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Representation of CT Signals by Impulses
Sifting property of CT unit impulse

Interpreted as limit as A — 0 of

[e.9]

ia(t) = ) x(kA)pa(t — kA)A

k=—o00

where




CT Linear Systems
Response of linear system

)A]A == T()ACA) =T ( Z x(kA)TkApAA>

k=—00
oo

= Z x(kA)T(TkApA)A = Z x(kA)ilkAA

k=—o00 k=—00

where Iya = T(7iapa) is response to shifted pulse miapa.

In the limit A — 0,
® in »xand ya —y=T(x)
e for kA — a, have Tiapa — 0., expect iun — h, = T(6,)

y:/Rx(a)hada, or y(t):/Rx(a)ha(t)da



CT Linear Time-invariant (LTl) Systems

Unit impulse response’

time invariance = h, =T(0,) = 7,(T(6)) = 7,h

Response of LTI system — Convolution integral

y(t) = /R)C(T)h(l‘ —7)dT, Vt€ER

LTI system is fully characterized by unit impulse response!

Conversely, given h, system T (x)(f) = /X(T)h(t — 7)d7 is LTI
R

"For proof of existence, see Theorem 2 of VI.3 in Késaku Yosida.



Impulse Responses of Simple LTI Systems

Identity
h(t) = 4(t)
Scaler multiplication
h(t) = Ko(t)
Time shift
h(t) = 04(t) = 6(t — a)
Integrator

Differentiator

h(r) = d'(r) (to be defined)



Convolution

(x1 *xx)(2) = /R)q(T)XQ([ —T7)dr, VieR

Not always defined for arbitrary x; and x,
Example. For x,(¢) = u(t) = xo(—1), integral divergent for all z.

Sufficient conditions for absolute convergence
1. Either x; or x, has compact support suppx = {z : x(¢) # 0},
i.e. x; Or x, vanishes outside finite interval.

2. x1, x, both right-sided (or left-sided), i.e. x;(tf) =0 fort < ¢,
(ort>1t), Vi = x; xx, also right-sided (or left-sided)



Convolution

Sufficient conditions for absolute convergence (cont'd)

3. One of x; and x, has finite L, norm and the other finite L,
norm for 1 <p < oo, where L, norm 2

</| |pdt) , f1<p<oo
|x||p

sup |x(7)] if p = 0.
teR
If [[x1[|1 < oo, then [x; * x|, < [Jxi]]1 - [Jx2]]-

4. |Ix]|, < oo and |Jx;]|, < oo for 1 < p,q < oo and
p '+ ¢ = 1. Inthis case, ||x; * x2||o0 < |Ix1]lp - [I%2]l4-

2More precisely, ||x||o = sup{B > 0: |x(¢)| < B for almost every ¢}



Calculation of Convolution

=

Plot both x; and x, as functions of 7, i.e. x;(7), x2(7)
Reverse x,(7) to obtain x,(—7)

Given 1, shift x,(—7) by ¢ to obtain x,(r — 7)

Multiply x; (7) and x,(z — 7) pointwise to obtain

&(7) = x1(7)x2(1 — 7)

Integrate g, over 7 to obtain (x; * x,)(z), i.e.

(51 %3:)(¢) = /R a(r)dr

Repeat 1-5 for each ¢



Convolution
Example. Let x(¢) = e~“u(t) and h(t) = u(z) with a > 0.

Fort <0, x(7) = e7ulr) I\

0
(xxh)(t) =0 h(r) = u(r) }
Fort >0, 0
(xxh) (1) = /0 e dr = ! _:_a 0
— |
Thus [(<0) 0
1_ —at 4

(x* h)(t) = ( ae ) u(t) 22



Convolution
Example. Let x(¢) = e~“u(t) and h(t) = u(z) with a > 0.

(xxh)(t) = /RX(T)h(l —T)dT

= / e "dr R
0<r<t h(t) ‘

x(1)
—/Re‘”u(T)u(t—T)dT I\ >

t
:u(t)/ e Tdr 0
0

(xxh)(t) a V -
Also true fora < 0 R




Convolution

Example. Compute xx*x, where x(t) = u(t+T) —u(t—T). .

x(—71 51“ E x(T
0, t < =2T (=) ] ")
t+2T, —-2T<t<0 =T 0 T
(x*x)(t): 1 1
2T—t, 0§t<2T I_l X X X(I—T)
0, t>2T (T i+T !
I—i—l E x(t—T)
t—T 10T
(x*x)(1) ! !
27 AL I
. t—T t+T
2T 0 2T "t x(t =) ]



Convolution

Example. Let

I, O0<t<T
x(t) = .
0, otherwise

t, 0<r<2T
h(t) = .
0, otherwise

Five cases

1.1<0

2. 0<t<T
T <t<2T
2T <t < 3T
t>3T

o~ W

x(7) 1
0T T
Lor
NI
-ty 10 T
?2?’
J\\; .
t=2T |t: T
i
t—ZT/: Et T
2T N
t—2T J\\ R
0 7
TN
L T



|dentity Element

Recall sampling property of §

x(t) = /RX(T)(S(I —7)dr, VteR

0 identity element for convolution

X=x%0=0%x

x:x*5 X = 6 —> X

XxX=0%x ) —> X —> X




Properties of Convolution

Commutativity
X1 % Xp = Xp * X

Bilinearity

(Z a xh> (Z b; x2,> = Z ; aib;(x1; * x57)

1

Associativity

X1 %X kX3 = (X1 % Xxp) kX3 = X7 * (X2 % x3)

Time shift

(TaX1) * (TpX2) = Tuwp (X1 * X2)



Associative Law

X1k (X0 % x3) = (X1 *xp) * X3

h= hl * ]’lz X —:—P hl > hz — )
E h E
commutative  '-----------m----iemooooooo-
h=hy,*h X —E—P hy > hy — )
E I E

Order of processing usually not important for LTI systems



Associative Law

Example. x,(1) = 1, x2(¢) = u(z), x3(r) = §'(¢) (defined later)
1. (Xz *)C3)<f) = (S(I), SO X * ()Cz *X3) =1
2. x1 % xy and (x; * xz) * x3 undefined!

3. x1%xx3=0,50 (x; %xx3) %xx, =0

Sufficient conditions for associative law

1. At least two of x;, x, and x; have compact supports®

2. x1, X2, x3 all right-sided (or left-sided), —> x; * x, * x3
also right-sided (or left-sided)

3. One signal (say x3) has finite L, norm for 1 < p < oo
and others finite L; norm.

ey xa e x3l, < el fleal - [lesl

354 and its derivatives (to be defined) have support {a}.
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2. Properties of LTI Systems



Memory

For LTI systems

o0

Yol = (xxh)n] = > x[klh[n— k], VneZ

k=—o00

y(t) = (x*xh)(t) = /x(T)h(t —T7)dr, VteR

R

memroyless <— h = K¢

All LTI systems except for scalar multiplication have memory



Invertibility

X ———> T > T, —:—»x
: I E
: y 5

X ——> h > hy —> X
i 5 :

Impulse responses of a system and its inverse satisfy

h+xh =96

Necessary but not sufficient (requires associativity)
e e.qg. first difference h = § — 70, accumulator h; = u



Causality
For LTI systems

o0 n

in] = (xxh)lnl = ) xlklhln —k = ) x[klhln — K]

k=—o00 k=—00

causal < #hjn]=0foralln <0

3(t) = (% h) (1) = /_ T Mt — )y — /_ " (Pt — )

causal < h(r) =0forallz <0




Stability

Recall BIBO stability: [[x]|o < 0o = [|T(x)]|o0 < 00

For LTI systems

BIBO stable < |||, < oo

Proof. Sufficiency. Assume ||i||; < cc. Recall
X % 7|l oo < ||X]|oo||B]]1- TUS ||X]|ec < 00 = |Jx * Ao < 0.

Necessity. Assume BIBO stability. Let x = R(h/|h|), where
R is time reversal and & is complex conjugate of 4 4. Note
x|l = 1. By stability, [} * Al|.c < cc. Note |[4]|, is value of
x * h at time zero. Thus ||A]|; < [|x* Al < 0.

4when h takes zero value, use convention 0/0 = 0.



Unit Step Response

Unit step response of LTI systems

s=T(u)=ux*h

DT LTI

sl = Zn:h[k]

) = sla) — s — 1
CT LTI
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3. Causal LTI Systems Described by Differential
Equations



Linear Constant-coefficient Differential Equations
Characteristics of R, L, C

in(1) = (1) 2
. is(t) IR L Ic

lL(t) = Z /_Oo V(T)dT R I _: C v(t)

ic(t) = C%v(:)

Kirchhoff’s current law
iR(t) ‘|‘ iL<t> + ic(t) — is(t)
Second order ordinary differential equation (ODE)

d? 1d 1

CEv(t) + (1) + (1) = Zis(0)



Linear Constant-coefficient Differential Equations
System described by linear constant-coefficient ODE
Ly=L.x

where

N k

Ly:Zak% (ax #0), L= b (bu#0)

k=0 k=0

N: order of ODE

input-output relation specified implicitly by ODE
solve ODE for explicit input-output relation y = T'(x)
can take f = L.x as “input” when solving ODE
ODE alone does not uniquely determine T

need auxiliary conditions, typically initial conditions



Linear Constant-coefficient Differential Equations
Initial value problem (IVP)
Ly=f
with initial conditions
YO () =y, k=0,1,....N—1
e N-th order ODE needs N initial conditions
® Replaceyandfbyy=r7_,yandf =1_.f,
Ly=f
with initial conditions

Si(k)(o):yka k=0,1,...,.N—1



VP with First-order ODE
Example. L, = £ + 2, i.e.
(1) + 2y(t) = x(¢) (1)

with input x(¢) = Ke*'u() and initial condition y(0) = yy.

e General solution is sum of particular solution y,(z)
and homogeneous solution y,(7), i.e.

y(#) = yp(1) + ya(1)
e y, satisfies (1); y, (natural response) satisfies

Yia(t) + 2y,(1) =0

® y,(t) = Ae™, where \ + 2 = 0; LHS obtained from L,
upon replacing £ by . Thus y,(r) = Ae ™.



VP with First-order ODE
Example (contd). L, = £ + 2, i.e.
Y1) +2y(1) = x(¢) (1)

with input x(¢) = Ke*'u() and initial condition y(0) = yy.

e For particular solution y,, look for forced response,
i.e. signal of same of as input.

e Fort> 0, x(r) = Ke¥, so assume y, (1) = Ye*.
3t 3t K 3t
Lyy,(t) =5Ye" = x(t) = Ke' = y,(t) = 5e
e General solution

K
y(1) = §e3’ +Ae™ >0



VP with First-order ODE
Example (contd). L, = £ + 2, i.e.
Y1) +2y(1) = x(¢) (1)

with input x(¢) = Ke*'u() and initial condition y(0) = yy.
e Use initial condition to determine A

K K

5 5
e Complete solution to IVP
K K
y(t) = §e3’ + <y0 — 3) e >0
~~

forced response natural response

® y(t) = ype % for ¢t < 0, but typically interested in t > 0



VP with First-order ODE

Example (contd). L, = £ + 2, i.e.

Y (1) +2y(1) = x(1) (1)

with input x(¢) = Ke*'u() and initial condition y(0) = yy.
e Complete solution to IVP
K K
y(t) = §e3’ + (yo — §> e >0

¢ |s the system y = T(x) linear? No in general.
» homogeneity fails if yo # 0, y not proportional to K.

e Rewrite solution as

yt)= —(—e )+  ye ¥ , 1>0

——
~— .

zero-input response
zero-state response



Decomposition of Solutions (1)

Consider general linear ODE

Ly=f
Particular solution

Ly, =f
Homogeneous solution

Ly,=0

¢ Defined with respect to ODE alone!
¢ Nothing to do with initial conditions



Decomposition of Solutions (2)
Consider IVP with general linear ODE

Ly=f
fk) _ _ (2)
y90)=y, k=0,1,....N—1

Zero-input response

Lyyzi =0
YO0 =y, k=01,....N—1

Zero-state response

Lyyzs = f
YO0)=0, k=01,...,N—1

Complete solution to (2) isy = y,; + yu-



Linearity

Zero-state response linear in input

Lyyzs,i :fl — Ly(zi Ciyzs,i) = Z,‘ Cifi
y(0) =0 (Y evzsi)®(0) = 0

Zero-input response linear in initial state

Lyyzs,i =0 — Ly(zi ciyzs,i) =0
yﬁf,),-(O) = Yk,i (Ziciyzs,i)(k) (0) = Ziciyk,i

e Complete response is linear in input iff zero-input
response is zero

e Linearity requires zero initial state



Time-invariance

Zero initial state, i.e. y¥(0) =0fork=0,...,N — 1
guarantees linearity but not time-invariance

Example. Consider
(1) + 2(1) = x(1)

with initial condition y(0) = 0.
o If x(¢) = u(),



Initial Rest

Often work with right-sided inputs, i.e. x(t) = 0 for ¢ < #,
e stimulus turned on at some point

Initial rest condition
e If input x(¢) = 0 for r < 1y, output y(z) = 0 for 1 < ¢
> equivalent to causality for linear systems

e Use initial condition y®) (1) =0fork =0,1,...,N — 1,
i.e. solve
Lyy :f
yO(t) =0, k=0,1,...,N—1

Linear constant-coefficient ODE with initial rest condition
specifies causal and LTI system for right-sided inputs
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