El331 Signals and Systems

Lecture 29

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

June 6, 2019

Contents

1. Laplace Transform

Region of Convergence

3. Properties of Laplace Transform

Laplace Transform

Recall the response of a CT LTI system to the input $x(t) = e^{st}$ is

$$y(t) = (x * h)(t) = H(s)e^{st}$$

where *h* is the impulse response of the system and

$$H(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$$

The system function H(s) is called the Laplace transform of h.

In general, the Laplace transform of a CT signal x(t) is

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt = \lim_{\substack{T_1 \to \infty \\ T_2 \to \infty}} \int_{-T_1}^{T_2} x(t)e^{-st}dt$$

also denoted by

$$X = \mathcal{L}\{x\}, \quad \text{or} \quad x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$$

Laplace Transform

The set of *s* for which the integral defining Laplace transform

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt = \lim_{\substack{T_1 \to \infty \\ T_2 \to \infty}} \int_{-T_1}^{T_2} x(t)e^{-st}dt$$

converges is called its region of convergence (ROC)

Relation with CTFT

For $s = \sigma + j\omega$,

$$X(\sigma + j\omega) = \int_{-\infty}^{\infty} \{x(t)e^{-\sigma t}\}e^{-j\omega t}dt = \mathcal{F}\{x(t)e^{-\sigma t}\}$$

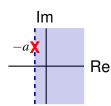
If the ROC includes the imaginary axis, setting $\sigma=0$ yields

$$X(s)\big|_{s=j\omega} = X(j\omega) = \mathfrak{F}\{x\}(j\omega)$$

Example

For
$$x(t) = e^{-at}u(t)$$
,

$$X(s) = \int_0^\infty e^{-at} e^{-st} dt = \lim_{T \to \infty} \frac{1 - e^{-(s+a)T}}{s+a} = \frac{1}{s+a},$$



with ROC given by $\operatorname{Re} s > -\operatorname{Re} a$.

If Re a > 0, the ROC contains the imaginary axis,

$$\mathcal{F}{x}(j\omega) = X(s)\big|_{z=e^{j\omega}} = \frac{1}{j\omega + a}$$

If Re a < 0, the CTFT does not exist.

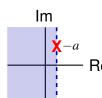
If Re a = 0, the CTFT exists only as a distribution,

$$a = j\omega_0 \implies \mathcal{F}\{x\}(e^{j\omega}) = \frac{1}{j(\omega + \omega_0)} + \pi\delta(\omega + \omega_0) \neq X(s)\big|_{s=j\omega}$$

Example

For
$$x(t) = -e^{-at}u(-t)$$
,

$$X(s) = -\int_{-\infty}^{0} e^{-at} e^{-st} dt = \lim_{T \to \infty} \frac{1 - e^{(s+a)T}}{s+a} = \frac{1}{s+a},$$



with ROC given by $\operatorname{Re} s < -\operatorname{Re} a$.

If Re a < 0, the ROC contains the imaginary axis,

$$\mathcal{F}{x}(j\omega) = X(s)\big|_{z=e^{j\omega}} = \frac{1}{j\omega + a}$$

If Re a > 0, the CTFT does not exist.

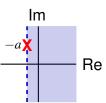
If $\operatorname{Re} a = 0$, the CTFT exists only as a distribution,

$$a = j\omega_0 \implies \mathcal{F}\{x\}(e^{j\omega}) = \frac{1}{j(\omega + \omega_0)} + \pi\delta(\omega + \omega_0) \neq X(s)\big|_{s=j\omega}$$

Importance of ROC

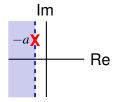
$$x_1(t) = e^{-at}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X_1(s) = \frac{1}{s+a},$$

ROC Re s > -Re a



$$x_2(t) = -e^{-at}u(-t) \stackrel{\mathcal{L}}{\longleftrightarrow} X_2(s) = \frac{1}{s+a},$$

ROC Re s < -Re a



Different signals can have the same X(s) but different ROCs

Always specify ROC for Laplace transforms!

Example

For
$$x(t) = 3e^{-2t}u(t) - 2e^{-t}u(t)$$
,
$$X(s) = \int_0^\infty \left[3e^{-2t}u(t) - 2e^{-t}u(t) \right] e^{-st}dt$$

$$= \frac{3}{s+2} - \frac{2}{s+1}$$

$$= \frac{s-1}{(s+2)(s+1)}$$
Re

with ROC Re s > -1.

Two simple poles at s = -2 and s = -1

A simple zero at s = 1

Also a simple zero at ∞ .

Example

For
$$x(t) = e^{-2t}u(t) + e^{-t}\cos(3t)u(t) = e^{-2t} + \frac{1}{2}e^{-(1-3j)t} + \frac{1}{2}e^{-(1+3j)t},$$

$$X(s) = \frac{1}{s+2} + \frac{1}{2}\frac{1}{s+(1-3j)} + \frac{1}{2}\frac{1}{s+(1+3j)}$$

$$= \frac{2s^2 + 5s + 12}{(s^2 + 2s + 10)(s+1)}$$

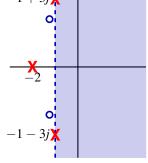
$$= \frac{(s + \frac{5+j\sqrt{71}}{4})(s + \frac{5-j\sqrt{71}}{4})}{(s+2)(s+1-3j)(s+1+3j)}$$

with ROC Re s > -1.

Simple poles at s = -2 and $s = -1 \pm 3j$

Simple zeros at
$$s = \frac{-5 \pm j\sqrt{71}}{4}$$

Also a simple zero at ∞ .



Re

Rational Transforms

A rational transform *X* has the following form

$$X(s) = \frac{N(s)}{D(s)}$$

where N, D are polynomials that are coprime, i.e. they have no common factors of degree ≥ 1 .

By the Fundamental Theorem of Algebra,

$$X(s) = A \frac{\prod_{k=1}^{n} (s - z_k)}{\prod_{k=1}^{m} (s - p_k)}$$

with the convention $\prod_{k=1}^{0} \cdot = 1$.

- z_1, \ldots, z_n are the finite zeros of X
- p_1, \ldots, p_m are the finite poles of X
- If n > m, X has a pole of order n m at ∞
- If n < m, X has a zero of order m n at ∞

Rational Transforms

A rational function X is determined by its zeros and poles in \mathbb{C} , including their orders, up to a multiplicative constant factor.

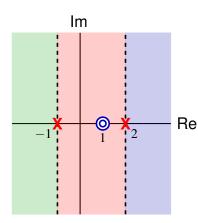
A rational Laplace transform is determined by its pole-zero plot and ROC, up to a multiplicative constant factor.

Example.

$$X(s) = A \frac{(s-1)^2}{(s+1)(s-2)}$$

We will see there are three possibilities for the ROC

- Re s < -1
- -1 < Re s < 2
- Re s > 2



Contents

1. Laplace Transform

2. Region of Convergence

3. Properties of Laplace Transform

Convergence of Laplace Transform

Assume x(t) is integrable on any finite interval $[T_1, T_2]$. The convergence of the Laplace transform

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt = \lim_{\substack{T_1 \to \infty \\ T_2 \to \infty}} \int_{-T_1}^{T_2} x(t)e^{-st}dt$$

is equivalent to the convergence of the following two integrals

$$\int_0^\infty x(t)e^{-st}dt = \lim_{T_2 \to \infty} \int_0^{T_2} x(t)e^{-st}dt \tag{*}$$

$$\int_{-\infty}^0 x(t)e^{-st}dt = \lim_{T_1 \to \infty} \int_{-T_1}^0 x(t)e^{-st}dt$$

The ROC for the Laplace transform is the intersection of the ROCs for the above two one-sided integrals.

NB. The integral in (\star) is the unilateral Laplace transform of x.

Convergence of Unilateral Laplace Transform

Theorem. If the integral in (*) converges for $s=s_0=\sigma_0+j\omega_0$, then it converges for any $s=\sigma+j\omega$ with $\sigma>\sigma_0$.

Proof. Let

$$y(t) = \int_0^t x(\tau)e^{-s_0\tau}d\tau$$

By assumption, $\lim_{t\to\infty}y(t)$ exists and hence $M\triangleq\sup_{t>0}|y(t)|<\infty.$

Integration by parts yields

$$\int_0^T x(t)e^{-st}dt = \int_0^T y'(t)e^{-(s-s_0)t}dt$$
$$= e^{-(s-s_0)T}y(T) + (s-s_0)\int_0^T y(t)e^{-(s-s_0)t}dt$$

As $T \to \infty$, $e^{-(s-s_0)T}y(T) \to 0$.

Convergence of Unilateral Laplace Transform

Theorem. If the integral in (*) converges for $s = s_0 = \sigma_0 + j\omega_0$, then it converges for any s with Re $s > \sigma_0$.

Proof (cont'd). Let $s = \sigma + j\omega$.

$$\int_0^T |y(t)e^{-(s-s_0)t}|dt = \int_0^T |y(t)|e^{-(\sigma-\sigma_0)t}dt$$

$$\leq \int_0^T Me^{-(\sigma-\sigma_0)t}dt \leq \frac{M}{\sigma-\sigma_0}$$

so the integral $\int_0^\infty y(t)e^{-(s-s_0)t}dt$ converges absolutely.

Therefore, (*) converges and

$$\int_{0}^{\infty} x(t)e^{-st}dt = (s - s_0) \int_{0}^{\infty} y(t)e^{-(s - s_0)t}dt$$

ROC of Unilateral Laplace Transform

Three possibilities for the convergence of the integral (\star) ,

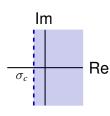
- (a). it converges for every $s \in \mathbb{C}$
- (b). it diverges for every $s \in \mathbb{C}$
- (c). It converges for $\operatorname{Re} s > \sigma_c \in \mathbb{R}$ and diverges for $\operatorname{Re} s < \sigma_c$

In case (c), $\sigma_c \in \mathbb{R}$ is called the abscissa of convergence, and the line $\operatorname{Re} s = \sigma_c$ is called the axis of convergence

The ROC¹ is always a right half-plane

$$\mathsf{ROC} = \{s \in \mathbb{C} : \mathsf{Re}\, s > \sigma_c\}$$

We also write $\sigma_c = -\infty$ in case (a), and $\sigma_c = +\infty$ in case (b).



¹More precisely, the interior of the ROC.

ROC of Unilateral Laplace Transform

Example. $\int_0^\infty e^{t^2} e^{-st} dt$ diverges for every $s \in \mathbb{C}$, i.e. $\sigma_c = +\infty$

Proof. Let $s = \sigma \in \mathbb{R}$. Note

$$\int_0^\infty e^{t^2} e^{-\sigma t} dt = +\infty$$

Since σ is arbitrary, the previous theorem implies the integral diverges for any $s \in \mathbb{C}$.

Example. $\int_0^\infty e^{-t^2}e^{-st}dt$ converges for every $s\in\mathbb{C}$, i.e. $\sigma_c=-\infty$

Proof. Let $s = \sigma \in \mathbb{R}$. Note

$$\int_0^\infty e^{-t^2} e^{-\sigma t} dt = e^{\sigma^2/4} \int_0^\infty e^{-(t+\sigma/2)^2} dt \le e^{\sigma^2/4} \int_{-\infty}^\infty e^{-t^2} dt = \sqrt{\pi} e^{\sigma^2/4}$$

The integral converges absolutely for every $s \in \mathbb{C}$.

Example. $\int_0^\infty e^{-st} dt$ has $\sigma_c = 0$

Absolute Convergence of Unilateral Laplace Transform

Theorem. If the integral in (\star) converges absolutely for $s=s_0=\sigma_0+j\omega_0$, then it converges absolutely and uniformly for $s=\sigma+j\omega$ with $\sigma\geq\sigma_0$.

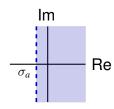
Proof.

$$\int_0^\infty |x(t)e^{-st}|dt = \int_0^\infty |x(t)|e^{-\sigma t}dt \le \int_0^\infty |x(t)|e^{-\sigma_0 t}dt < \infty$$

As in the case of convergence, the region of absolute convergence (ROAC) is always a right half-plane

$$\mathsf{ROAC} = \{ s \in \mathbb{C} : \mathsf{Re} \, s > \sigma_a \}$$

where $\sigma_a \in \mathbb{R}$ is the abscissa of absolute convergence, and the line $\text{Re } s = \sigma_a$ is the axis of absolute convergence.



ROAC of Unilateral Laplace Transform

The axis of convergence and the axis of absolute convergence need not coincide!

Example. Let k > 0. To see $\sigma_a = k$, note $\int_0^\infty e^{kt} \sin(e^{kt}) e^{-st} dt$ converges absolutely for Re s > k, since for $s = \sigma + i\omega$,

$$|e^{kt}\sin(e^{kt})e^{-st}| \le e^{-(\sigma-k)t} \in L_1[0,\infty)$$

It is not absolutely convergent for s = k, since

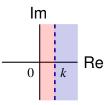
$$\int_0^\infty |\sin(e^{kt})| dt = \frac{1}{k} \int_1^\infty \frac{|\sin u|}{u} du = \infty.$$

Let $s = \sigma \in \mathbb{R}$.

$$\int_0^\infty e^{kt} \sin(e^{kt}) e^{-\sigma t} dt = \frac{1}{k} \int_1^\infty \frac{\sin u}{u^{\sigma/k}} du$$

Dirichlet's test implies $\sigma_c = 0$.

NB. We will use ROC, although in most cases ROC = ROAC.



ROC of (Bilateral) Laplace Transform

The ROC of

$$\int_0^\infty x(t)e^{-st}dt$$

is a right half-plane $\text{Re } s > \sigma_1$.

The ROC of

$$\int_{-\infty}^{0} x(t)e^{-st}dt = \int_{0}^{\infty} x(-t)e^{-(-s)t}dt$$

is a left half-plane, $\text{Re } s < \sigma_2$.

The ROC of

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt = \int_{0}^{\infty} x(t)e^{-st}dt + \int_{-\infty}^{0} x(t)e^{-st}dt$$

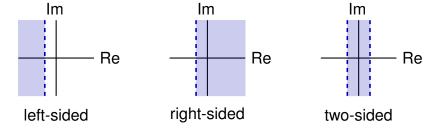
is a strip $\sigma_1 < \text{Re } s < \sigma_2$, which is nonempty iff $\sigma_1 < \sigma_2$

Properties of ROC

• *X*(*s*) is analytic in the ROC and

$$f^{(k)}(s) = \int (-t)^k x(t) e^{-st} dt$$

- If x is of finite duration and in L_1 , then the ROC is \mathbb{C} .
- If x is left-sided, its ROC is a left half-plane
- If x is right-sided, its ROC is a right half-plane
- If x is two-sided, its ROC is a strip



Example

Consider
$$x(t) = e^{-b|t|} = e^{-bt}u(t) + e^{bt}u(-t)$$

Recall

$$e^{-bt}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+b}, \quad \operatorname{Re} s > -b$$

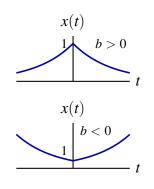
$$e^{bt}u(-t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{-1}{s-b}, \quad \operatorname{Re} s < b$$

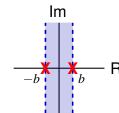
Thus

$$x(t) = e^{-b|t|} \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+b} - \frac{1}{s-b} = \frac{-2b}{s^2 - b^2}, \quad -b < \text{Re } s < b$$

The ROC is nonempty iff b > 0.

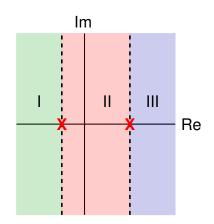
NB. For Laplace transform to exist, x(t) has to decay fast enough either as $t \to +\infty$ or $t \to -\infty$. The exponential weighting in e^{-st} cannot kill both.





Properties of ROC

- If X(s) is rational, the ROC is bounded by poles or extends to infinity.
- If x is also right-sided, then its ROC is the right half-plane bounded by the rightmost pole in C, e.g. region III
- If x is also left-sided, then its ROC is the left half-plane bounded by the leftmost pole in C, e.g. region I



Contents

1. Laplace Transform

Region of Convergence

3. Properties of Laplace Transform

Linearity

lf

$$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$$
 with ROC = R_1
 $y(t) \stackrel{\mathcal{L}}{\longleftrightarrow} Y(s)$ with ROC = R_2

then

$$ax(t) + by(t) \xleftarrow{\mathcal{L}} aX(s) + bY(s)$$
 with ROC $\supset R_1 \cap R_2$

NB. The ROC may be larger than $R_1 \cap R_2$.

Example.
$$x(t) = \cos(\omega_0 t) u(t) = \frac{1}{2} e^{j\omega_0 t} u(t) + \frac{1}{2} e^{-j\omega_0 t} u(t)$$

$$X(s) = \frac{1}{2} \frac{1}{s - j\omega_0} + \frac{1}{2} \frac{1}{s + j\omega_0} = \frac{s}{s^2 + \omega_0^2}, \quad \text{Re } s > 0$$

$$\sin(\omega_0 t) u(t) \xleftarrow{\mathcal{L}} \frac{\omega_0}{s^2 + \omega_0^2}, \quad \text{Re } s > 0$$

Linearity

Example.

$$X_1(s) = \frac{1}{s+1}$$
, $\operatorname{Re} s > -1$; $X_2(s) = \frac{1}{(s+1)(s+2)}$, $\operatorname{Re} s > -1$

$$X(s) = X_1(s) - X_2(s) = \frac{s+1}{(s+1)(s+2)} = \frac{1}{s+2}, \quad \mathsf{Re}\, s > -2$$

ROC enlarges due to pole-zero cancellation at s = -1.

In time domain.

time domain,
$$x_1(t) = e^{-t}u(t), \quad x_2(t) = e^{-t}u(t) - e^{-2t}u(t)$$

$$x(t) = x_1(t) - x_2(t) = e^{-2t}u(t)$$

$$\lim_{t \to \infty} \lim_{t \to \infty} \lim_{t \to \infty} |\mathbf{x}| = \frac{\mathbf{x}}{-2} + \mathbf{x}$$
 Re

Time Shift

lf

$$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s), \quad \sigma_1 < \operatorname{Re} s < \sigma_2$$

then

$$x(t-t_0) \stackrel{\mathcal{L}}{\longleftrightarrow} e^{-st_0}X(s), \quad \sigma_1 < \operatorname{Re} s < \sigma_2$$

Example.

$$? \xleftarrow{\mathcal{L}} \frac{e^{3s}}{s+2}, \ \mathsf{Re}\, s > -2$$

$$x(t) = e^{-2t}u(t) \xleftarrow{\mathcal{L}} \frac{1}{s+2}, \ \mathsf{Re}\, s > -2$$

$$x(t+3) = e^{-2(t+3)}u(t+3) \xleftarrow{\mathcal{L}} \frac{e^{3s}}{s+2}, \ \mathsf{Re}\, s > -2$$

Shifting in s-domain

lf

$$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s), \quad \sigma_1 < \mathsf{Re}\, s < \sigma_2$$

then

$$e^{s_0t}x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s-s_0), \quad \sigma_1 + \operatorname{Re} s_0 < \operatorname{Re} s < \sigma_2 + \operatorname{Re} s_0$$

Example.

For $\alpha \in \mathbb{R}$,

$$e^{-\alpha t}\cos(\omega_0 t)u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}, \quad \operatorname{Re} s > -\alpha$$

$$e^{-\alpha t}\sin(\omega_0 t)u(t) \xleftarrow{\mathcal{L}} \frac{\omega_0}{(s+\alpha)^2 + \omega_0^2}, \quad \operatorname{Re} s > -\alpha$$

Time Scaling

lf

$$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s), \quad \sigma_1 < \operatorname{Re} s < \sigma_2$$

then for $a \in \mathbb{R} \setminus \{0\}$,

$$x(at) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{s}{a}\right), \quad \sigma_1 < \frac{1}{a} \operatorname{Re} s < \sigma_2$$

For time reversal,

$$x(-t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(-s), \quad -\sigma_2 < \operatorname{Re} s < -\sigma_1$$
 $\operatorname{Im} \qquad \operatorname{Im} \qquad \operatorname$

Conjugation

lf

$$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s), \quad \sigma_1 < \operatorname{Re} s < \sigma_2$$

then

$$x^*(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X^*(s^*), \quad \sigma_1 < \operatorname{Re} s < \sigma_2$$

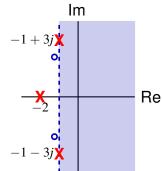
If x is real-valued, then $X(s) = X^*(s^*)$, so the zeros and poles of X(s) appear in conjugate pairs.

Example.

For $x(t) = e^{-2t}u(t) + e^{-t}\cos(3t)u(t)$,

$$X(s) = \frac{\left(s + \frac{5+j\sqrt{71}}{4}\right)\left(s + \frac{5-j\sqrt{71}}{4}\right)}{(s+2)(s+1-3j)(s+1+3j)}$$

with ROC Re s > -1.



Convolution Property

lf

$$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$$
 with ROAC = R_1
 $y(t) \stackrel{\mathcal{L}}{\longleftrightarrow} Y(s)$ with ROAC = R_2

then

$$(x*y)(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)Y(s)$$
 with ROAC $\supset R_1 \cap R_2$

A more precise statement is the following.

Theorem. If both $X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$ and $Y(s) = \int_{-\infty}^{\infty} y(t)e^{-st}dt$ converges absolutely at some $s = s_0$, then the Laplace transform of z = x * y converges absolutely at $s = s_0$, and

$$X(s_0)Y(s_0) = Z(s_0) = \int_{-\infty}^{\infty} z(t)e^{-s_0t}dt$$

Convolution Property

Proof.

$$\begin{split} X(s)Y(s) &= \int_{-\infty}^{\infty} x(v) \left[\int_{-\infty}^{\infty} y(\tau) e^{-s(v+\tau)} dv \right] d\tau \\ &= \int_{-\infty}^{\infty} x(v) \left[\int_{-\infty}^{\infty} y(t-v) e^{-sv} dv \right] dt \quad (t=v+\tau) \\ &= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x(v) y(t-v) dt \right] e^{-sv} dv \quad (\text{Fubini's Theorem}) \end{split}$$

NB. The ROAC of $\mathcal{L}\{x * y\}$ may be larger than the common ROAC of $\mathcal{L}\{x\}$ and $\mathcal{L}\{y\}$.

Example. $X_1(s)=\frac{s+1}{(s+2)^2}$ has ROAC Re s>-2, $X_2(s)=\frac{1}{s+1}$ has ROAC Re s>-1, but $X(s)=X_1(s)X_2(s)=\frac{1}{(s+2)^2}$ with ROAC Re s>-2, due to pole-zero cancellation at s=-1.

Differentiation in Time Domain

lf

$$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$$
, with ROC = R

and $\lim_{t \to \pm \infty} x(t)e^{-st} = 0$ for $s \in R \in R_0$, then

$$\frac{d}{dt}x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} sX(s), \quad \text{with ROC} \supset R \cap R_0$$

Proof. Integration by parts yields

$$\int_{-\infty}^{\infty} x'(t)e^{-st}dt = x(t)e^{-st}\Big|_{-\infty}^{\infty} + s\int_{-\infty}^{\infty} x(t)e^{-st}dt = s\int_{-\infty}^{\infty} x(t)e^{-st}dt$$

NB. ROC may enlarge or shrink

Example.
$$x(t) = (1 - e^{-t})u(t) \xleftarrow{\mathcal{L}} \frac{1}{s(s+1)}$$
 with ROC = ROAC

 $\operatorname{Re} s > 0$, and $x'(t) = e^{-t}u(t) \xleftarrow{\mathcal{L}} \frac{1}{s+1}$ with $\operatorname{ROC} = \operatorname{ROAC}$ $\operatorname{Re} s > -1$. The ROC of $\mathcal{L}\{x'\}$ is larger that that of $\mathcal{L}\{x\}$.

Differentiation in Time Domain

Example. Consider $x(t) = e^{kt} \sin(e^{kt})$ with k > 0.

• For $s = \sigma \in \mathbb{R}$, $u = e^{kt}$ yields (cf. slide 18)

$$\int_{-\infty}^{\infty} x(t)e^{-st}dt = \frac{1}{k} \int_{0}^{\infty} \frac{\sin u}{u^{\sigma/k}}du = \frac{1}{k} \int_{0}^{1} \frac{\sin u}{u^{\sigma/k}}du + \frac{1}{k} \int_{1}^{\infty} \frac{\sin u}{u^{\sigma/k}}du$$

- $ightharpoonup \int_1^\infty \frac{\sin u}{u^{\sigma/k}} du$ has ROAC Re s>k and ROC Re s>0
- ▶ As $u \downarrow 0$, $\frac{\sin u}{u^{\sigma/k}} \sim u^{1-\sigma/k}$, so $\int_0^1 \frac{\sin u}{u^{\sigma/k}} du$ has ROAC Re s < 2k
- ▶ Thus $\mathcal{L}{x}$ has ROC k < Re s < 2k and ROC 0 < Re s < 2k.
- $x'(t) = ke^{kt}\sin(e^{kt}) + ke^{2kt}\cos(e^{kt})$. For $s = \sigma \in \mathbb{R}$,

$$\int_{-\infty}^{\infty} x'(t)e^{-st}dt = \int_{0}^{\infty} \frac{\sin u + u\cos u}{u^{\sigma/k}}du$$

 $\mathcal{L}\{x'\}$ has empty ROAC, and ROC k < Re s < 2k

• Note $\lim_{t \to \pm \infty} x(t)e^{-st} = 0$ fails for s with $0 < \operatorname{Re} s < k$

Differentiation in Time Domain

If
$$x(t) = O(e^{at})$$
 as $t \to +\infty$ and $x(t) = O(e^{bt})$ as $t \to -\infty$, then $x(t) \xleftarrow{\mathcal{L}} X(s)$, with ROAC containing $a < \operatorname{Re} s < b$

and

$$\frac{d}{dt}x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} sX(s)$$
, with ROC containing $a < \text{Re } s < b$

NB. In general, from the absolute convergence of $\mathcal{L}\{x\}$ at $s=s_0$ we can only conclude the convergence of $\mathcal{L}\{x'\}$ at $s=s_0$.

NB. We mostly deal with x(t) of the form $\sum_{k=0}^{m} p_k(t)e^{\alpha_k t}u(\pm t + \beta_k)$, where p_k are polynomials. After introducing Laplace transform for singularity functions, we have for such functions,

$$\frac{d^n}{dt^n}x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} s^n X(s), \quad \text{with ROC containing } a < \text{Re } s < b$$

Differentiation in s-domain

$$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s), \quad \sigma_1 < \operatorname{Re} s < \sigma_2$$

then

$$-tx(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{d}{ds}X(s), \quad \sigma_1 < \operatorname{Re} s < \sigma_2$$

Proof. Differentiation under integral sign (can be justified) yields

$$\frac{d}{ds} \int_{-\infty}^{\infty} x(t)e^{-st}dt = \int_{-\infty}^{\infty} x(t)\frac{d}{ds}e^{-st}dt = \int_{-\infty}^{\infty} -tx(t)e^{-st}dt$$

Example.

$$e^{-at}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+a}$$
, Re $s > -a$

$$t^n e^{-at} u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \left(-\frac{d}{ds}\right)^n \frac{1}{s+a} = \frac{n!}{(s+a)^{n+1}}, \quad \operatorname{Re} s > -a$$

Similarly,
$$-t^n e^{-at} u(-t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{n!}{(s+a)^{n+1}}, \quad \operatorname{Re} s < -a$$