |z| > |a|

d
dz

1
1− az−1 =

∞∑
n=0

(−n)anz−n−1, |z| > |a|

az−1

(1− az−1)2 = −z
d
dz

1
1− az−1 =

∞∑
n=0

nanz−n, |z| > |a|
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Properties of Z-transform

Initial Value Theorem. If x is causal, i.e. x[n] = 0 for n < 0, then

x[0] = lim
z→∞

X(z)

Proof.

lim
z→∞

X(z) = lim
z→∞

∞∑
n=0

x[n]z−n = lim
ζ→0

∞∑
n=0

x[n]ζn (∗)
= X1(0) = x[0]

where (∗) follows from the continuity of X1(ζ) =
∑∞

n=0 x[n]ζn.

Example. For x[n] = 7
(

1
3

)n u[n]− 6
(

1
2

)n u[n],

X(z) =
z(z− 3

2)

(z− 1
3)(z−

1
2)
, |z| > 1

2

We can verify
x[0] = 1 = lim

z→∞
X(z)
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Properties of Z-transform
Final Value Theorem. If x is causal, and the ROC contains the
unit circle, then

lim
n→∞

x[n] = lim
z→1

(z− 1)X(z)

Proof.

(z− 1)X(z) = (z− 1)
∞∑

n=0

x[n]z−n = zx[0] +
∞∑

n=0

(x[n + 1]− x[n])z−n

Let z→ 1,

lim
z→1

(z− 1)X(z)
(∗)
= x[0] +

∞∑
n=0

(x[n + 1]− x[n])

= x[0] + lim
N→∞

N−1∑
n=0

(x[n + 1]− x[n]) = lim
N→∞

x[N]

where (∗) follows from the uniform convergence of the series.

NB. The condition can be relaxed by Abel’s Theorem.
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Properties of Z-transform
Convolution property

If
x[n] Z←−−→ X(z) with ROC1

y[n] Z←−−→ Y(z) with ROC2

then

(x ∗ y)[n] Z←−−→ X(z)Y(z) with ROC ⊃ ROC1∩ ROC2

Proof.

X(z)Y(z) =
∞∑

n=−∞

∞∑
m=−∞

x[n]y[m]z−(n+m) =
∞∑

k=−∞

c[k]z−k

Collecting terms of the same power z−k

c[k] =
∑

n+m=k

x[n]y[m] =
∞∑

n=−∞

x[n]y[k − n] = (x ∗ y)[k]
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DT System Function

Recall the response of a DT LTI system to the input x[n] is

y[n] = (x ∗ h)[n]

where h is the impulse response of the system.

If x and h have z-transforms, the convolution property implies

Y(z) = X(z)H(z)

in their common ROC.

If the ROC has a nonempty interior point, the system function
(aka transfer function) H(z) uniquely determines h and hence
system properties through the Laurent series expansion

H(z) =
∞∑

n=−∞

h[n]z−n
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Causality
Recall h is right-sided iff the ROC of H(z) is the exterior of a
circle, i.e. R1 < |z| <∞

H(z) =
∞∑

n=N1

h[n]z−n

The following conditions are equivalent
1. N1 ≥ 0

2. H(z−1) =
∞∑

n=N1

h[n]zn is a convergent power series on |z| < 1
R1

3. 0 is a removable singularity of H(z−1)

4. ∞ is removable singularity of H(z)
5. lim

z→0
H(z−1) exists and is finite

6. lim
z→∞

H(z) exists and is finite2

2This is the more precise statement of∞ ∈ ROC.
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Causality

An LTI system with system function H(z) is causal iff
1. the ROC is the exterior of a circle
2. lim

z→∞
H(z) exists and is finite

causal ⇐⇒ ROC is the exterior of a circle including∞

An LTI system with rational system function H(z) = N(z)
D(z) is causal

iff
1. the ROC is |z| > |p|, where p is the outermost pole
2. degD ≥ degN

Example. H(z) = z3−2z2−z
z2+ 1

4 z+ 1
8

cannot be the system function of a
causal system.



35/35

Stability
Recall an LTI system is stable iff its impulse response h ∈ `1, i.e.

∞∑
n=−∞

|h[n]| <∞

i.e. H(z) converges absolutely on the unit circle |z| = 1, so its
ROC R1 < |z| < R2 must satisfy R1 < 1 < R2.

stable ⇐⇒ ROC includes the unit circle |z| = 1

A causal LTI system with rational system function H(z) is stable
iff all its poles are inside the unit circle.

Example. A causal system with H(z) = 1
1−az−1 is stable iff |a| < 1

Example. A system with H(z) = 1
1−az−1 where |a| > 1 and ROC

|z| < |a| is also stable, but it is noncausal.
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