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1. Laplace Transform



Laplace Transform

Recall the response of a CT LTI system to the input x(¢) = ¢ is
(1) = (x* h)(1) = H(s)e"
where & is the impulse response of the system and

H(s) = /OO h(t)e™"dt

—00

The system function H(s) is called the Laplace transform of A.

In general, the Laplace transform of a CT signal x(¢) is

o0 T

X(s) = / x(1)e™dr = lim x(r)e™dt
— 00 T)—0o0 T

Tr—o0

also denoted by

X=4L{x}, or x(t) <= X(s)



Laplace Transform

The set of s for which the integral defining Laplace transform

[e.e] T2
X(s) :/ x(f)e™dr = lim x(r)e™dt

— 00 T)—o00 _T

Tr—o0 !

converges is called its region of convergence (ROC)

Relation with CTFT

Fors = o + jw,
X(o +jw) = /_00 {x(t)e 7" }e'dt = F{x(t)e "'}

If the ROC includes the imaginary axis, setting ¢ = 0 yields

X(9)],y,, = X(w) = F{x}(jw)



Example
For x(1) = e “u(t),

1 — e—(s+a)T

X(s) :/ e e "dt = lim
0

T—o0 s+a

with ROC given by Res > —Rea.

If Rea > 0, the ROC contains the imaginary axis,

?{X}(}W) :X(S)|z:ef“’ - jw:—a

If Rea < 0, the CTFT does not exist.
If Rea = 0, the CTFT exists only as a distribution,

0= juy = Fla(e) =

Ty ) £ X0

s=jw



Example

For x(1) = —e~“u(—1),

0 ' 1 — e(era)T 1
X(s) = —/ e e dr = lim = ,
NS T—oo S+ a s+a

with ROC given by Res < —Rea.

If Rea < 0, the ROC contains the imaginary axis,

Fla}(w) = X(5)] _p = jw :- a i

If Rea > 0, the CTFT does not exist.
If Rea = 0, the CTFT exists only as a distribution,

a=jwy = F{x}(*) = -

m+ﬂ5(&)+&)g) 7§ X(S) ‘

s=jw



Importance of ROC

Im
1 I
x1(f) = e "u(t) < X, (s) = , —aX
s+a | Re
ROC Res > —Rea 5
Im
—at £ 1 !
x0(t) = —e “u(—t) +—— Xa(s) = e _aX
; Re
ROC Res < —Rea 1

Different signals can have the same X(s) but different ROCs

Always specify ROC for Laplace transforms!



Example
For x(1) = 3e™u(t) — 2¢ 'u(t),

X(s) = /000 [3e>u(r) — 2¢™"u(t)] edt

3 2
= g

s+2 s+1
B s— 1

(s +2)(s+ 1)
with ROC Res > —1.
Two simple poles at s = —2 and s = —1
A simple zero at s = 1

Also a simple zero at co.

R i |

—0

Re



Example
For x(r) = e u(r) + e 7" cos(3r)u(t) = e + L1731 4 L= (),
X(s) Lol 1 L1 1

s) = — —
s+2 2s+(1-3j) 25+ (1+3))
257 4+ 5s+ 12

(2 + 25+ 10)(s + 1) Im

L (s T (5 4 VT —1 43X

(s H2)(s+1—3))(s+1+3)) oi

with ROC Res > —1.

Re

Simple polesats=—-2ands=—1+3j :

. 54 (e]
Simple zeros at s — ==¥1I

Also a simple zero at co.



Rational Transforms
A rational transform X has the following form
D(s)

where N, D are polynomials that are coprime, i.e. they have no
common factors of degree > 1.

By the Fundamental Theorem of Algebra,

X(s) = Hk (s — )

Hk 1 (s = pe)
with the convention []}_, - = 1.
® 7,,...,z, are the finite zeros of X
® pi,...,pn are the finite poles of X

e If n > m, X has a pole of order n — m at oo
e |f n < m, X has a zero of order m — n at co



Rational Transforms

A rational function X is determined by its zeros and poles in C,
including their orders, up to a multiplicative constant factor.

A rational Laplace transform is determined by its pole-zero plot
and ROC, up to a multiplicative constant factor.

Re

e |1 <Res<?2
e Res >2

Example. . Im .
(1P E E
X6 = A6 -2 5 |
We will see there are three X o X
possibilities for the ROC —11 T 2
* Res < —1 E E
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2. Region of Convergence



Convergence of Laplace Transform

Assume x(¢) is integrable on any finite interval [T}, T»]. The
convergence of the Laplace transform

o0 T2
X(s) :/ x(t)e™*'dt = lim x(1)e™""dt
T)—o0 _T

—0o0
Tr—o0 1

is equivalent to the convergence of the following two integrals

0o T,
/ x(t)e™"dt = lim x(t)e™""dt (*)
0

Tr—o0 0

0 0
/ x(t)e™dt = lim x(t)e™"dt
PN T)—o00 —Ty

The ROC for the Laplace transform is the intersection of the
ROCs for the above two one-sided integrals.

NB. The integral in (x) is the unilateral Laplace transform of x.



Convergence of Unilateral Laplace Transform

Theorem. If the integral in (x) converges for s = sy = o + jwo,
then it converges for any s = o + jw with o > oy.

Proof. Let .
y(r) = / x(T)e "dr
0
By assumption, lim y(¢) exists and hence M = sup |y(t)| < oco.
t—00

>0

Integration by parts yields

T T
/ x(t)e™"dt = / y (1)e= B0 gy
0 0

T
— e_(s_“'O)Ty(T) + (s — 50) / y(t)e_(s_SO)tdt
0

As T — oo, e~ 6=0Ty(T) — 0.



Convergence of Unilateral Laplace Transform

Theorem. If the integral in (x) converges for s = sy = o + jwo,
then it converges for any s with Re s > o,

Proof (cont'd). Let s = 0 + jw.

T T
| et = [Tl
0 0

T
< / Me o0t g <
0

g — 0y
so the integral [, y(r)e~“—*)'dt converges absolutely.

Therefore, (x) converges and

/ x(t)e™"dt = (s — so)/ y(r)e= )iy
0 0



ROC of Unilateral Laplace Transform

Three possibilities for the convergence of the integral (x),

(a). it converges for every s € C
(b). it diverges for every s € C
(c). it converges for Res > 0. € R and diverges for Re s < o.

In case (c), o. € R is called the abscissa of convergence, and
the line Re s = o. is called the axis of convergence

The ROC! is always a right half-plane Im
ROC ={scC:Res> o}

We also write 0. = —oc in case (a), and
o. = +oo in case (b).

"More precisely, the interior of the ROC.



ROC of Unilateral Laplace Transform
Example. f°° ¢~ dr diverges for every s € C, i.e. 0, = +00
Proof. Let s = 0 € R. Note

© 2
/ e e dt = +00
0

Since o is arbitrary, the previous theorem implies the integral
diverges for any s € C.

Example. f0°° e~ e~*dt converges for every s € C, i.e. 0. = —oc0
Proof. Let s = 0 € R. Note

/ e—tze—otdt — 602/4/ e—(H—J/Z)zdt < 602/4/ e—tzdt — \/7_1'602/4
0 0 —00

The integral converges absolutely for every s € C.

Example. [~ ¢ *drhas o, =0



Absolute Convergence of Unilateral Laplace Transform

Theorem. If the integral in (x) converges absolutely for
s = 5o = 0o + jwo, then it converges absolutely and uniformly for
s = 0 + jw with o > 0.

Proof.

/ ()" |dr / x(t)]e—"dr < / x(£)]e"dt < o0
0 0 0

As in the case of convergence, the region of
absolute convergence (ROAC) is always a right Im
half-plane

ROAC = {s € C: Res > 0,} % Re

where o, € R is the abscissa of absolute
convergence, and the line Re s = g, is the axis
of absolute convergence.



ROAC of Unilateral Laplace Transform

The axis of convergence and the axis of absolute convergence

need not coincide!

Example. Let k > 0. To see o, = k, note [;* e sin(e")e*'dt
converges absolutely for Re s > k, since for s = o + jw,

| sin(e)e ™| < e~ "R € L]0, 00)

It is not absolutely convergent for s = k, since

> 1 [ ]sinyl
: kt
dt = — —du = .
/0 [sin(e)| k/l 2 = oo im
Lets =0 € R. i
> Y 1 [*sinu 0 1k
/0 e sin(e")e 7dt = k/1 Wdu :

Dirichlet’s test implies 0. = 0.

NB. We will use ROC, although in most cases ROC = ROAC.

Re



ROC of (Bilateral) Laplace Transform

The ROC of .
/ x(t)e™dt
0

is a right half-plane Re s > o;.

0 o
/ x(t)e™"dt = / x(—t)e”"dr
—o0 0

is a left half-plane, Re s < o;.

The ROC of

The ROC of
oo 00 0
X(S) _/ x(l‘)e—stdt _/ x(t)e_‘“dt—i—/ x(t)e_‘“dt
o 0

—00

is a strip 0 < Re s < 0,, which is nonempty iff o) < o,



Properties of ROC
e X(s) is analytic in the ROC and

796) = [ (st ar

If x is of finite duration and in L,, then the ROC is C.

If x is left-sided, its ROC is a left half-plane

If x is right-sided, its ROC is a right half-plane

If x is two-sided, its ROC is a strip
Im Im Im

Re

Re

Re

left-sided right-sided two-sided



Example

Consider x(t) = e "l = e~ P'u(t) + e"'u(—1)

1 b>0
Recall /\
—

e "u(t) = ! , Res>—b !
s+b x(t)
u(—1) «= - , Res<b \9
s—b 1
Thus !
x(f) = e < e, R —b<Res<b

s+b s—b s2—0b¥
The ROC is nonempty iff b > 0.

Im

NB. For Laplace transform to exist, x(¢) has
to decay fast enough either as t — 400 or
t — —oo. The exponential weighting in e
cannot kill both.




Properties of ROC

e If X(s) is rational, the ROC is bounded by poles or extends
to infinity.

Im
e [f x is also right-sided, then its

ROC is the right half-plane
bounded by the rightmost

pole in C, e.g. region lll M

Re

e [f x is also left-sided, then its
ROC is the left half-plane
bounded by the leftmost pole
in C, e.g. region |

B iy

-----------><.----_-----
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3. Properties of Laplace Transform



Linearity

4 x(1) +£ X(s) with ROC =R,

y(1) +=— Y(s) with ROC = R,
then
ax(t) + by(t) +=— aX(s) + b¥(s) with ROC O R, N R,

NB. The ROC may be larger than R; N R,.

Example. x([) — COS(Wol)I/t(t) = %eiwotu([) + %ej“"’tu(t)

1 1 1 1 Ry
(s) 2s—jwo+2s+jw0 52 4 w} g

Iy Wo

in(wot)u(t) «—— ——=, Res>0
sin(wot )u(t) Trad s



Linearity

Example.
1 1
X (s) T Res > —1; X,(s) ESICES) s
1 1
X(s) = Xu(5) — Xo(s) = —— - Res> —2

(s+1)(s+2) s+2’
ROC enlarges due to pole-zero cancellation at s = —1.

In time domain,




Time Shift

4 x(1) LN X(s), o1 <Res<o

then
x(t — to) LN e"X(s), o1 <Res<o
Example.
3s
? 2 ¢ , Res > -2
s+2

1
x(1) = e 2ulr) +=— Y Res > -2

3s

X(t+3) = e 20y (r 4 3) 2y o

, Res > =2



Shifting in s-domain

If
x(1) +£5 X(s), o1 <Res<o,
then
ex(f) <= X(s — s0), o1+ Resy < Res < o, + Res
Example.
For o e R,
e~ cos(wot)u(t) < £ sta Res > —«

Res > —«a




Time Scaling

If
x(1) +£5 X(s), o1 <Res<o,

then fora € R\ {0},

1 1
x@n)«ii+-—ax<f , 01 <-Res<ao
a

jal \a

N——

For time reversal,

x(—t) += X(—s), —o0»<Res< —o

Im

—1<a<0



Conjugation
If
x(1) +£5 X(s), o1 <Res<o,
then
x*(1) PN X*(s*), o1 <Res<ao

If x is real-valued, then X(s) = X*(s*), so the zeros and poles of
X(s) appear in conjugate pairs.

Im

Example. 1 +3j)lK
For x(¢) = e u(t) + e cos(3t)u(t), o
5+jvV71 5Vl :

X(s) = (s + 20 )(s'—i— LY | %y-—: Re
(s+2)(s+1=3))(s+1+3)) :
O
with ROC Re s > —1. —1-3X



Convolution Property

If
x(f) «£ X(s) with ROAC = R,

(1) +=— ¥(s) with ROAC = R,

then

(x #y)(1) <= X(5)Y(s) with ROAC D R, N R,
A more precise statement is the following.

Theorem. If both X(s) = / x(t)e "drand Y (s) = / y(t)e dt

converges absolutely at some s = sy, then the Lapla_ce transform
of z = x x y converges absolutely at s = s,, and

o0

X(50)Y(s0) = Z(s9) = / z(t)e " dt

—0o0



Convolution Property
Proof.

X(s)Y(s) = /_ Z x(v) { / h y(r)es(V”)dv] dr

—00

_ /_ Z x(v) { /_ : y(t — v)e_‘wdv} dt (t=v+7)

= /Oo {/Oo x(v)y(t — v)dt} e dv (Fubini’s Theorem)

o0 [e.9]

NB. The ROAC of £{x %y} may be larger than the common
ROAC of £L{x} and L{y}.

Example. X;(s) = 5 has ROAC Res > 2, X,(s) = ;7 has

ROAC Res > —1, but X(s) = X;(s)X»(s) = ﬁ with ROAC
Res > —2, due to pole-zero cancellation at s = —1.



Differentiation in Time Domain

4 x(t) «“ 5 X(s), with ROC =R

and lim x(t)e™* =0 fors € R € R, then

t—+o0

d

e ()<—>sX() with ROC D RN Ry

Proof. Integration by parts yields

/ X (t)e™"dt = x(t)e™ h +s/ x(H)e dt = s/ x(t)e™dt

NB. ROC may enlarge or shrink
Example. x(r) = (1 — e ")u(z) PN ; with ROC = ROAC

Res > 0, and X' (1) = e~'u(t) «=— L W|th ROC = ROAC
Res > —1. The ROC of £{x'} is Iarger that that of £{x}.




Differentiation in Time Domain

Example. Consider x(7) = " sin(e*') with k > 0.
e Fors =0 € R, u=¢"yields (cf. slide 18)

°° 1 [ sinu 1 ['sinu 1 [~ sinu
—st I —— e _
/_Oo x(t)e™"dt = Z /0 ok du Z /0 ok du—i—k /1 Tk du
> [° #2du has ROAC Res > k and ROC Res > 0
> Asu |0, 52 ~ =7/, 50 N st du has ROAC Re s < 2k

» Thus £{x} has ROC k < Res < 2k and ROC 0 < Re s < 2k.
o /(1) = ke sin(e!) + ke®™ cos(eM). For s = o € R,

& *®sinu+ ucosu
/ Y(0)edt = / Siwutucosu
—c0 0 uU/k

L{x'} has empty ROAC and ROC k < Res < 2k
¢ Note hin x(t)e*" = 0 fails for s with 0 < Res < k




Differentiation in Time Domain
If x(£) = O(e™) as t — +oo and x(t) = O(e"") as t — —oo, then

x(1) LN X(s), with ROAC containing a < Res < b

and

7 x(1) PN sX(s), with ROC containinga < Res < b

NB. In general, from the absolute convergence of £L{x} at s = s
we can only conclude the convergence of £{x'} at s = sy.

NB. We mostly deal with x(r) of the form 7" pi(r)e®u(xt + By),
where p, are polynomials. After introducing Laplace transform
for singularity functions, we have for such functions,

%x(t) «~ 5 §"X(s), with ROC containing a < Res < b



Differentiation in s-domain

If x(1) SN X(s), o1 <Res<o
then . d
—tx(t) +—— d—X(s)7 o <Res< o
s

Proof. Differentiation under integral sign (can be justified) yields

d x(t)e‘”dt:/ x(t)die_”dt:/ —tx(t)e "dt

% —00 (o] s —00
Example. 1

P e u(r) = , Res>—a

s+ a
z d\" 1 n!
e u(t) +—— | —— = , Res>—a
(1) ( ds) s+a (s+a)yt!
S i n ,—at £ n!

Similarly, —"e u(—t) +— Res < —a
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