El331 Signals and Systems Lecture 6

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

March 14, 2019

Contents

- 1. CT Linear Time-invariant Systems
- 1.1 Impulse Response
- 1.2 Convolution
- 1.3 Properties of Convolution

2. Properties of LTI Systems

Causal LTI Systems Described by Differential Equations

Representation of CT Signals by Impulses

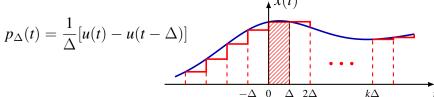
Sifting property of CT unit impulse

$$x(t) = \int_{\mathbb{R}} x(a)\delta(t-a)da$$

Interpreted as limit as $\Delta \to 0$ of

$$\hat{x}_{\Delta}(t) = \sum_{\alpha} x(k\Delta)p_{\Delta}(t-k\Delta)\Delta$$

where



CT Linear Systems

Response of linear system

$$\hat{y}_{\Delta} = T(\hat{x}_{\Delta}) = T\left(\sum_{k=-\infty}^{\infty} x(k\Delta)\tau_{k\Delta}p_{\Delta}\Delta\right)$$
$$= \sum_{k=-\infty}^{\infty} x(k\Delta)T(\tau_{k\Delta}p_{\Delta})\Delta = \sum_{k=-\infty}^{\infty} x(k\Delta)\hat{h}_{k\Delta}\Delta$$

where $\hat{h}_{k\Delta} = T(\tau_{k\Delta}p_{\Delta})$ is response to shifted pulse $\tau_{k\Delta}p_{\Delta}$.

In the limit $\Delta \to 0$,

- $\hat{x}_{\Delta} \rightarrow x$ and $\hat{y}_{\Delta} \rightarrow y = T(x)$
- for $k\Delta \to a$, have $\tau_{k\Delta}p_\Delta \to \delta_a$, expect $\hat{h}_{k\Delta} \to h_a = T(\delta_a)$

$$y = \int_{\mathbb{R}} x(a)h_a da, \quad \text{ or } \quad y(t) = \int_{\mathbb{R}} x(a)h_a(t) da$$

CT Linear Time-invariant (LTI) Systems

Unit impulse response¹

$$h = h_0 = T(\delta)$$

time invariance
$$\implies h_a = T(\delta_a) = \tau_a(T(\delta)) = \tau_a h$$

Response of LTI system - Convolution integral

$$y(t) = \int_{\mathbb{D}} x(\tau)h(t-\tau)d\tau, \quad \forall t \in \mathbb{R}$$

LTI system is fully characterized by unit impulse response!

Conversely, given h, system $T(x)(t) \triangleq \int_{\mathbb{T}} x(\tau)h(t-\tau)d\tau$ is LTI

¹For proof of existence, see Theorem 2 of VI.3 in Kôsaku Yosida.

Impulse Responses of Simple LTI Systems

Identity

$$h(t) = \delta(t)$$

Scaler multiplication

$$h(t) = K\delta(t)$$

Time shift

$$h(t) = \delta_a(t) \triangleq \delta(t - a)$$

Integrator

$$h(t) = \int_{-\infty}^{t} \delta(\tau) d\tau = u(t)$$

Differentiator

$$h(t) = \delta'(t)$$
 (to be defined)

$$(x_1 * x_2)(t) = \int_{\mathbb{R}} x_1(\tau) x_2(t-\tau) d\tau, \quad \forall t \in \mathbb{R}$$

Not always defined for arbitrary x_1 and x_2

Example. For $x_1(t) = u(t) = x_2(-t)$, integral divergent for all t.

Sufficient conditions for absolute convergence

- 1. Either x_1 or x_2 has compact support supp $x = \{t : x(t) \neq 0\}$, i.e. x_1 or x_2 vanishes outside finite interval.
- 2. x_1 , x_2 both right-sided (or left-sided), i.e. $x_i(t) = 0$ for $t \le t_i$ (or $t \ge t_i$), $\forall i \implies x_1 * x_2$ also right-sided (or left-sided)

Sufficient conditions for absolute convergence (cont'd)

3. One of x_1 and x_2 has finite L_1 norm and the other finite L_p norm for $1 \le p \le \infty$, where L_p norm 2

$$||x||_p \triangleq \begin{cases} \left(\int_{\mathbb{R}} |x(t)|^p dt\right)^{1/p}, & \text{if } 1 \leq p < \infty \\ \sup_{t \in \mathbb{R}} |x(t)|, & \text{if } p = \infty. \end{cases}$$

If
$$||x_1||_1 < \infty$$
, then $||x_1 * x_2||_p \le ||x_1||_1 \cdot ||x_2||_p$.

4. $||x_1||_p < \infty$ and $||x_2||_q < \infty$ for $1 \le p, q \le \infty$ and $p^{-1} + q^{-1} = 1$. In this case, $||x_1 * x_2||_{\infty} \le ||x_1||_p \cdot ||x_2||_q$.

Calculation of Convolution

- 1. Plot both x_1 and x_2 as functions of τ , i.e. $x_1(\tau)$, $x_2(\tau)$
- **2**. Reverse $x_2(\tau)$ to obtain $x_2(-\tau)$
- 3. Given t, shift $x_2(-\tau)$ by t to obtain $x_2(t-\tau)$
- 4. Multiply $x_1(\tau)$ and $x_2(t-\tau)$ pointwise to obtain $g_t(\tau) = x_1(\tau)x_2(t-\tau)$
- 5. Integrate g_t over τ to obtain $(x_1 * x_2)(t)$, i.e. $(x_1 * x_2)(t) = \int_{\mathbb{R}} g_t(\tau) d\tau$
- 6. Repeat 1-5 for each t

Example. Let $x(t) = e^{-at}u(t)$ and h(t) = u(t) with a > 0.

For
$$t < 0$$
,
$$(x*h)(t) = 0$$

$$h(\tau) = u(\tau)$$

$$(x*h)(t) = \int_0^t e^{-a\tau} d\tau = \frac{1 - e^{-at}}{a}$$

$$(x*h)(t) = \left(\frac{1 - e^{-at}}{a}\right) u(t)$$

$$h(\tau) = u(\tau)$$

$$h(-\tau)$$

$$h(t - \tau)$$

$$t(< 0) \quad 0 \quad \tau$$

$$h(t - \tau)$$

$$h(t - \tau)$$

$$t(> 0) \quad t(> 0)$$

Example. Let $x(t) = e^{-at}u(t)$ and h(t) = u(t) with a > 0.

$$(x*h)(t) = \int_{\mathbb{R}} x(\tau)h(t-\tau)d\tau$$

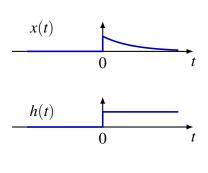
$$= \int_{\mathbb{R}} e^{-a\tau}u(\tau)u(t-\tau)d\tau$$

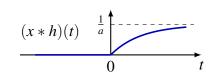
$$= \int_{0 \le \tau \le t} e^{-a\tau}d\tau$$

$$= u(t)\int_{0}^{t} e^{-a\tau}d\tau$$

$$= \left(\frac{1-e^{-at}}{a}\right)u(t)$$

Also true for a < 0





Example. Compute x * x, where x(t) = u(t+T) - u(t-T).

$$(x*x)(t) = \begin{cases} 0, & t < -2T \\ t + 2T, & -2T \le t < 0 \\ 2T - t, & 0 \le t < 2T \\ 0, & t \ge 2T \end{cases} \xrightarrow{x(t-\tau)} \xrightarrow{x(t-\tau)} \xrightarrow{x(t-\tau)} \tau$$

$$(x*x)(t) = \begin{cases} 0, & t < -2T \\ 2T - t, & 0 \le t < 2T \\ 0, & t \ge 2T \end{cases} \xrightarrow{t-T} \xrightarrow{t+T} \tau$$

$$x(t-\tau) \xrightarrow{x(t-\tau)} \xrightarrow{x(t-\tau)} \tau$$

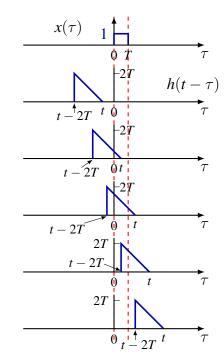
Example. Let

$$x(t) = \begin{cases} 1, & 0 < t < T \\ 0, & \text{otherwise} \end{cases}$$

$$h(t) = \begin{cases} t, & 0 \le t \le 2T \\ 0, & \text{otherwise} \end{cases}$$

Five cases

- 1. t < 0
- **2**. 0 < t < T
- 3. $T < t \le 2T$
- **4**. $2T < t \le 3T$
- 5. t > 3T

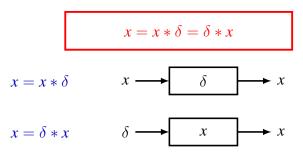


Identity Element

Recall sampling property of δ

$$x(t) = \int_{\mathbb{R}} x(\tau)\delta(t-\tau)d\tau, \quad \forall t \in \mathbb{R}$$

δ identity element for convolution



Properties of Convolution

Commutativity

$$x_1 * x_2 = x_2 * x_1$$

Bilinearity

$$\left(\sum_i a_i x_{1i}\right) * \left(\sum_j b_j x_{2j}\right) = \sum_i \sum_j a_i b_j (x_{1i} * x_{2j})$$

Associativity

$$x_1 * x_2 * x_3 = (x_1 * x_2) * x_3 = x_1 * (x_2 * x_3)$$

Time shift

$$(\tau_a x_1) * (\tau_b x_2) = \tau_{a+b}(x_1 * x_2)$$

Associative Law

 $h = h_2 * h_1$

$$h = h_1 * h_2 \qquad x \qquad h_1 \qquad h_2 \qquad y$$
commutative

 h_2

 h_1

Order of processing usually not important for LTI systems

Associative Law

Example. $x_1(t) = 1$, $x_2(t) = u(t)$, $x_3(t) = \delta'(t)$ (defined later)

- 1. $(x_2 * x_3)(t) = \delta(t)$, so $x_1 * (x_2 * x_3) = 1$
- 2. $x_1 * x_2$ and $(x_1 * x_2) * x_3$ undefined!
- 3. $x_1 * x_3 = 0$, so $(x_1 * x_3) * x_2 = 0$

Sufficient conditions for associative law

- 1. At least two of x_1 , x_2 and x_3 have compact supports³
- 2. x_1, x_2, x_3 all right-sided (or left-sided), $\implies x_1 * x_2 * x_3$ also right-sided (or left-sided)
- 3. One signal (say x_3) has finite L_p norm for $1 \le p \le \infty$ and others finite L_1 norm.

$$||x_1 * x_2 * x_3||_p \le ||x_1||_1 \cdot ||x_2||_1 \cdot ||x_3||_p$$

 $^{^{3}\}delta_{a}$ and its derivatives (to be defined) have support $\{a\}$.

Contents

- CT Linear Time-invariant Systems
- 1.1 Impulse Response
- 1.2 Convolution
- 1.3 Properties of Convolution

2. Properties of LTI Systems

Causal LTI Systems Described by Differential Equations

Memory

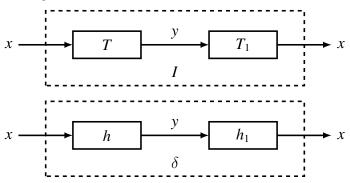
For LTI systems

$$y[n] = (x * h)[n] = \sum_{k = -\infty}^{\infty} x[k]h[n - k], \quad \forall n \in \mathbb{Z}$$
$$y(t) = (x * h)(t) = \int_{\mathbb{R}} x(\tau)h(t - \tau)d\tau, \quad \forall t \in \mathbb{R}$$

$$\mathbf{memroyless} \iff h = K\delta$$

All LTI systems except for scalar multiplication have memory

Invertibility



Impulse responses of a system and its inverse satisfy

$$h*h_1=\delta$$

Necessary but **not** sufficient (requires associativity)

• e.g. first difference $h = \delta - \tau_1 \delta$, accumulator $h_1 = u$

Causality

For LTI systems

$$y[n] = (x * h)[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{n} x[k]h[n-k]$$

$$\mathbf{causal} \iff h[n] = 0 \text{ for all } n < 0$$

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau = \int_{-\infty}^{t} x(\tau)h(t - \tau)d\tau$$

causal $\iff h(t) = 0$ for all t < 0

Stability

Recall BIBO stability: $||x||_{\infty} < \infty \implies ||T(x)||_{\infty} < \infty$ For LTI systems

BIBO stable
$$\iff \|h\|_1 < \infty$$

Proof. Sufficiency. Assume $||h||_1 < \infty$. Recall $||x*h||_{\infty} \le ||x||_{\infty} ||h||_1$. Thus $||x||_{\infty} < \infty \implies ||x*h||_{\infty} < \infty$.

Necessity. Assume BIBO stability. Let $x = R(\bar{h}/|h|)$, where R is time reversal and \bar{h} is complex conjugate of h^4 . Note $\|x\|_{\infty} = 1$. By stability, $\|x*h\|_{\infty} < \infty$. Note $\|h\|_1$ is value of x*h at time zero. Thus $\|h\|_1 \le \|x*h\|_{\infty} < \infty$.

⁴when *h* takes zero value, use convention 0/0 = 0.

Unit Step Response

Unit step response of LTI systems

$$s \triangleq T(u) = u * h$$

DT LTI

$$s[n] = \sum_{-\infty}^{n} h[k]$$
$$h[n] = s[n] - s[n-1]$$

CT LTI

$$s(t) = \int_{-\infty}^{t} h(\tau)d\tau$$
$$h(t) = s'(t)$$

Contents

- CT Linear Time-invariant Systems
- 1.1 Impulse Response
- 1.2 Convolution
- 1.3 Properties of Convolution

Properties of LTI Systems

3. Causal LTI Systems Described by Differential Equations

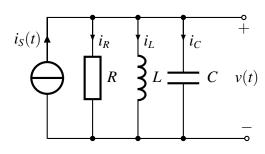
Linear Constant-coefficient Differential Equations

Characteristics of R, L, C

$$i_R(t) = \frac{1}{R}v(t)$$

$$i_L(t) = \frac{1}{L} \int_{-\infty}^t v(\tau)d\tau$$

$$i_C(t) = C\frac{d}{dt}v(t)$$



Kirchhoff's current law

$$i_R(t) + i_L(t) + i_C(t) = i_S(t)$$

Second order ordinary differential equation (ODE)

$$C\frac{d^2}{dt^2}v(t) + \frac{1}{R}\frac{d}{dt}v(t) + \frac{1}{L}v(t) = \frac{d}{dt}i_S(t)$$

Linear Constant-coefficient Differential Equations

System described by linear constant-coefficient ODE

$$L_{y}y = L_{x}x$$

where

$$L_{\mathrm{y}} = \sum_{k=0}^{N} a_k \frac{d^k}{dt^k} \quad (a_N
eq 0), \quad L_{\mathrm{x}} = \sum_{k=0}^{M} b_k \frac{d^k}{dt^k} \quad (b_M
eq 0)$$

- N: order of ODE
- input-output relation specified implicitly by ODE
- solve ODE for explicit input-output relation y = T(x)
- can take $f = L_x x$ as "input" when solving ODE
- ODE alone does not uniquely determine T
- need auxiliary conditions, typically initial conditions

Linear Constant-coefficient Differential Equations

Initial value problem (IVP)

$$L_{y}y = f$$

with initial conditions

$$y^{(k)}(t_0) = y_k, \quad k = 0, 1, \dots, N-1$$

- N-th order ODE needs N initial conditions
- Replace y and f by $\tilde{y} = \tau_{-t_0} y$ and $\tilde{f} = \tau_{-t_0} f$,

$$L_{\mathbf{y}}\tilde{\mathbf{y}} = \tilde{\mathbf{f}}$$

with initial conditions

$$\tilde{y}^{(k)}(0) = y_k, \quad k = 0, 1, \dots, N-1$$

Example. $L_y = \frac{d}{dt} + 2$, i.e.

$$y'(t) + 2y(t) = x(t)$$
 (1)

with input $x(t) = Ke^{3t}u(t)$ and initial condition $y(0) = y_0$.

• General solution is sum of particular solution $y_p(t)$ and homogeneous solution $y_h(t)$, i.e.

$$y(t) = y_p(t) + y_h(t)$$

• y_p satisfies (1); y_h (natural response) satisfies

$$y_h'(t) + 2y_h(t) = 0$$

• $y_h(t) = Ae^{\lambda t}$, where $\lambda + 2 = 0$; LHS obtained from L_y upon replacing $\frac{d}{dt}$ by λ . Thus $y_h(t) = Ae^{-2t}$.

Example (cont'd). $L_y = \frac{d}{dt} + 2$, i.e.

$$y'(t) + 2y(t) = x(t)$$
 (1)

with input $x(t) = Ke^{3t}u(t)$ and initial condition $y(0) = y_0$.

- For particular solution y_p, look for forced response,
 i.e. signal of same of as input.
- For t > 0, $x(t) = Ke^{3t}$, so assume $y_p(t) = Ye^{3t}$.

$$L_y y_p(t) = 5Ye^{3t} = x(t) = Ke^{3t} \implies y_p(t) = \frac{K}{5}e^{3t}$$

General solution

$$y(t) = \frac{K}{5}e^{3t} + Ae^{-2t}, \quad t > 0$$

Example (cont'd). $L_y = \frac{d}{dt} + 2$, i.e.

$$y'(t) + 2y(t) = x(t)$$
 (1)

with input $x(t) = Ke^{3t}u(t)$ and initial condition $y(0) = y_0$.

Use initial condition to determine A

$$y(0) = \frac{K}{5} + A = y_0 \implies A = y_0 - \frac{K}{5}$$

Complete solution to IVP

$$y(t) = \underbrace{\frac{K}{5}e^{3t}}_{ ext{forced response}} + \underbrace{\left(y_0 - \frac{K}{5}\right)e^{-2t}}_{ ext{natural response}}, \quad t > 0$$

• $y(t) = y_0 e^{-2t}$ for $t \le 0$, but typically interested in t > 0

Example (cont'd). $L_y = \frac{d}{dt} + 2$, i.e.

$$y'(t) + 2y(t) = x(t)$$
 (1)

with input $x(t) = Ke^{3t}u(t)$ and initial condition $y(0) = y_0$.

Complete solution to IVP

$$y(t) = \frac{K}{5}e^{3t} + \left(y_0 - \frac{K}{5}\right)e^{-2t}, \quad t > 0$$

- Is the system y = T(x) linear? No in general.
 - ▶ homogeneity fails if $y_0 \neq 0$, y not proportional to K.
- Rewrite solution as

$$y(t) = \underbrace{\frac{K}{5}(e^{3t} - e^{-2t})}_{\text{zero-state response}} + \underbrace{y_0 e^{-2t}}_{\text{zero-input response}}, \quad t > 0$$

Decomposition of Solutions (1)

Consider general linear ODE

$$L_{y}y = f$$

Particular solution

$$L_{y}y_{p}=f$$

Homogeneous solution

$$L_y y_h = 0$$

- Defined with respect to ODE alone!
- Nothing to do with initial conditions

Decomposition of Solutions (2)

Consider IVP with general linear ODE

$$\begin{cases}
L_{y}y = f \\
y^{(k)}(0) = y_{k}, \quad k = 0, 1, \dots, N - 1
\end{cases}$$
(2)

Zero-input response

$$\begin{cases} L_{y}y_{zi} = 0 \\ y_{zi}^{(k)}(0) = y_{k}, \quad k = 0, 1, \dots, N - 1 \end{cases}$$

Zero-state response

$$\begin{cases} L_{y}y_{zs} = f \\ y_{zs}^{(k)}(0) = 0, \quad k = 0, 1, \dots, N - 1 \end{cases}$$

Complete solution to (2) is $y = y_{zi} + y_{zs}$.

Linearity

Zero-state response linear in input

$$\begin{cases} L_{y}y_{zs,i} = f_{i} \\ y_{zs,i}^{(k)}(0) = 0 \end{cases} \implies \begin{cases} L_{y}(\sum_{i} c_{i}y_{zs,i}) = \sum_{i} c_{i}f_{i} \\ (\sum_{i} c_{i}y_{zs,i})^{(k)}(0) = 0 \end{cases}$$

Zero-input response linear in initial state

$$\begin{cases} L_{y}y_{zs,i} = 0 \\ y_{zs,i}^{(k)}(0) = y_{k,i} \end{cases} \implies \begin{cases} L_{y}(\sum_{i} c_{i}y_{zs,i}) = 0 \\ (\sum_{i} c_{i}y_{zs,i})^{(k)}(0) = \sum_{i} c_{i}y_{k,i} \end{cases}$$

- Complete response is linear in input iff zero-input response is zero
- Linearity requires zero initial state

Time-invariance

Zero initial state, i.e. $y^{(k)}(0) = 0$ for k = 0, ..., N-1 guarantees linearity but not time-invariance

Example. Consider

$$y'(t) + 2y(t) = x(t)$$

with initial condition y(0) = 0.

• If x(t) = u(t),

$$y(t) = \frac{1}{2}(1 - e^{-2t})u(t)$$

• If x(t) = u(t+1),

$$y(t) = \frac{1}{2}(1 - e^{-2t})u(t+1) + \frac{1}{2}(e^{-2} - 1)e^{-2t}u(-t-1)$$

Initial Rest

Often work with right-sided inputs, i.e. x(t) = 0 for $t < t_0$

stimulus turned on at some point

Initial rest condition

- If input x(t) = 0 for $t < t_0$, output y(t) = 0 for $t < t_0$
 - equivalent to causality for linear systems
- Use initial condition $y^{(k)}(t_0) = 0$ for k = 0, 1, ..., N 1, i.e. solve

$$\begin{cases} L_{y}y = f \\ y^{(k)}(t_{0}) = 0, \quad k = 0, 1, \dots, N - 1 \end{cases}$$

Linear constant-coefficient ODE with initial rest condition specifies causal and LTI system for right-sided inputs