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Representation of CT Signals by Impulses
Sifting property of CT unit impulse

x(t) =

∫
R

x(a)δ(t − a)da

Interpreted as limit as ∆→ 0 of

x̂∆(t) =
∞∑

k=−∞

x(k∆)p∆(t − k∆)∆

where

p∆(t) =
1
∆

[u(t)− u(t −∆)]

t

x(t)

−∆ 0 ∆ 2∆ k∆
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CT Linear Systems
Response of linear system

ŷ∆ = T(x̂∆) = T

(
∞∑

k=−∞

x(k∆)τk∆p∆∆

)

=
∞∑

k=−∞

x(k∆)T(τk∆p∆)∆ =
∞∑

k=−∞

x(k∆)ĥk∆∆

where ĥk∆ = T(τk∆p∆) is response to shifted pulse τk∆p∆.

In the limit ∆→ 0 ,

• x̂∆ → x and ŷ∆ → y = T(x)

• for k∆→ a, have τk∆p∆ → δa, expect ĥk∆ → ha = T(δa)

y =

∫
R

x(a)hada, or y(t) =

∫
R

x(a)ha(t)da
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CT Linear Time-invariant (LTI) Systems
Unit impulse response1

h = h0 = T(δ)

time invariance =⇒ ha = T(δa) = τa(T(δ)) = τah

Response of LTI system – Convolution integral

y(t) =

∫
R

x(τ)h(t − τ)dτ, ∀t ∈ R

LTI system is fully characterized by unit impulse response!

Conversely, given h, system T(x)(t) ,
∫
R

x(τ)h(t − τ)dτ is LTI

1For proof of existence, see Theorem 2 of VI.3 in Kôsaku Yosida.
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Impulse Responses of Simple LTI Systems

Identity
h(t) = δ(t)

Scaler multiplication

h(t) = Kδ(t)

Time shift
h(t) = δa(t) , δ(t − a)

Integrator

h(t) =

∫ t

−∞
δ(τ)dτ = u(t)

Differentiator

h(t) = δ′(t) (to be defined)
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Convolution

(x1 ∗ x2)(t) =

∫
R

x1(τ)x2(t − τ)dτ, ∀t ∈ R

Not always defined for arbitrary x1 and x2

Example. For x1(t) = u(t) = x2(−t), integral divergent for all t.

Sufficient conditions for absolute convergence

1. Either x1 or x2 has compact support supp x = {t : x(t) 6= 0},
i.e. x1 or x2 vanishes outside finite interval.

2. x1, x2 both right-sided (or left-sided), i.e. xi(t) = 0 for t ≤ ti

(or t ≥ ti), ∀i =⇒ x1 ∗ x2 also right-sided (or left-sided)
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Convolution

Sufficient conditions for absolute convergence (cont’d)

3. One of x1 and x2 has finite L1 norm and the other finite Lp

norm for 1 ≤ p ≤ ∞ , where Lp norm 2

‖x‖p ,


(∫

R
|x(t)|pdt

)1/p

, if 1 ≤ p <∞

sup
t∈R
|x(t)|, if p =∞.

If ‖x1‖1 <∞, then ‖x1 ∗ x2‖p ≤ ‖x1‖1 · ‖x2‖p.

4. ‖x1‖p <∞ and ‖x2‖q <∞ for 1 ≤ p, q ≤ ∞ and
p−1 + q−1 = 1. In this case, ‖x1 ∗ x2‖∞ ≤ ‖x1‖p · ‖x2‖q.

2More precisely, ‖x‖∞ = sup{B ≥ 0 : |x(t)| ≤ B for almost every t}
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Calculation of Convolution

1. Plot both x1 and x2 as functions of τ , i.e. x1(τ), x2(τ)

2. Reverse x2(τ) to obtain x2(−τ)

3. Given t, shift x2(−τ) by t to obtain x2(t − τ)

4. Multiply x1(τ) and x2(t − τ) pointwise to obtain
gt(τ) = x1(τ)x2(t − τ)

5. Integrate gt over τ to obtain (x1 ∗ x2)(t), i.e.

(x1 ∗ x2)(t) =

∫
R

gt(τ)dτ

6. Repeat 1-5 for each t
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Convolution
Example. Let x(t) = e−atu(t) and h(t) = u(t) with a > 0.

For t < 0,

(x ∗ h)(t) = 0

For t ≥ 0,

(x∗h)(t) =

∫ t

0
e−aτdτ =

1− e−at

a

Thus

(x ∗ h)(t) =

(
1− e−at

a

)
u(t)

τ0

x(τ) = e−aτu(τ)

τ0

h(τ) = u(τ)

τ0

h(−τ)

τ0t (< 0)

h(t − τ)

τ0 t (> 0)

h(t − τ)
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Convolution
Example. Let x(t) = e−atu(t) and h(t) = u(t) with a > 0.

(x ∗ h)(t) =

∫
R

x(τ)h(t − τ)dτ

=

∫
R

e−aτu(τ)u(t − τ)dτ

=

∫
0≤τ≤t

e−aτdτ

= u(t)
∫ t

0
e−aτdτ

=

(
1− e−at

a

)
u(t)

Also true for a < 0

t0

x(t)

t0

h(t)

t

1
a

0

(x ∗ h)(t)
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Convolution
Example. Compute x∗ x, where x(t) = u(t + T)−u(t−T). .

(x∗x)(t) =


0, t < −2T
t + 2T, −2T ≤ t < 0
2T − t, 0 ≤ t < 2T
0, t ≥ 2T

t

(x ∗ x)(t)

0−2T 2T

2T

τ0−T T

x(−τ) x(τ)1

τt − T t + T

x(t − τ)

τt − T t + T

x(t − τ)

τt − T t + T

x(t − τ)

τt − T t + T

x(t − τ)
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Convolution
Example. Let

x(t) =

{
1, 0 < t < T
0, otherwise

h(t) =

{
t, 0 ≤ t ≤ 2T
0, otherwise

Five cases

1. t < 0
2. 0 ≤ t ≤ T
3. T < t ≤ 2T
4. 2T < t ≤ 3T
5. t > 3T

τ0 T

x(τ) 1

τ0 2T

h(t)
2T

τ0 2T

h(t)
2T

τ0t − 2T t

2T
h(t − τ)

τ0t − 2T t

2T

τ0t − 2T t

2T

τ0
t − 2T

t

2T

τ0 t − 2T t

2T
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Identity Element

Recall sampling property of δ

x(t) =

∫
R

x(τ)δ(t − τ)dτ, ∀t ∈ R

δ identity element for convolution

x = x ∗ δ = δ ∗ x

x = x ∗ δ x δ x

x = δ ∗ x δ x x
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Properties of Convolution

Commutativity
x1 ∗ x2 = x2 ∗ x1

Bilinearity(∑
i

aix1i

)
∗

(∑
j

bjx2j

)
=
∑

i

∑
j

aibj(x1i ∗ x2j)

Associativity

x1 ∗ x2 ∗ x3 = (x1 ∗ x2) ∗ x3 = x1 ∗ (x2 ∗ x3)

Time shift
(τax1) ∗ (τbx2) = τa+b(x1 ∗ x2)
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Associative Law

x1 ∗ (x2 ∗ x3) = (x1 ∗ x2) ∗ x3

h = h1 ∗ h2 x h1 h2 y

h
commutative

h = h2 ∗ h1 x h2 h1 y

h

Order of processing usually not important for LTI systems
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Associative Law

Example. x1(t) = 1, x2(t) = u(t), x3(t) = δ′(t) (defined later)

1. (x2 ∗ x3)(t) = δ(t), so x1 ∗ (x2 ∗ x3) = 1
2. x1 ∗ x2 and (x1 ∗ x2) ∗ x3 undefined!
3. x1 ∗ x3 = 0, so (x1 ∗ x3) ∗ x2 = 0

Sufficient conditions for associative law

1. At least two of x1, x2 and x3 have compact supports3

2. x1, x2, x3 all right-sided (or left-sided), =⇒ x1 ∗ x2 ∗ x3

also right-sided (or left-sided)
3. One signal (say x3) has finite Lp norm for 1 ≤ p ≤ ∞

and others finite L1 norm.

‖x1 ∗ x2 ∗ x3‖p ≤ ‖x1‖1 · ‖x2‖1 · ‖x3‖p

3δa and its derivatives (to be defined) have support {a}.
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Memory

For LTI systems

y[n] = (x ∗ h)[n] =
∞∑

k=−∞

x[k]h[n− k], ∀n ∈ Z

y(t) = (x ∗ h)(t) =

∫
R

x(τ)h(t − τ)dτ, ∀t ∈ R

memroyless ⇐⇒ h = Kδ

All LTI systems except for scalar multiplication have memory
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Invertibility

x T
y

T1 x

I

x h
y

h1 x

δ

Impulse responses of a system and its inverse satisfy

h ∗ h1 = δ

Necessary but not sufficient (requires associativity)
• e.g. first difference h = δ − τ1δ, accumulator h1 = u
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Causality

For LTI systems

y[n] = (x ∗ h)[n] =
∞∑

k=−∞

x[k]h[n− k] =
n∑

k=−∞

x[k]h[n− k]

causal ⇐⇒ h[n] = 0 for all n < 0

y(t) = (x ∗ h)(t) =

∫ ∞
−∞

x(τ)h(t − τ)dτ =

∫ t

−∞
x(τ)h(t − τ)dτ

causal ⇐⇒ h(t) = 0 for all t < 0
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Stability

Recall BIBO stability: ‖x‖∞ <∞ =⇒ ‖T(x)‖∞ <∞

For LTI systems

BIBO stable ⇐⇒ ‖h‖1 <∞

Proof. Sufficiency. Assume ‖h‖1 <∞. Recall
‖x ∗ h‖∞ ≤ ‖x‖∞‖h‖1. Thus ‖x‖∞ <∞ =⇒ ‖x ∗ h‖∞ <∞.

Necessity. Assume BIBO stability. Let x = R(h̄/|h|), where
R is time reversal and h̄ is complex conjugate of h 4. Note
‖x‖∞ = 1. By stability, ‖x ∗ h‖∞ <∞. Note ‖h‖1 is value of
x ∗ h at time zero. Thus ‖h‖1 ≤ ‖x ∗ h‖∞ <∞.

4when h takes zero value, use convention 0/0 = 0.
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Unit Step Response

Unit step response of LTI systems

s , T(u) = u ∗ h

DT LTI

s[n] =
n∑
−∞

h[k]

h[n] = s[n]− s[n− 1]

CT LTI

s(t) =

∫ t

−∞
h(τ)dτ

h(t) = s′(t)
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Linear Constant-coefficient Differential Equations

iS(t)

R L C

+

−

v(t)

iR iL iC

Characteristics of R,L,C

iR(t) =
1
R

v(t)

iL(t) =
1
L

∫ t

−∞
v(τ)dτ

iC(t) = C
d
dt

v(t)

Kirchhoff’s current law

iR(t) + iL(t) + iC(t) = iS(t)

Second order ordinary differential equation (ODE)

C
d2

dt2 v(t) +
1
R

d
dt

v(t) +
1
L

v(t) =
d
dt

iS(t)
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Linear Constant-coefficient Differential Equations

System described by linear constant-coefficient ODE

Lyy = Lxx

where

Ly =
N∑

k=0

ak
dk

dtk (aN 6= 0), Lx =
M∑

k=0

bk
dk

dtk (bM 6= 0)

• N: order of ODE
• input-output relation specified implicitly by ODE
• solve ODE for explicit input-output relation y = T(x)

• can take f = Lxx as “input” when solving ODE
• ODE alone does not uniquely determine T
• need auxiliary conditions, typically initial conditions
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Linear Constant-coefficient Differential Equations

Initial value problem (IVP)

Lyy = f

with initial conditions

y(k)(t0) = yk, k = 0, 1, . . . ,N − 1

• N-th order ODE needs N initial conditions
• Replace y and f by ỹ = τ−t0y and f̃ = τ−t0f ,

Lyỹ = f̃

with initial conditions

ỹ(k)(0) = yk, k = 0, 1, . . . ,N − 1
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IVP with First-order ODE
Example. Ly = d

dt + 2, i.e.

y′(t) + 2y(t) = x(t) (1)

with input x(t) = Ke3tu(t) and initial condition y(0) = y0.

• General solution is sum of particular solution yp(t)
and homogeneous solution yh(t), i.e.

y(t) = yp(t) + yh(t)

• yp satisfies (1); yh (natural response) satisfies

y′h(t) + 2yh(t) = 0

• yh(t) = Aeλt, where λ+ 2 = 0; LHS obtained from Ly

upon replacing d
dt by λ. Thus yh(t) = Ae−2t.
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IVP with First-order ODE
Example (cont’d). Ly = d

dt + 2, i.e.

y′(t) + 2y(t) = x(t) (1)

with input x(t) = Ke3tu(t) and initial condition y(0) = y0.

• For particular solution yp, look for forced response,
i.e. signal of same of as input.
• For t > 0, x(t) = Ke3t, so assume yp(t) = Ye3t.

Lyyp(t) = 5Ye3t = x(t) = Ke3t =⇒ yp(t) =
K
5

e3t

• General solution

y(t) =
K
5

e3t + Ae−2t, t > 0
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IVP with First-order ODE
Example (cont’d). Ly = d

dt + 2, i.e.

y′(t) + 2y(t) = x(t) (1)

with input x(t) = Ke3tu(t) and initial condition y(0) = y0.

• Use initial condition to determine A

y(0) =
K
5

+ A = y0 =⇒ A = y0 −
K
5

• Complete solution to IVP

y(t) =
K
5

e3t︸︷︷︸
forced response

+

(
y0 −

K
5

)
e−2t︸ ︷︷ ︸

natural response

, t > 0

• y(t) = y0e−2t for t ≤ 0, but typically interested in t > 0



30/35

IVP with First-order ODE
Example (cont’d). Ly = d

dt + 2, i.e.

y′(t) + 2y(t) = x(t) (1)

with input x(t) = Ke3tu(t) and initial condition y(0) = y0.

• Complete solution to IVP

y(t) =
K
5

e3t +

(
y0 −

K
5

)
e−2t, t > 0

• Is the system y = T(x) linear? No in general.
I homogeneity fails if y0 6= 0, y not proportional to K.

• Rewrite solution as

y(t) =
K
5

(e3t − e−2t)︸ ︷︷ ︸
zero-state response

+ y0e−2t︸ ︷︷ ︸
zero-input response

, t > 0
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Decomposition of Solutions (1)

Consider general linear ODE

Lyy = f

Particular solution
Lyyp = f

Homogeneous solution

Lyyh = 0

• Defined with respect to ODE alone!
• Nothing to do with initial conditions
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Decomposition of Solutions (2)
Consider IVP with general linear ODE{

Lyy = f
y(k)(0) = yk, k = 0, 1, . . . ,N − 1

(2)

Zero-input response{
Lyyzi = 0
y(k)

zi (0) = yk, k = 0, 1, . . . ,N − 1

Zero-state response{
Lyyzs = f
y(k)

zs (0) = 0, k = 0, 1, . . . ,N − 1

Complete solution to (2) is y = yzi + yzs.
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Linearity

Zero-state response linear in input{
Lyyzs,i = fi

y(k)
zs,i(0) = 0

=⇒

{
Ly(
∑

i ciyzs,i) =
∑

i cifi

(
∑

i ciyzs,i)
(k)(0) = 0

Zero-input response linear in initial state{
Lyyzs,i = 0
y(k)

zs,i(0) = yk,i
=⇒

{
Ly(
∑

i ciyzs,i) = 0
(
∑

i ciyzs,i)
(k)(0) =

∑
i ciyk,i

• Complete response is linear in input iff zero-input
response is zero
• Linearity requires zero initial state
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Time-invariance
Zero initial state, i.e. y(k)(0) = 0 for k = 0, . . . ,N − 1
guarantees linearity but not time-invariance

Example. Consider

y′(t) + 2y(t) = x(t)

with initial condition y(0) = 0.
• If x(t) = u(t),

y(t) =
1
2

(1− e−2t)u(t)

• If x(t) = u(t + 1),

y(t) =
1
2

(1− e−2t)u(t + 1) +
1
2

(e−2 − 1)e−2tu(−t − 1)
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Initial Rest

Often work with right-sided inputs, i.e. x(t) = 0 for t < t0

• stimulus turned on at some point

Initial rest condition
• If input x(t) = 0 for t < t0, output y(t) = 0 for t < t0

I equivalent to causality for linear systems

• Use initial condition y(k)(t0) = 0 for k = 0, 1, . . . ,N − 1,
i.e. solve{

Lyy = f
y(k)(t0) = 0, k = 0, 1, . . . ,N − 1

Linear constant-coefficient ODE with initial rest condition
specifies causal and LTI system for right-sided inputs
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