El331 Signals and Systems Lecture 30

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

June 11, 2019

Contents

1. Properties of Laplace Transforms

2. Inverse Laplace Transform

3. Laplace Transform of Singularity Functions

4. Analysis of CT LTI Systems by Laplace Transform

5. Block Diagram Representations

Convolution Property

$$x(t) \xleftarrow{\mathcal{L}} X(s)$$
 with $\mathsf{ROAC} = R_1$
 $y(t) \xleftarrow{\mathcal{L}} Y(s)$ with $\mathsf{ROAC} = R_2$

then

lf

$$(x * y)(t) \xleftarrow{\mathcal{L}} X(s)Y(s)$$
 with ROAC $\supset R_1 \cap R_2$

A more precise statement is the following.

Theorem. If both $X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$ and $Y(s) = \int_{-\infty}^{\infty} y(t)e^{-st}dt$ converges absolutely at some $s = s_0$, then the Laplace transform of z = x * y converges absolutely at $s = s_0$, and

$$X(s_0)Y(s_0) = Z(s_0) = \int_{-\infty}^{\infty} z(t)e^{-s_0t}dt$$

Convolution Property

Proof.

$$\begin{split} X(s)Y(s) &= \int_{-\infty}^{\infty} x(v) \left[\int_{-\infty}^{\infty} y(\tau) e^{-s(v+\tau)} dv \right] d\tau \\ &= \int_{-\infty}^{\infty} x(v) \left[\int_{-\infty}^{\infty} y(t-v) e^{-sv} dv \right] dt \quad (t=v+\tau) \\ &= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x(v) y(t-v) dt \right] e^{-sv} dv \quad (\text{Fubini's Theorem}) \end{split}$$

NB. The ROAC of $\mathcal{L}{x * y}$ may be larger than the common ROAC of $\mathcal{L}{x}$ and $\mathcal{L}{y}$.

Example. $X_1(s) = \frac{s+1}{(s+2)^2}$ has ROAC Re s > -2, $X_2(s) = \frac{1}{s+1}$ has ROAC Re s > -1, but $X(s) = X_1(s)X_2(s) = \frac{1}{(s+2)^2}$ with ROAC Re s > -2, due to pole-zero cancellation at s = -1.

Differentiation in Time Domain

lf

$$x(t) \xleftarrow{\mathcal{L}} X(s), \text{ with } \mathsf{ROC} = R$$

and $\lim_{t\to\pm\infty} x(t)e^{-st} = 0$ for $s \in R_0$, then

$$\frac{d}{dt}x(t) \xleftarrow{\mathcal{L}} sX(s), \quad \text{with } \mathsf{ROC} \supset R \cap R_0$$

Proof. Integration by parts yields

$$\int_{-\infty}^{\infty} x'(t)e^{-st}dt = x(t)e^{-st}\Big|_{-\infty}^{\infty} + s\int_{-\infty}^{\infty} x(t)e^{-st}dt = s\int_{-\infty}^{\infty} x(t)e^{-st}dt$$

NB. ROC may enlarge or shrink

Example. $x(t) = (1 - e^{-t})u(t) \xleftarrow{\mathcal{L}} \frac{1}{s(s+1)}$ with ROC = ROAC Re s > 0, and $x'(t) = e^{-t}u(t) \xleftarrow{\mathcal{L}} \frac{1}{s+1}$ with ROC = ROAC Re s > -1. The ROC of $\mathcal{L}\{x'\}$ is larger that that of $\mathcal{L}\{x\}$.

Differentiation in Time Domain

Example. Consider $x(t) = e^{kt} \sin(e^{kt})$ with k > 0.

• For $s = \sigma \in \mathbb{R}$, $u = e^{kt}$ yields (cf. slide 18)

$$\int_{-\infty}^{\infty} x(t)e^{-st}dt = \frac{1}{k}\int_{0}^{\infty} \frac{\sin u}{u^{\sigma/k}}du = \frac{1}{k}\int_{0}^{1} \frac{\sin u}{u^{\sigma/k}}du + \frac{1}{k}\int_{1}^{\infty} \frac{\sin u}{u^{\sigma/k}}du$$

∫₁[∞] sin u/u^{σ/k} du has ROAC Re s > k and ROC Re s > 0
As u ↓ 0, sin u/u^{σ/k} ~ u^{1-σ/k}, so ∫₀¹ sin u/u^{σ/k} du has ROAC Re s < 2k
Thus L{x} has ROC k < Re s < 2k and ROC 0 < Re s < 2k.
x'(t) = ke^{kt} sin(e^{kt}) + ke^{2kt} cos(e^{kt}). For s = σ ∈ ℝ,

$$\int_{-\infty}^{\infty} x'(t) e^{-st} dt = \int_{0}^{\infty} \frac{\sin u + u \cos u}{u^{\sigma/k}} du$$

 $\mathcal{L}{x'}$ has empty ROAC, and ROC k < Re s < 2k

• Note $\lim_{t \to \pm \infty} x(t)e^{-st} = 0$ fails for s with $0 < \operatorname{Re} s < k$

Differentiation in Time Domain

If $x(t) = O(e^{at})$ as $t \to +\infty$ and $x(t) = O(e^{bt})$ as $t \to -\infty$, then $x(t) \xleftarrow{\mathcal{L}} X(s)$, with ROAC containing a < Re s < b

and

$$\frac{d}{dt}x(t) \xleftarrow{\mathcal{L}} sX(s), \quad \text{with ROC containing } a < \operatorname{Re} s < b$$

NB. In general, from the absolute convergence of $\mathcal{L}{x}$ at $s = s_0$ we can only conclude the convergence of $\mathcal{L}{x'}$ at $s = s_0$.

NB. We mostly deal with x(t) of the form $\sum_{k=0}^{m} p_k(t)e^{\alpha_k t}u(\pm t + \beta_k)$, where p_k are polynomials. After introducing Laplace transform for singularity functions, we have for such functions,

 $\frac{d^n}{dt^n} x(t) \xleftarrow{\mathcal{L}} s^n X(s), \quad \text{with ROC containing } a < \operatorname{Re} s < b$

Differentiation in s-domain

$$f \qquad \qquad x(t) \xleftarrow{\mathcal{L}} X(s), \quad \mathsf{ROAC} \ \sigma_1 < \mathsf{Re} \ s < \sigma_2$$

then

$$-tx(t) \xleftarrow{\mathcal{L}} \frac{d}{ds}X(s), \quad \mathsf{ROAC} \ \sigma_1 < \mathsf{Re} \ s < \sigma_2$$

"Proof". Differentiating under integral sign (can be justified)

$$\frac{d}{ds}\int_{-\infty}^{\infty}x(t)e^{-st}dt=\int_{-\infty}^{\infty}x(t)\frac{d}{ds}e^{-st}dt=\int_{-\infty}^{\infty}-tx(t)e^{-st}dt$$

Example. $e^{-at}u(t) \xleftarrow{\mathcal{L}} \frac{1}{s+a}, \quad \operatorname{Re} s > -a$ $t^{n}e^{-at}u(t) \xleftarrow{\mathcal{L}} \left(-\frac{d}{ds}\right)^{n} \frac{1}{s+a} = \frac{n!}{(s+a)^{n+1}}, \quad \operatorname{Re} s > -a$ Similarly, $-t^{n}e^{-at}u(-t) \xleftarrow{\mathcal{L}} \frac{n!}{(s+a)^{n+1}}, \quad \operatorname{Re} s < -a$

Integration in Time Domain

$$x(t) \xleftarrow{\mathcal{L}} X(s), \quad \mathsf{ROAC} = R$$

then

lf

$$\int_{-\infty}^{t} x(\tau) d\tau \xleftarrow{\mathcal{L}} \frac{1}{s} X(s), \quad \mathsf{ROAC} \supset R \cap \{\mathsf{Re}\, s > 0\}$$

Proof. Follows from convolution property and the following

$$\int_{-\infty}^{t} x(\tau) d\tau = (x * u)(t)$$

and

$$u(t) \xleftarrow{\mathcal{L}} \frac{1}{s}$$
 with $\mathsf{ROAC} = \{\mathsf{Re}\, s > 0\}$

NB. This property holds also for Laplace transforms of singularity functions and will be useful computing some Laplace transforms.

Contents

1. Properties of Laplace Transforms

2. Inverse Laplace Transform

3. Laplace Transform of Singularity Functions

4. Analysis of CT LTI Systems by Laplace Transform

5. Block Diagram Representations

Inverse Laplace Transform

Recall Laplace transform is related to CTFT by

$$X(\sigma + j\omega) = \int_{-\infty}^{\infty} \{x(t)e^{-\sigma t}\}e^{-j\omega t}dt = \mathfrak{F}\{x(t)e^{-\sigma t}\}$$

Take the inverse Fourier transform for $s = \sigma + j\omega \in \text{ROC}$,

$$x(t)e^{-\sigma t} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\sigma + j\omega)e^{j\omega t}d\omega$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\sigma + j\omega) e^{(\sigma + j\omega)t} d\omega$$

or

$$x(t) = \frac{1}{j2\pi} \int_{\sigma-j\infty}^{\sigma+j\infty} X(s) e^{st} ds = \lim_{A \to \infty} \frac{1}{j2\pi} \int_{\sigma-jA}^{\sigma+jA} X(s) e^{st} ds$$

Inverse Transform by Partial Fraction Expansion

For rational Laplace transform, the inverse transform can be found by partial fraction expansion.

Recall a proper rational function has the following partial fraction expansion

$$R(s) = \sum_{i=1}^{r} \sum_{k_i=1}^{N_i} \frac{A_{i,k_i}}{(s+a_i)^{k_i}}$$

Also recall

$$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t) \xleftarrow{\mathcal{L}} \frac{1}{(s+a)^n}, \quad \operatorname{Re} s > -a$$
$$-\frac{t^{n-1}}{(n-1)!}e^{-at}u(-t) \xleftarrow{\mathcal{L}} \frac{1}{(s+a)^n}, \quad \operatorname{Re} s < -a$$

By linearity, $\mathcal{L}^{-1}{R}$ is a linear combination of terms of the above form, where signs are chosen according to the ROC.

Consider a rational Laplace transform $X(s) = \frac{1}{(s+1)(s+2)^2}$

$$X(s) = \frac{1}{s+1} + \frac{-1}{s+2} + \frac{-1}{(s+2)^2}$$

Two poles at s = -1 and s = -2.

1. If ROC is $\operatorname{Re} s > -1$

$$x(t) = e^{-t}u(t) - (1+t)e^{-2t}u(t)$$

2. If ROC is $\operatorname{Re} s < -2$

$$x(t) = -e^{-t}u(-t) + (1+t)e^{-2t}u(-t)$$

3. If ROC is $-2 < \text{Re} \, s < -1$

$$x(t) = -e^{-t}u(-t) - (1+t)e^{-2t}u(t)$$

Inverse Transform by Contour Integration

Suppose X(s) has finitely many finite isolated singularities s_1, \ldots, s_n , and ROC is $-\infty \le \sigma_1 < \text{Re } s < \sigma_2 \le +\infty$.

The inverse transform is

$$x(t) = \lim_{r \to \infty} \frac{1}{j2\pi} \int_{\sigma-jr}^{\sigma+jr} X(s) e^{st} ds$$

where $\sigma_1 < \sigma < \sigma_2$.

For t > 0, choose a large semicircle C_r that encloses all s_k with $\text{Re } s \leq \sigma_1$.

If X(s) satisfies¹ (a shifted and rotated version of) Jordan's Lemma (slide 6, Lecture 27), Residue Theorem implies

$$x(t) = \sum_{k:s_k \le \sigma_1} \operatorname{Res}[X(s)e^{st}, s_k], \quad t > 0$$

¹satisfied by proper rational functions

Inverse Transform by Contour Integration

Suppose X(s) has finitely many finite isolated singularities s_1, \ldots, s_n , and ROC is $-\infty \le \sigma_1 < \text{Re } s < \sigma_2 \le +\infty$.

The inverse transform is

$$x(t) = \lim_{r \to \infty} \frac{1}{j2\pi} \int_{\sigma-jr}^{\sigma+jr} X(s) e^{st} ds$$

where $\sigma_1 < \sigma < \sigma_2$.

For t < 0, choose a large semicircle C_r that encloses all s_k with $\text{Re } s \ge \sigma_2$.

If X(s) satisfies (a shifted and rotated version of) Jordan's Lemma, Residue Theorem implies

$$x(t) = -\sum_{k:s_k \ge \sigma_2} \operatorname{Res}[X(s)e^{st}, s_k], \quad t < 0$$

Consider a rational Laplace transform $X(s) = \frac{1}{(s+1)(s+2)^2}$

$$\operatorname{Res}[X(s)e^{st}, -1] = \frac{e^{st}}{(s+2)^2}\Big|_{s=-1} = e^{-t}$$
$$\operatorname{Res}[X(s)e^{st}, -2] = \left[\frac{d}{ds}\frac{e^{st}}{s+1}\right]_{s=-2} = -(1+t)e^{-2t}$$

~

1. If ROC is Re s > -1, then $\sigma_1 = -1, \sigma_2 = +\infty$. For t > 0,

$$x(t) = \sum_{k: \text{Re } s_k \le -1} \operatorname{Res}[X(s)e^{st}, s_k] = e^{-t} - (1+t)e^{-2t}$$

For t < 0,

$$x(t) = -\sum_{k: \operatorname{Re} s_k \ge +\infty} \operatorname{Res}[X(s)e^{st}, s_k] = 0$$

Consider a rational Laplace transform $X(s) = \frac{1}{(s+1)(s+2)^2}$

$$\operatorname{Res}[X(s)e^{st}, -1] = \frac{e^{st}}{(s+2)^2}\Big|_{s=-1} = e^{-t}$$
$$\operatorname{Res}[X(s)e^{st}, -2] = \left[\frac{d}{ds}\frac{e^{st}}{s+1}\right]_{s=-2} = -(1+t)e^{-2t}$$

~

2. If ROC is Re s < -2, then $\sigma_1 = -\infty, \sigma_2 = -2$. For t > 0,

$$x(t) = \sum_{k: \operatorname{Re} s_k \leq -\infty} \operatorname{Res}[X(s)e^{st}, s_k] = 0$$

For t < 0, $x(t) = -\sum_{k: \text{Be } s_k \ge -2} \text{Res}[X(s)e^{st}, s_k] = -e^{-t} + (1+t)e^{-2t}$

Consider a rational Laplace transform $X(s) = \frac{1}{(s+1)(s+2)^2}$

$$\operatorname{Res}[X(s)e^{st}, -1] = \frac{e^{st}}{(s+2)^2}\Big|_{s=-1} = e^{-t}$$
$$\operatorname{Res}[X(s)e^{st}, -2] = \left[\frac{d}{ds}\frac{e^{st}}{s+1}\right]_{s=-2} = -(1+t)e^{-2t}$$

of

3. If ROC is -2 < Re s < -1, then $\sigma_1 = -2, \sigma_2 = -1$. For t > 0,

$$x(t) = \sum_{k: \text{Re } s_k \le -2} \text{Res}[X(s)e^{st}, s_k] = -(1+t)e^{-2t}$$

For t < 0,

$$x(t) = -\sum_{k:\operatorname{\mathsf{Re}} s_k \ge -1} \operatorname{Res}[X(s)e^{st}, s_k] = -e^{-t}$$

Contents

1. Properties of Laplace Transforms

2. Inverse Laplace Transform

3. Laplace Transform of Singularity Functions

4. Analysis of CT LTI Systems by Laplace Transform

5. Block Diagram Representations

Laplace Transform of Singularity Functions

We can also define Laplace transform for generalized functions.

In this course, we only consider the Laplace transforms of $\delta(t)$ and its derivatives. Formally,

$$\mathcal{L}\{\delta\} = \int_{-\infty}^{\infty} \delta(t) e^{-st} dt = 1$$

$$\mathcal{L}\{\delta'\} = \int_{-\infty}^{\infty} \delta'(t) e^{-st} dt = -\frac{d}{dt} e^{-st} \Big|_{t=0} = s$$

$$\mathcal{L}\left\{\delta^{(k)}\right\} = \int_{-\infty}^{\infty} \delta^{(k)}(t) e^{-st} dt = (-1)^k \frac{d^k}{dt^k} e^{-st} \bigg|_{t=0} = s^k$$

The Laplace transforms are defined for all $s \in \mathbb{C}$, and we say "ROC" = \mathbb{C} , though there is no convergence issue involved.

Laplace Transform of Singularity Functions

The properties of Laplace transforms discussed previously still holds for this generalization.

Example. The property of time differentiation is equivalent to the convolution property involving δ' .

$$\mathcal{L}\{x'\} = \mathcal{L}\{x * \delta'\} = \mathcal{L}\{x\}\mathcal{L}\{\delta'\} = s\mathcal{L}\{x\}$$

Example.

Inverse Laplace Transform

Recall a rational function can be written as the sum of a polynomial and a proper rational function

$$R(s) = \sum_{k=1}^{n} a_k s^k + R_1(s)$$

Thus

$$\mathcal{L}^{-1}\{R\} = \sum_{k=1}^{n} a_k \delta^{(k)}(t) + \mathcal{L}^{-1}\{R_1\}$$

where $\mathcal{L}^{-1}{R_1}$ can be found by partial fraction expansion or contour integration.

Example.
$$X(s) = \frac{s(s+2)}{s+3} = s - 1 + \frac{3}{s+3}$$
 with ROC Re $s > -3$, so
 $x(t) = \delta'(t) - \delta(t) + 3e^{-3t}u(t)$

Contents

1. Properties of Laplace Transforms

2. Inverse Laplace Transform

3. Laplace Transform of Singularity Functions

4. Analysis of CT LTI Systems by Laplace Transform

5. Block Diagram Representations

CT System Function

Recall the response of a CT LTI system to the input x(t) is

y(t) = (x * h)(t)

where h is the impulse response of the system.

If x and h have Laplace transforms, the convolution property implies V(z) = V(z)U(z)

$$Y(s) = X(s)H(s)$$

in their common ROC².

If the ROC has a nonempty interior point, the system function (aka transfer function) H(s) uniquely determines h and hence system properties through the inverse Laplace transform (this can be proved, but we will not do so).

²Actually ROAC for ordinary functions. For most signals in this course, ROC and ROAC coincide, so we will be sloppy.

Causality

Recall *h* is right-sided iff the ROC of H(s) is a right half-plane,

$\textbf{causal} \implies \textbf{ROC} \text{ is a right half-plane}$

Caution. The converse is not true.

Example. Consider $H(s) = \frac{e^s}{s+1}$ with ROC Res > -1. By the time-shift property,

$$h(t) = e^{-(t+1)}u(t+1)$$

which is not causal.

Causality

An LTI system with rational system function H(s) is causal iff the ROC is the right half-plane to the rightmost pole.

Proof. Recall for a rational system function,

$$H(s) = \sum_{k=1}^{n} a_k s^k + \sum_{i=1}^{r} \sum_{k_i=1}^{N_i} \frac{A_{i,k_i}}{(s+a_i)^{k_i}}, \quad \text{Re}\, s > \max_i \text{Re}\,(-a_i)$$

so

J

$$h(t) = \sum_{k=1}^{n} a_k \delta^{(k)}(t) + \sum_{i=1}^{r} \sum_{k_i=1}^{N_i} \frac{A_{i,k_i}}{(k_i - 1)!} t^{k_i - 1} e^{-a_i t} u(t)$$

which is causal. (Can also prove by contour integration.)

Example. $h(t) = e^{-t}u(t) \xleftarrow{\mathcal{L}} H(s) = \frac{1}{s+1}$ with $\operatorname{Re} s > -1$, causal. Example. $h(t) = e^{-|t|} \xleftarrow{\mathcal{L}} H(s) = \frac{-2}{s^2-1}$ with $-1 < \operatorname{Re} s < 1$, noncausal.

Stability

Recall an LTI system is stable iff its impulse response $h\in L_1,$ i.e. $\int_{-\infty}^\infty |h(t)| dt < \infty$

i.e. H(s) converges absolutely on the imaginary axis Re s = 0, so its ROC $-\infty \leq \sigma_1 < \text{Re } s < \sigma_2 \leq \infty$ must satisfy $\sigma_1 < 0 < \sigma_2$.

A **causal** LTI system with rational system function H(s) is stable iff all its poles have negative real parts.

Example. A causal system with $H(s) = \frac{1}{s+a}$ is stable iff Re a > 0

Example. A system with $H(s) = \frac{1}{s+a}$ where Re a < 0 and ROC Re s < -Re a is also stable, but it is noncausal.

Consider the system function

$$H(s) = \frac{1}{s-2} - \frac{1}{s+1}$$

There are two poles $p_1 = -1$ and $p_2 = 2$.

1. Re s < -1, noncausal, unstable

$$h_1(t) = -e^{2t}u(-t) + e^{-t}u(-t)$$

2. -1 < Re s < 2, noncausal, stable

$$h_2(t) = -e^{2t}u(-t) - e^{-t}u(t)$$

3. Re s > 2, causal, unstable

$$h_3(t) = e^{2t}u(t) - e^{-t}u(t)$$

Linear Constant-coefficient ODE

LTI system with input and output related by

$$\sum_{k=0}^N a_k rac{d^k y}{dt^k} = \sum_{k=0}^M b_k rac{d^k x}{dt^k}$$

Take Laplace transform of both sides

$$\sum_{k=0}^N a_k s^k Y(s) = \sum_{k=0}^M b_k s^k X(s)$$

SO

$$H(s) = rac{Y(s)}{X(s)} = rac{\sum_{k=0}^{M} b_k s^k}{\sum_{k=0}^{N} a_k s^k}$$

System function is always rational

ODE does not specify ROC! Need additional conditions (e.g. stability, causality) to determine h(t).

Consider LTI system with input and output related by

$$y'(t) + 3y(t) = x'(t) + x(t)$$

System function

$$H(s) = \frac{s+1}{s+3} = 1 - \frac{2}{s+3}$$

Two possibilities for ROC: $\operatorname{Re} s > -3$ and $\operatorname{Re} s < -3$

1. If $\operatorname{Re} s > -3$, causal and stable,

$$h(t) = \delta(t) - 2e^{-3t}u(t)$$

2. If $\operatorname{Re} s < -3$, anticausal and unstable,

$$h(t) = \delta(t) + 2e^{-3t}u(-t)$$

Consider LTI system with input and output related by

$$y'(t) + 3y(t) = x'(t) + x(t)$$

If we use Fourier transform, then frequency response is

$$H(j\omega) = \frac{j\omega + 1}{j\omega + 3} = 1 - \frac{2}{j\omega + 3}$$

and

$$h(t) = \delta(t) - 2e^{-3t}u(t)$$

Why only one possibility?

- Fourier transform method assumes stability, requiring that ROC of H(s) contain the imaginary axis, so Re s > -3
- In general, not applicable to unstable systems

Find response to $x(t) = e^{-4t}u(t)$.

$$X(s) = \frac{1}{s+4}, \quad \operatorname{Re} s > -4$$

Laplace transform for response

$$Y(s) = H(s)X(s) = \frac{s+1}{s+3} \cdot \frac{1}{s+4} = \frac{-2}{s+3} + \frac{3}{s+4}$$

Two possible ROCs

1. If Re s > -3, $y(t) = -2e^{-3t}u(t) + 3e^{-4t}u(t)$

2. If $-4 < \operatorname{Re} s < -3$, $y(t) = 2e^{-3t}u(-5) + 3e^{-4t}u(t)$

Find response to $x(t) = e^{-3t}u(t)$.

$$X(s) = \frac{1}{s+3}, \quad \operatorname{Re} s > -3$$

Laplace transform for response

$$Y(s) = H(s)X(s) = \frac{s+1}{s+3} \cdot \frac{1}{s+3} = \frac{1}{s+3} + \frac{-2}{(s+3)^2}$$

Only one possible ROC $\operatorname{Re} s > -3$

$$y(t) = (1 - 2t)e^{-3t}u(t)$$

For the anticausal and unstable system,

$$h(t) = \delta(t) + 2e^{-3t}u(-t)$$

Can verify directly x * h is not well-defined.

The response of an LTI system to the input $x(t) = e^{-3t}u(t)$ is

$$y(t) = (e^{-t} - e^{-2t})u(t)$$

System function

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\frac{1}{s+1} - \frac{1}{s+2}}{\frac{1}{s+3}} = \frac{s+3}{s^2 + 3s + 2}, \quad \text{Re}\, s > -1$$

By partial fraction expansion

$$H(s) = \frac{2}{s+1} - \frac{1}{s+2}, \ \mathsf{Re}\, s > -1 \implies h(t) = (2e^{-t} - e^{-2t})u(t)$$

Can be described by the following ODE

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = \frac{dx}{dt} + 3x$$

Contents

1. Properties of Laplace Transforms

2. Inverse Laplace Transform

3. Laplace Transform of Singularity Functions

4. Analysis of CT LTI Systems by Laplace Transform

5. Block Diagram Representations

System Interconnections

LTI systems in series connection

$$Y = (XH_1)H_2 = X(H_1H_2) = (XH_2)H_1$$

System Interconnections

LTI systems in systems in parallel connection

System Interconnections

LTI systems in systems in feedback connection

Causal LTI systems with system function

$$H(s) = \frac{1}{s+a}, \quad \operatorname{Re} s > -\operatorname{Re} a$$

Equivalent description by ODE

$$y'(t) + ay(t) = x(t)$$

with initial rest condition.

Causal LTI systems with system function

$$H(s) = \frac{s+b}{s+a} = \left(\frac{1}{s+a}\right)(s+b), \quad \operatorname{Re} s > -\operatorname{Re} a$$

Causal LTI systems with system function

$$H(s) = \frac{1}{(s+1)(s+2)} = \frac{1}{s^2 + 3s + 2}$$

Equivalent description by different equation

$$y''(t) + 3y'(t) + 2y(t) = x(t)$$

Direct form

Causal LTI systems with system function

$$H(s) = \frac{1}{(s+1)(s+2)} = \frac{1}{s+1} \cdot \frac{1}{s+2}$$

Cascade form

Causal LTI systems with system function

$$H(s) = \frac{1}{(s+1)(s+2)} = \frac{1}{s+1} - \frac{1}{s+2}$$

