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Convolution Property
If

x(t) L←−−→ X(s) with ROAC = R1

y(t) L←−−→ Y(s) with ROAC = R2

then

(x ∗ y)(t) L←−−→ X(s)Y(s) with ROAC ⊃ R1 ∩ R2

A more precise statement is the following.

Theorem. If both X(s) =
∫ ∞
−∞

x(t)e−stdt and Y(s) =
∫ ∞
−∞

y(t)e−stdt

converges absolutely at some s = s0, then the Laplace transform
of z = x ∗ y converges absolutely at s = s0, and

X(s0)Y(s0) = Z(s0) =

∫ ∞
−∞

z(t)e−s0tdt
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Convolution Property
Proof.

X(s)Y(s) =
∫ ∞
−∞

x(v)
[∫ ∞
−∞

y(τ)e−s(v+τ)dv
]

dτ

=

∫ ∞
−∞

x(v)
[∫ ∞
−∞

y(t − v)e−svdv
]

dt (t = v + τ)

=

∫ ∞
−∞

[∫ ∞
−∞

x(v)y(t − v)dt
]

e−svdv (Fubini’s Theorem)

NB. The ROAC of L{x ∗ y} may be larger than the common
ROAC of L{x} and L{y}.

Example. X1(s) = s+1
(s+2)2 has ROAC Re s > −2, X2(s) = 1

s+1 has
ROAC Re s > −1, but X(s) = X1(s)X2(s) = 1

(s+2)2 with ROAC
Re s > −2, due to pole-zero cancellation at s = −1.



4/42

Differentiation in Time Domain

If
x(t) L←−−→ X(s), with ROC = R

and lim
t→±∞

x(t)e−st = 0 for s ∈ R0, then

d
dt

x(t) L←−−→ sX(s), with ROC ⊃ R ∩ R0

Proof. Integration by parts yields∫ ∞
−∞

x′(t)e−stdt = x(t)e−st
∣∣∣∞
−∞

+ s
∫ ∞
−∞

x(t)e−stdt = s
∫ ∞
−∞

x(t)e−stdt

NB. ROC may enlarge or shrink

Example. x(t) = (1− e−t)u(t) L←−−→ 1
s(s+1) with ROC = ROAC

Re s > 0, and x′(t) = e−tu(t) L←−−→ 1
s+1 with ROC = ROAC

Re s > −1. The ROC of L{x′} is larger that that of L{x}.
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Differentiation in Time Domain
Example. Consider x(t) = ekt sin(ekt) with k > 0.
• For s = σ ∈ R, u = ekt yields (cf. slide 18)∫ ∞

−∞
x(t)e−stdt =

1
k

∫ ∞
0

sin u
uσ/k du =

1
k

∫ 1

0

sin u
uσ/k du+

1
k

∫ ∞
1

sin u
uσ/k du

I
∫∞

1
sin u
uσ/k du has ROAC Re s > k and ROC Re s > 0

I As u ↓ 0, sin u
uσ/k ∼ u1−σ/k, so

∫ 1
0

sin u
uσ/k du has ROAC Re s < 2k

I Thus L{x} has ROC k < Re s < 2k and ROC 0 < Re s < 2k.

• x′(t) = kekt sin(ekt) + ke2kt cos(ekt). For s = σ ∈ R,∫ ∞
−∞

x′(t)e−stdt =
∫ ∞

0

sin u + u cos u
uσ/k du

L{x′} has empty ROAC, and ROC k < Re s < 2k
• Note lim

t→±∞
x(t)e−st = 0 fails for s with 0 < Re s < k
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Differentiation in Time Domain
If x(t) = O(eat) as t→ +∞ and x(t) = O(ebt) as t→ −∞, then

x(t) L←−−→ X(s), with ROAC containing a < Re s < b

and
d
dt

x(t) L←−−→ sX(s), with ROC containing a < Re s < b

NB. In general, from the absolute convergence of L{x} at s = s0

we can only conclude the convergence of L{x′} at s = s0.

NB. We mostly deal with x(t) of the form
∑m

k=0 pk(t)eαktu(±t + βk),
where pk are polynomials. After introducing Laplace transform
for singularity functions, we have for such functions,

dn

dtn x(t) L←−−→ snX(s), with ROC containing a < Re s < b
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Differentiation in s-domain

If x(t) L←−−→ X(s), ROAC σ1 < Re s < σ2

then
−tx(t) L←−−→ d

ds
X(s), ROAC σ1 < Re s < σ2

“Proof”. Differentiating under integral sign (can be justified)

d
ds

∫ ∞
−∞

x(t)e−stdt =
∫ ∞
−∞

x(t)
d
ds

e−stdt =
∫ ∞
−∞
−tx(t)e−stdt

Example.
e−atu(t) L←−−→ 1

s + a
, Re s > −a

tne−atu(t) L←−−→
(
− d

ds

)n 1
s + a

=
n!

(s + a)n+1 , Re s > −a

Similarly, −tne−atu(−t) L←−−→ n!
(s + a)n+1 , Re s < −a
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Integration in Time Domain

If
x(t) L←−−→ X(s), ROAC = R

then ∫ t

−∞
x(τ)dτ L←−−→ 1

s
X(s), ROAC ⊃ R ∩ {Re s > 0}

Proof. Follows from convolution property and the following∫ t

−∞
x(τ)dτ = (x ∗ u)(t)

and
u(t) L←−−→ 1

s
with ROAC = {Re s > 0}

NB. This property holds also for Laplace transforms of
singularity functions and will be useful computing some Laplace
transforms.
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Inverse Laplace Transform

Recall Laplace transform is related to CTFT by

X(σ + jω) =
∫ ∞
−∞
{x(t)e−σt}e−jωtdt = F{x(t)e−σt}

Take the inverse Fourier transform for s = σ + jω ∈ROC,

x(t)e−σt =
1

2π

∫ ∞
−∞

X(σ + jω)ejωtdω

so
x(t) =

1
2π

∫ ∞
−∞

X(σ + jω)e(σ+jω)tdω

or

x(t) =
1

j2π

∫ σ+j∞

σ−j∞
X(s)estds = lim

A→∞

1
j2π

∫ σ+jA

σ−jA
X(s)estds
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Inverse Transform by Partial Fraction Expansion

For rational Laplace transform, the inverse transform can be
found by partial fraction expansion.

Recall a proper rational function has the following partial fraction
expansion

R(s) =
r∑

i=1

Ni∑
ki=1

Ai,ki

(s + ai)ki

Also recall
tn−1

(n− 1)!
e−atu(t) L←−−→ 1

(s + a)n , Re s > −a

− tn−1

(n− 1)!
e−atu(−t) L←−−→ 1

(s + a)n , Re s < −a

By linearity, L−1{R} is a linear combination of terms of the
above form, where signs are chosen according to the ROC.
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Example

Consider a rational Laplace transform X(s) = 1
(s+1)(s+2)2

X(s) =
1

s + 1
+
−1

s + 2
+

−1
(s + 2)2

Two poles at s = −1 and s = −2.

1. If ROC is Re s > −1

x(t) = e−tu(t)− (1 + t)e−2tu(t)

2. If ROC is Re s < −2

x(t) = −e−tu(−t) + (1 + t)e−2tu(−t)

3. If ROC is −2 < Re s < −1

x(t) = −e−tu(−t)− (1 + t)e−2tu(t)



13/42

Inverse Transform by Contour Integration
Suppose X(s) has finitely many finite isolated singularities
s1, . . . , sn, and ROC is −∞ ≤ σ1 < Re s < σ2 ≤ +∞.

x

y

σ1 σ2

σ − jr

σ + jr

Cr

Xs1

Xs3

X
s2

X
s4

The inverse transform is

x(t) = lim
r→∞

1
j2π

∫ σ+jr

σ−jr
X(s)estds

where σ1 < σ < σ2.

For t > 0, choose a large semicircle Cr

that encloses all sk with Re s ≤ σ1.

If X(s) satisfies1 (a shifted and rotated
version of) Jordan’s Lemma (slide 6,
Lecture 27), Residue Theorem implies

x(t) =
∑

k:sk≤σ1

Res[X(s)est, sk], t > 0

1satisfied by proper rational functions
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Inverse Transform by Contour Integration
Suppose X(s) has finitely many finite isolated singularities
s1, . . . , sn, and ROC is −∞ ≤ σ1 < Re s < σ2 ≤ +∞.

x

y

σ1 σ2

σ − jr

σ + jr
Cr

Xs1

Xs3

X
s2

X
s4

The inverse transform is

x(t) = lim
r→∞

1
j2π

∫ σ+jr

σ−jr
X(s)estds

where σ1 < σ < σ2.

For t < 0, choose a large semicircle Cr

that encloses all sk with Re s ≥ σ2.

If X(s) satisfies (a shifted and rotated
version of) Jordan’s Lemma, Residue
Theorem implies

x(t) = −
∑

k:sk≥σ2

Res[X(s)est, sk], t < 0

Caution. Negative sign due to negative orientation of contour.
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Example
Consider a rational Laplace transform X(s) = 1

(s+1)(s+2)2

Res[X(s)est,−1] =
est

(s + 2)2

∣∣∣
s=−1

= e−t

Res[X(s)est,−2] =
[

d
ds

est

s + 1

]
s=−2

= −(1 + t)e−2t

1. If ROC is Re s > −1, then σ1 = −1, σ2 = +∞.

For t > 0,

x(t) =
∑

k:Re sk≤−1

Res[X(s)est, sk] = e−t − (1 + t)e−2t

For t < 0,

x(t) = −
∑

k:Re sk≥+∞

Res[X(s)est, sk] = 0
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Example (cont’d)
Consider a rational Laplace transform X(s) = 1

(s+1)(s+2)2

Res[X(s)est,−1] =
est

(s + 2)2

∣∣∣
s=−1

= e−t

Res[X(s)est,−2] =
[

d
ds

est

s + 1

]
s=−2

= −(1 + t)e−2t

2. If ROC is Re s < −2, then σ1 = −∞, σ2 = −2.

For t > 0,

x(t) =
∑

k:Re sk≤−∞

Res[X(s)est, sk] = 0

For t < 0,

x(t) = −
∑

k:Re sk≥−2

Res[X(s)est, sk] = −e−t + (1 + t)e−2t
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Example (cont’d)
Consider a rational Laplace transform X(s) = 1

(s+1)(s+2)2

Res[X(s)est,−1] =
est

(s + 2)2

∣∣∣
s=−1

= e−t

Res[X(s)est,−2] =
[

d
ds

est

s + 1

]
s=−2

= −(1 + t)e−2t

3. If ROC is −2 < Re s < −1, then σ1 = −2, σ2 = −1.

For t > 0,

x(t) =
∑

k:Re sk≤−2

Res[X(s)est, sk] = −(1 + t)e−2t

For t < 0,

x(t) = −
∑

k:Re sk≥−1

Res[X(s)est, sk] = −e−t
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Laplace Transform of Singularity Functions

We can also define Laplace transform for generalized functions.

In this course, we only consider the Laplace transforms of δ(t)
and its derivatives. Formally,

L{δ} =
∫ ∞
−∞

δ(t)e−stdt = 1

L{δ′} =
∫ ∞
−∞

δ′(t)e−stdt = − d
dt

e−st
∣∣∣

t=0
= s

L{δ(k)} =
∫ ∞
−∞

δ(k)(t)e−stdt = (−1)k dk

dtk e−st

∣∣∣∣
t=0

= sk

The Laplace transforms are defined for all s ∈ C, and we say
“ROC” = C, though there is no convergence issue involved.
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Laplace Transform of Singularity Functions

The properties of Laplace transforms discussed previously still
holds for this generalization.

Example. The property of time differentiation is equivalent to the
convolution property involving δ′.

L{x′} = L{x ∗ δ′} = L{x}L{δ′} = sL{x}

Example.

t

x

O

1

− T
2

T
2

t

x1 = x′

O− T
2

2
T

− 2
T

T
2

t

x2 = x′′

O− T
2

2
T

T
2

2
T

− 4
T

X2(s) = − 4
T + 2

T e−s T
2 + 2

T es T
2 = 8

T sinh2 ( sT
4

)
=⇒ X(s) = X2(s)

s2
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Inverse Laplace Transform

Recall a rational function can be written as the sum of a
polynomial and a proper rational function

R(s) =
n∑

k=1

aksk + R1(s)

Thus

L−1{R} =
n∑

k=1

akδ
(k)(t) + L−1{R1}

where L−1{R1} can be found by partial fraction expansion or
contour integration.

Example. X(s) =
s(s + 2)

s + 3
= s− 1+

3
s + 3

with ROC Re s > −3, so

x(t) = δ′(t)− δ(t) + 3e−3tu(t)
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CT System Function

Recall the response of a CT LTI system to the input x(t) is

y(t) = (x ∗ h)(t)

where h is the impulse response of the system.

If x and h have Laplace transforms, the convolution property
implies

Y(s) = X(s)H(s)

in their common ROC2.

If the ROC has a nonempty interior point, the system function
(aka transfer function) H(s) uniquely determines h and hence
system properties through the inverse Laplace transform (this
can be proved, but we will not do so).

2Actually ROAC for ordinary functions. For most signals in this
course, ROC and ROAC coincide, so we will be sloppy.
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Causality

Recall h is right-sided iff the ROC of H(s) is a right half-plane,

causal =⇒ ROC is a right half-plane

Caution. The converse is not true.

Example. Consider H(s) =
es

s + 1
with ROC Re s > −1. By the

time-shift property,

h(t) = e−(t+1)u(t + 1)

which is not causal.
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Causality
An LTI system with rational system function H(s) is causal iff the
ROC is the right half-plane to the rightmost pole.

Proof. Recall for a rational system function,

H(s) =
n∑

k=1

aksk +
r∑

i=1

Ni∑
ki=1

Ai,ki

(s + ai)ki
, Re s > max

i
Re (−ai)

so

h(t) =
n∑

k=1

akδ
(k)(t) +

r∑
i=1

Ni∑
ki=1

Ai,ki

(ki − 1)!
tki−1e−aitu(t)

which is causal. (Can also prove by contour integration.)

Example. h(t) = e−tu(t) L←−−→ H(s) = 1
s+1 with Re s > −1, causal.

Example. h(t) = e−|t| L←−−→ H(s) = −2
s2−1 with −1 < Re s < 1,

noncausal.
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Stability
Recall an LTI system is stable iff its impulse response h ∈ L1, i.e.∫ ∞

−∞
|h(t)|dt <∞

i.e. H(s) converges absolutely on the imaginary axis Re s = 0,
so its ROC −∞ ≤ σ1 < Re s < σ2 ≤ ∞ must satisfy σ1 < 0 < σ2.

stable ⇐⇒ ROC includes the imaginary axis

A causal LTI system with rational system function H(s) is stable
iff all its poles have negative real parts.

Example. A causal system with H(s) = 1
s+a is stable iff Re a > 0

Example. A system with H(s) = 1
s+a where Re a < 0 and ROC

Re s < −Re a is also stable, but it is noncausal.
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Example

Re

Im

X−1

I
X

2

II III

Consider the system function

H(s) =
1

s− 2
− 1

s + 1

There are two poles p1 = −1 and p2 = 2.

1. Re s < −1, noncausal, unstable

h1(t) = −e2tu(−t) + e−tu(−t)

2. −1 < Re s < 2, noncausal, stable

h2(t) = −e2tu(−t)− e−tu(t)

3. Re s > 2, causal, unstable

h3(t) = e2tu(t)− e−tu(t)
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Linear Constant-coefficient ODE
LTI system with input and output related by

N∑
k=0

ak
dky
dtk =

M∑
k=0

bk
dkx
dtk

Take Laplace transform of both sides
N∑

k=0

akskY(s) =
M∑

k=0

bkskX(s)

so

H(s) =
Y(s)
X(s)

=

∑M
k=0 bksk∑N
k=0 aksk

System function is always rational

ODE does not specify ROC! Need additional conditions
(e.g. stability, causality) to determine h(t).
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Example
Consider LTI system with input and output related by

y′(t) + 3y(t) = x′(t) + x(t)

System function

H(s) =
s + 1
s + 3

= 1− 2
s + 3

Two possibilities for ROC: Re s > −3 and Re s < −3

1. If Re s > −3, causal and stable,

h(t) = δ(t)− 2e−3tu(t)

2. If Re s < −3, anticausal and unstable,

h(t) = δ(t) + 2e−3tu(−t)
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Example (cont’d)
Consider LTI system with input and output related by

y′(t) + 3y(t) = x′(t) + x(t)

If we use Fourier transform, then frequency response is

H(jω) =
jω + 1
jω + 3

= 1− 2
jω + 3

and
h(t) = δ(t)− 2e−3tu(t)

Why only one possibility?

• Fourier transform method assumes stability, requiring that
ROC of H(s) contain the imaginary axis, so Re s > −3
• In general, not applicable to unstable systems
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Example (cont’d)
Find response to x(t) = e−4tu(t).

X(s) =
1

s + 4
, Re s > −4

Laplace transform for response

Y(s) = H(s)X(s) =
s + 1
s + 3

· 1
s + 4

=
−2

s + 3
+

3
s + 4

Two possible ROCs

1. If Re s > −3,

y(t) = −2e−3tu(t) + 3e−4tu(t)

2. If −4 < Re s < −3,

y(t) = 2e−3tu(−5) + 3e−4tu(t)
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Example (cont’d)
Find response to x(t) = e−3tu(t).

X(s) =
1

s + 3
, Re s > −3

Laplace transform for response

Y(s) = H(s)X(s) =
s + 1
s + 3

· 1
s + 3

=
1

s + 3
+

−2
(s + 3)2

Only one possible ROC Re s > −3

y(t) = (1− 2t)e−3tu(t)

For the anticausal and unstable system,

h(t) = δ(t) + 2e−3tu(−t)

Can verify directly x ∗ h is not well-defined.
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Example
The response of an LTI system to the input x(t) = e−3tu(t) is

y(t) = (e−t − e−2t)u(t)

System function

H(s) =
Y(s)
X(s)

=
1

s+1 −
1

s+2
1

s+3

=
s + 3

s2 + 3s + 2
, Re s > −1

By partial fraction expansion

H(s) =
2

s + 1
− 1

s + 2
, Re s > −1 =⇒ h(t) = (2e−t − e−2t)u(t)

Can be described by the following ODE

d2y
dt2 + 3

dy
dt

+ 2y =
dx
dt

+ 3x
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System Interconnections

LTI systems in series connection

Y = (XH1)H2 = X(H1H2) = (XH2)H1

H = H1H2 x H1(s) H2(s) y

H(s)
commutative

H = H2H1 x H2(s) H1(s) y

H(s)
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System Interconnections

LTI systems in systems in parallel connection

h = h1 + h2 x
h1

h2

+ y

h

H = H1 + H2 x
H1(s)

H2(s)
+ y

H(s)
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System Interconnections

LTI systems in systems in feedback connection

y = h1 ∗ (x− h2 ∗ y)

h =?

x +
+ h1

h2

y
-

h

Y = H1X − H1H2Y

H =
Y
X
=

H1

1 + H1H2

x +
+ H1(s)

H2(s)

y
-

H(s)
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Example

Causal LTI systems with system function

H(s) =
1

s + a
, Re s > −Re a

Equivalent description by ODE

y′(t) + ay(t) = x(t)

with initial rest condition.

x(t) y(t)+ 1
s

−a
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Example

Causal LTI systems with system function

H(s) =
s + b
s + a

=

(
1

s + a

)
(s + b), Re s > −Re a

x(t)

y(t)

+

+

1
s

−a

b
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Example
Causal LTI systems with system function

H(s) =
1

(s + 1)(s + 2)
=

1
s2 + 3s + 2

Equivalent description by different equation

y′′(t) + 3y′(t) + 2y(t) = x(t)

Direct form

x(t) y(t)+

+

1
s

1
s

−3 −2
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Example (cont’d)
Causal LTI systems with system function

H(s) =
1

(s + 1)(s + 2)
=

1
s + 1

· 1
s + 2

Cascade form

x(t) + 1
s

−1

y(t)+ 1
s

−2
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Example (cont’d)
Causal LTI systems with system function

H(s) =
1

(s + 1)(s + 2)
=

1
s + 1

− 1
s + 2

Parallel form

x(t) y(t)

+

+

+

1
s

1
s

−1

−2

−1
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