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Laplace Transform

Recall the response of a CT LTI system to the input x(t) = est is

y(t) = (x ∗ h)(t) = H(s)est

where h is the impulse response of the system and

H(s) =

∫ ∞
−∞

h(t)e−stdt

The system function H(s) is called the Laplace transform of h.

In general, the Laplace transform of a CT signal x(t) is

X(s) =

∫ ∞
−∞

x(t)e−stdt = lim
T1→∞
T2→∞

∫ T2

−T1

x(t)e−stdt

also denoted by

X = L{x}, or x(t) L←−−→ X(s)
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Laplace Transform

The set of s for which the integral defining Laplace transform

X(s) =

∫ ∞
−∞

x(t)e−stdt = lim
T1→∞
T2→∞

∫ T2

−T1

x(t)e−stdt

converges is called its region of convergence (ROC)

Relation with CTFT

For s = σ + jω,

X(σ + jω) =

∫ ∞
−∞
{x(t)e−σt}e−jωtdt = F{x(t)e−σt}

If the ROC includes the imaginary axis, setting σ = 0 yields

X(s)
∣∣

s=jω = X(jω) = F{x}(jω)
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Example

Re

Im

X−a

Re

Im

X−a

For x(t) = e−atu(t),

X(s) =

∫ ∞
0

e−ate−stdt = lim
T→∞

1− e−(s+a)T

s + a
=

1
s + a

,

with ROC given by Re s > −Re a.

If Re a > 0, the ROC contains the imaginary axis,

F{x}(jω) = X(s)
∣∣

z=ejω =
1

jω + a

If Re a < 0, the CTFT does not exist.

If Re a = 0, the CTFT exists only as a distribution,

a = jω0 =⇒ F{x}(ejω) =
1

j(ω + ω0)
+πδ(ω+ω0) 6= X(s)

∣∣
s=jω
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Example

Re

Im

X−a

Re

Im

X−a

For x(t) = −e−atu(−t),

X(s) = −
∫ 0

−∞
e−ate−stdt = lim

T→∞

1− e(s+a)T

s + a
=

1
s + a

,

with ROC given by Re s < −Re a.

If Re a < 0, the ROC contains the imaginary axis,

F{x}(jω) = X(s)
∣∣

z=ejω =
1

jω + a

If Re a > 0, the CTFT does not exist.

If Re a = 0, the CTFT exists only as a distribution,

a = jω0 =⇒ F{x}(ejω) =
1

j(ω + ω0)
+πδ(ω+ω0) 6= X(s)

∣∣
s=jω
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Importance of ROC

Re

Im

X−a

Re

Im

X−a

x1(t) = e−atu(t) L←−−→ X1(s) =
1

s + a
,

ROC Re s > −Re a

x2(t) = −e−atu(−t) L←−−→ X2(s) =
1

s + a
,

ROC Re s < −Re a

Different signals can have the same X(s) but different ROCs

Always specify ROC for Laplace transforms!
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Example

Re

Im

1
X−1

X−2

For x(t) = 3e−2tu(t)− 2e−tu(t),

X(s) =

∫ ∞
0

[
3e−2tu(t)− 2e−tu(t)

]
e−stdt

=
3

s + 2
− 2

s + 1

=
s− 1

(s + 2)(s + 1)

with ROC Re s > −1.

Two simple poles at s = −2 and s = −1

A simple zero at s = 1

Also a simple zero at∞.
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Example

Re

Im

X−1 + 3j

X−1− 3j

X−2

For x(t) = e−2tu(t) + e−t cos(3t)u(t) = e−2t + 1
2e−(1−3j)t + 1

2e−(1+3j)t,

X(s) =
1

s + 2
+

1
2

1
s + (1− 3j)

+
1
2

1
s + (1 + 3j)

=
2s2 + 5s + 12

(s2 + 2s + 10)(s + 1)

=
(s + 5+j

√
71

4 )(s + 5−j
√

71
4 )

(s + 2)(s + 1− 3j)(s + 1 + 3j)

with ROC Re s > −1.

Simple poles at s = −2 and s = −1± 3j

Simple zeros at s = −5±j
√

71
4

Also a simple zero at∞.
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Rational Transforms
A rational transform X has the following form

X(s) =
N(s)
D(s)

where N, D are polynomials that are coprime, i.e. they have no
common factors of degree ≥ 1.
By the Fundamental Theorem of Algebra,

X(s) = A

∏n
k=1(s− zk)∏m
k=1(s− pk)

with the convention
∏0

k=1 · = 1.

• z1, . . . , zn are the finite zeros of X
• p1, . . . , pm are the finite poles of X
• If n > m, X has a pole of order n− m at∞
• If n < m, X has a zero of order m− n at∞
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Rational Transforms
A rational function X is determined by its zeros and poles in C,
including their orders, up to a multiplicative constant factor.

A rational Laplace transform is determined by its pole-zero plot
and ROC, up to a multiplicative constant factor.

Re

Im

1
X−1

X
2

Example.

X(s) = A
(s− 1)2

(s + 1)(s− 2)

We will see there are three
possibilities for the ROC
• Re s < −1
• −1 < Re s < 2
• Re s > 2
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Convergence of Laplace Transform
Assume x(t) is integrable on any finite interval [T1,T2]. The
convergence of the Laplace transform

X(s) =

∫ ∞
−∞

x(t)e−stdt = lim
T1→∞
T2→∞

∫ T2

−T1

x(t)e−stdt

is equivalent to the convergence of the following two integrals∫ ∞
0

x(t)e−stdt = lim
T2→∞

∫ T2

0
x(t)e−stdt (?)

∫ 0

−∞
x(t)e−stdt = lim

T1→∞

∫ 0

−T1

x(t)e−stdt

The ROC for the Laplace transform is the intersection of the
ROCs for the above two one-sided integrals.

NB. The integral in (?) is the unilateral Laplace transform of x.
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Convergence of Unilateral Laplace Transform

Theorem. If the integral in (?) converges for s = s0 = σ0 + jω0,
then it converges for any s = σ + jω with σ > σ0.

Proof. Let

y(t) =

∫ t

0
x(τ)e−s0τdτ

By assumption, lim
t→∞

y(t) exists and hence M , sup
t≥0
|y(t)| <∞.

Integration by parts yields∫ T

0
x(t)e−stdt =

∫ T

0
y′(t)e−(s−s0)tdt

= e−(s−s0)Ty(T) + (s− s0)

∫ T

0
y(t)e−(s−s0)tdt

As T →∞, e−(s−s0)Ty(T)→ 0.
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Convergence of Unilateral Laplace Transform

Theorem. If the integral in (?) converges for s = s0 = σ0 + jω0,
then it converges for any s with Re s > σ0.

Proof (cont’d). Let s = σ + jω.

∫ T

0
|y(t)e−(s−s0)t|dt =

∫ T

0
|y(t)|e−(σ−σ0)tdt

≤
∫ T

0
Me−(σ−σ0)tdt ≤ M

σ − σ0

so the integral
∫∞

0 y(t)e−(s−s0)tdt converges absolutely.

Therefore, (?) converges and∫ ∞
0

x(t)e−stdt = (s− s0)

∫ ∞
0

y(t)e−(s−s0)tdt
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ROC of Unilateral Laplace Transform

Three possibilities for the convergence of the integral (?),

(a). it converges for every s ∈ C
(b). it diverges for every s ∈ C
(c). it converges for Re s > σc ∈ R and diverges for Re s < σc

In case (c), σc ∈ R is called the abscissa of convergence, and
the line Re s = σc is called the axis of convergence

The ROC1 is always a right half-plane

ROC = {s ∈ C : Re s > σc}

We also write σc = −∞ in case (a), and
σc = +∞ in case (b).

Re

Im

σc

1More precisely, the interior of the ROC.
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ROC of Unilateral Laplace Transform
Example.

∫∞
0 et2e−stdt diverges for every s ∈ C, i.e. σc = +∞

Proof. Let s = σ ∈ R. Note∫ ∞
0

et2e−σtdt = +∞

Since σ is arbitrary, the previous theorem implies the integral
diverges for any s ∈ C.

Example.
∫∞

0 e−t2e−stdt converges for every s ∈ C, i.e. σc = −∞

Proof. Let s = σ ∈ R. Note∫ ∞
0

e−t2e−σtdt = eσ
2/4
∫ ∞

0
e−(t+σ/2)2

dt ≤ eσ
2/4
∫ ∞
−∞

e−t2dt =
√
πeσ

2/4

The integral converges absolutely for every s ∈ C.

Example.
∫∞

0 e−stdt has σc = 0
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Absolute Convergence of Unilateral Laplace Transform

Theorem. If the integral in (?) converges absolutely for
s = s0 = σ0 + jω0, then it converges absolutely and uniformly for
s = σ + jω with σ ≥ σ0.

Proof.∫ ∞
0
|x(t)e−st|dt =

∫ ∞
0
|x(t)|e−σtdt ≤

∫ ∞
0
|x(t)|e−σ0tdt <∞

As in the case of convergence, the region of
absolute convergence (ROAC) is always a right
half-plane

ROAC = {s ∈ C : Re s > σa}

where σa ∈ R̄ is the abscissa of absolute
convergence, and the line Re s = σa is the axis
of absolute convergence.

Re

Im

σa
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ROAC of Unilateral Laplace Transform
The axis of convergence and the axis of absolute convergence
need not coincide!

Example. Let k > 0. To see σa = k, note
∫∞

0 ekt sin(ekt)e−stdt
converges absolutely for Re s > k, since for s = σ + jω,

|ekt sin(ekt)e−st| ≤ e−(σ−k)t ∈ L1[0,∞)

It is not absolutely convergent for s = k, since∫ ∞
0
| sin(ekt)|dt =

1
k

∫ ∞
1

| sin u|
u

du =∞.

Let s = σ ∈ R.∫ ∞
0

ekt sin(ekt)e−σtdt =
1
k

∫ ∞
1

sin u
uσ/k du

Dirichlet’s test implies σc = 0.

Re

Im

k0

NB. We will use ROC, although in most cases ROC = ROAC.
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ROC of (Bilateral) Laplace Transform

The ROC of ∫ ∞
0

x(t)e−stdt

is a right half-plane Re s > σ1.

The ROC of ∫ 0

−∞
x(t)e−stdt =

∫ ∞
0

x(−t)e−(−s)tdt

is a left half-plane, Re s < σ2.

The ROC of

X(s) =

∫ ∞
−∞

x(t)e−stdt =

∫ ∞
0

x(t)e−stdt +

∫ 0

−∞
x(t)e−stdt

is a strip σ1 < Re s < σ2, which is nonempty iff σ1 < σ2
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Properties of ROC
• X(s) is analytic in the ROC and

f (k)(s) =

∫
(−t)kx(t)e−stdt

• If x is of finite duration and in L1, then the ROC is C.

• If x is left-sided, its ROC is a left half-plane

• If x is right-sided, its ROC is a right half-plane

• If x is two-sided, its ROC is a strip

Re

Im

left-sided

Re

Im

right-sided

Re

Im

two-sided
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Example

t

x(t)
b > 01

t

x(t)
b < 0

1

Re

Im

−b
X

b
X

Consider x(t) = e−b|t| = e−btu(t) + ebtu(−t)

Recall

e−btu(t) L←−−→ 1
s + b

, Re s > −b

ebtu(−t) L←−−→ −1
s− b

, Re s < b

Thus

x(t) = e−b|t| L←−−→ 1
s + b

− 1
s− b

=
−2b

s2 − b2 , −b < Re s < b

The ROC is nonempty iff b > 0.

NB. For Laplace transform to exist, x(t) has
to decay fast enough either as t→ +∞ or
t→ −∞. The exponential weighting in e−st

cannot kill both.
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Properties of ROC

• If X(s) is rational, the ROC is bounded by poles or extends
to infinity.

• If x is also right-sided, then its
ROC is the right half-plane
bounded by the rightmost
pole in C, e.g. region III

• If x is also left-sided, then its
ROC is the left half-plane
bounded by the leftmost pole
in C, e.g. region I

Re

Im

X
I

X
II III
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Linearity

If
x(t) L←−−→ X(s) with ROC = R1

y(t) L←−−→ Y(s) with ROC = R2

then

ax(t) + by(t) L←−−→ aX(s) + bY(s) with ROC ⊃ R1 ∩ R2

NB. The ROC may be larger than R1 ∩ R2.

Example. x(t) = cos(ω0t)u(t) =
1
2

ejω0tu(t) +
1
2

e−jω0tu(t)

X(s) =
1
2

1
s− jω0

+
1
2

1
s + jω0

=
s

s2 + ω2
0
, Re s > 0

sin(ω0t)u(t) L←−−→ ω0

s2 + ω2
0
, Re s > 0
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Linearity
Example.

X1(s) =
1

s + 1
, Re s > −1; X2(s) =

1
(s + 1)(s + 2)

, Re s > −1

X(s) = X1(s)− X2(s) =
s + 1

(s + 1)(s + 2)
=

1
s + 2

, Re s > −2

ROC enlarges due to pole-zero cancellation at s = −1.

In time domain,

x1(t) = e−tu(t), x2(t) = e−tu(t)− e−2tu(t)

x(t) = x1(t)− x2(t) = e−2tu(t)

Re

Im

−1
X

X1

Re

Im

−1
X−2

X
X2

Re

Im

−2
X

X
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Time Shift

If
x(t) L←−−→ X(s), σ1 < Re s < σ2

then
x(t − t0)

L←−−→ e−st0X(s), σ1 < Re s < σ2

Example.

?
L←−−→ e3s

s + 2
, Re s > −2

x(t) = e−2tu(t) L←−−→ 1
s + 2

, Re s > −2

x(t + 3) = e−2(t+3)u(t + 3)
L←−−→ e3s

s + 2
, Re s > −2
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Shifting in s-domain

If
x(t) L←−−→ X(s), σ1 < Re s < σ2

then

es0tx(t) L←−−→ X(s− s0), σ1 + Re s0 < Re s < σ2 + Re s0

Example.

For α ∈ R,

e−αt cos(ω0t)u(t) L←−−→ s + α

(s + α)2 + ω2
0
, Re s > −α

e−αt sin(ω0t)u(t) L←−−→ ω0

(s + α)2 + ω2
0
, Re s > −α
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Time Scaling

If
x(t) L←−−→ X(s), σ1 < Re s < σ2

then for a ∈ R \ {0},

x(at) L←−−→ 1
|a|

X
( s

a

)
, σ1 <

1
a

Re s < σ2

For time reversal,

x(−t) L←−−→ X(−s), −σ2 < Re s < −σ1

Re

Im

σ1 σ2
Re

Im

aσ1 aσ2

0 < a < 1

Re

Im

aσ1aσ2

−1 < a < 0
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Conjugation

If
x(t) L←−−→ X(s), σ1 < Re s < σ2

then
x∗(t) L←−−→ X∗(s∗), σ1 < Re s < σ2

If x is real-valued, then X(s) = X∗(s∗), so the zeros and poles of
X(s) appear in conjugate pairs.

Example.

For x(t) = e−2tu(t) + e−t cos(3t)u(t),

X(s) =
(s + 5+j

√
71

4 )(s + 5−j
√

71
4 )

(s + 2)(s + 1− 3j)(s + 1 + 3j)

with ROC Re s > −1.

Re

Im

X−1 + 3j

X−1− 3j

X−2
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Convolution Property
If

x(t) L←−−→ X(s) with ROAC = R1

y(t) L←−−→ Y(s) with ROAC = R2

then

(x ∗ y)(t) L←−−→ X(s)Y(s) with ROAC ⊃ R1 ∩ R2

A more precise statement is the following.

Theorem. If both X(s) =

∫ ∞
−∞

x(t)e−stdt and Y(s) =

∫ ∞
−∞

y(t)e−stdt

converges absolutely at some s = s0, then the Laplace transform
of z = x ∗ y converges absolutely at s = s0, and

X(s0)Y(s0) = Z(s0) =

∫ ∞
−∞

z(t)e−s0tdt
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Convolution Property
Proof.

X(s)Y(s) =

∫ ∞
−∞

x(v)

[∫ ∞
−∞

y(τ)e−s(v+τ)dv
]

dτ

=

∫ ∞
−∞

x(v)

[∫ ∞
−∞

y(t − v)e−svdv
]

dt (t = v + τ)

=

∫ ∞
−∞

[∫ ∞
−∞

x(v)y(t − v)dt
]

e−svdv (Fubini’s Theorem)

NB. The ROAC of L{x ∗ y} may be larger than the common
ROAC of L{x} and L{y}.

Example. X1(s) = s+1
(s+2)2 has ROAC Re s > −2, X2(s) = 1

s+1 has
ROAC Re s > −1, but X(s) = X1(s)X2(s) = 1

(s+2)2 with ROAC
Re s > −2, due to pole-zero cancellation at s = −1.
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Differentiation in Time Domain

If
x(t) L←−−→ X(s), with ROC = R

and lim
t→±∞

x(t)e−st = 0 for s ∈ R ∈ R0, then

d
dt

x(t) L←−−→ sX(s), with ROC ⊃ R ∩ R0

Proof. Integration by parts yields∫ ∞
−∞

x′(t)e−stdt = x(t)e−st
∣∣∣∞
−∞

+ s
∫ ∞
−∞

x(t)e−stdt = s
∫ ∞
−∞

x(t)e−stdt

NB. ROC may enlarge or shrink

Example. x(t) = (1− e−t)u(t) L←−−→ 1
s(s+1) with ROC = ROAC

Re s > 0, and x′(t) = e−tu(t) L←−−→ 1
s+1 with ROC = ROAC

Re s > −1. The ROC of L{x′} is larger that that of L{x}.
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Differentiation in Time Domain
Example. Consider x(t) = ekt sin(ekt) with k > 0.
• For s = σ ∈ R, u = ekt yields (cf. slide 18)∫ ∞

−∞
x(t)e−stdt =

1
k

∫ ∞
0

sin u
uσ/k du =

1
k

∫ 1

0

sin u
uσ/k du+

1
k

∫ ∞
1

sin u
uσ/k du

I
∫∞

1
sin u
uσ/k du has ROAC Re s > k and ROC Re s > 0

I As u ↓ 0, sin u
uσ/k ∼ u1−σ/k, so

∫ 1
0

sin u
uσ/k du has ROAC Re s < 2k

I Thus L{x} has ROC k < Re s < 2k and ROC 0 < Re s < 2k.

• x′(t) = kekt sin(ekt) + ke2kt cos(ekt). For s = σ ∈ R,∫ ∞
−∞

x′(t)e−stdt =

∫ ∞
0

sin u + u cos u
uσ/k du

L{x′} has empty ROAC, and ROC k < Re s < 2k
• Note lim

t→±∞
x(t)e−st = 0 fails for s with 0 < Re s < k
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Differentiation in Time Domain
If x(t) = O(eat) as t→ +∞ and x(t) = O(ebt) as t→ −∞, then

x(t) L←−−→ X(s), with ROAC containing a < Re s < b

and
d
dt

x(t) L←−−→ sX(s), with ROC containing a < Re s < b

NB. In general, from the absolute convergence of L{x} at s = s0

we can only conclude the convergence of L{x′} at s = s0.

NB. We mostly deal with x(t) of the form
∑m

k=0 pk(t)eαktu(±t + βk),
where pk are polynomials. After introducing Laplace transform
for singularity functions, we have for such functions,

dn

dtn x(t) L←−−→ snX(s), with ROC containing a < Re s < b
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Differentiation in s-domain

If x(t) L←−−→ X(s), σ1 < Re s < σ2

then
−tx(t) L←−−→ d

ds
X(s), σ1 < Re s < σ2

Proof. Differentiation under integral sign (can be justified) yields

d
ds

∫ ∞
−∞

x(t)e−stdt =

∫ ∞
−∞

x(t)
d
ds

e−stdt =

∫ ∞
−∞
−tx(t)e−stdt

Example.
e−atu(t) L←−−→ 1

s + a
, Re s > −a

tne−atu(t) L←−−→
(
− d

ds

)n 1
s + a

=
n!

(s + a)n+1 , Re s > −a

Similarly, −tne−atu(−t) L←−−→ n!

(s + a)n+1 , Re s < −a
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