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Initial Rest

Often work with right-sided inputs, i.e. x(t) = 0 for ¢ < 1,
e stimulus turned on at some point

Initial rest condition
e If input x(¢) = 0 for r < 1, output y(z) = 0 for ¢ < ¢

> output zero until changed by input (cf. Newton’s law)
» equivalent to causality for linear systems

e Adapt initial time 7, to input x: if x becomes nonzero at
to, use y¥(f) =0fork=0,1,...,N — 1, i.e. solve
Ly=f
y®(t) =0, k=0,1,...,N—1

Linear constant-coefficient ODE with initial rest condition
specifies causal and LTI system for right-sided inputs



Initial Rest

Example. Newton’s second law

mx" (1) = f(1)

Initial rest
e stays at originx =0
e zero velocity v = 0 (at rest!)

¢ stays so unless changed by external force
(Newton’s first law)

If force startsatr =0

® x(0)=0,v(0) =x(0)=0 f —> E E |

////////////////////////////////////////////////

If force Starts on at t = 1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
* x(1)=0,v(1)=x(1)=0




Initial Rest

Example. RLC circuit

d? 1d 1 d .
CEV(I) + Ed_tv(t) + ZV(Z) = Els(t)

Initial rest

* no stored energy in L, C 1

. 5
is(t - g
e zero voltage and current s(?) IR L Ic
If source onats=0 R 3L=—C v
e y(0)=0

° ic(0) =CvV(0)=0

If sourceonatr=1

°y(1)=0
°ic(l)=0CV(1)=0



Initial Rest

General IVP with first-order ODE
{y'o) +ay(t) = f(1)

y(to) = Yo

Solution

Yo = e /f

zero- mput response

zZero- state response

Initial rest: zero-input response always 0; take t) — —oo

0= [ oetar 8 50— uti-) [ sy ar



Initial Rest

Example.
Y1) +2y(t) = x(1)
with initial rest condition and input x(¢) = u(r + 1)

Response
y(t) = /t x(T)e 2" dr = /t u(t + 1)e 2"dr
Forr< —1
y(t) = / [ 0-¢2"dr =0
Forr> —1

t
1
y([) _ / efz(th)dT — 5(1 o 672(t+1))
-1



Non-initial Rest

Example.
(1) + 2y(1) = x(1)
with initial condition y(0) = 0 and input x(7) = u(r + 1)

Response
t t
y(t):/x(T)ez(tT)dT:/ u(t 4+ 1)e 20="dr
0 0

Fortr> —1

Fort < —1



Comparison of Initial Conditions

Example.
V() +2y(t) = u(t+1)

B [—

initial rest




Jump from 0_ to 0,

Need more care for initial condition with singular input

Example. What'’s impulse response of causal LTI system
described by y'(¢) + 2y(¢) = x(¢) with initial rest condition?

Method 1. Solve

W (t) 4 2h(t) = 6(1)
h(0) = 0

e Fort# 0, reduces to

H(t) + 2h(t) = 0
h(0) =0

e General solution i(t) = Ae™* fort £ 0

e h(0) =0 = h(r) =0 forr +# 0, something wrong f



Jump from 0_ to 0,

Need more care for initial condition with singular input

Example. What'’s impulse response of causal LTI system
described by y'(¢) + 2y(¢) = x(¢) with initial rest condition?

Method 2. Response

y(t) = /t x(T)e_2(’_T)d7' = h(t) = e u(r)

—00

Observation: /# discontinuous atr =0
e h(0_) =0, h(0,) = 1, due to singularity of § at r = 0
e Fort> 0,

t t
/’l(l) — / 5(7_)6—2(t—’r)d7_ — / 5(7_)6—2(t—fr)d7_

—00 0_



Jump from 0_ to 0,

IVP
{y’(t) tayn=f0 {y’(t) +ay() = £(1)
¥(0-) = yo ¥(0:+) = yo
Solution .
y(0) =y(0)e "+ | flmyetTdr
VS.

=y 0+ at / f t—T)dT
Initial rest: use y(0_) =

0+

¥(02) =y(0) + [ f(r)edr

0_

e if f(7) has no singularity at 7 = 0, y(0,) = y(0_) =0
e if f(7) has singularity at 7 = 0, y(0, ) may be different



Jump from 0_ to 0,
Example. Impulse response of y'(¢) + 2y(¢) = x(t) revisited.
W (t) 4+ 2h(t) = 4(1)
h(0-)=0
e Fort # 0, reduces to
W(t)+2h(t) =0, t>0 H(t)+2h(t) =0, t<0
h(0_)=0 h(0_)=0
e General solution h(f) = A e >u(t) + A_e *u(—1)

® Ay =h(0,),butused A, =A_ =h(0_) =0in first try i

t
h(t) = h(0 )= 7le “=Tdr

0+



Recipe for IVP with First-order ODE

IVP
{ﬂﬂ+@@=ﬂ0

y(to) = Yo
Solution for all cases

t
y(t) = y(to)e ") 4 / F(r)e ) gr
fo

e If t, means ., or t,_, be consistent in all places!
e Matters only if f has singularity at ¢,

Initial rest

= [ e ar




Higher-order ODE

N dk
Ly = Zakﬁy =f, (ay#0)
k=0

General solution

y= Yh + Yp
~—~—~

homogeneous solution  particular solution
Characteristic equation

N

Zak)\k =0

k=0

e LHS obtained from L by substituion £ — X; note % = (%)k

e N (complex) roots by Fundamental Theorem of Algebra
(root of multiplicity k counted as & roots)



Higher-order ODE

Homogeneous solution
e rdistinct characteristic roots \; of multiplicity m;,
i=1,2,...,r(note Y ., m; =N)
e Homogeneous solution takes form

r m;
k—1 A
i) =2 Awle
i=1 k=1
i.e. space of all homogeneous solutions has basis

MM e M M M
e When g, € R, Vk, complex roots o + jw appear in pairs
» in calculus, used ¢’ cos(wr) and e’ sin(wt)
> here, use ¢(7Hw) and e(7—w)t
> equivalent by Euler’s formula



Higher-order ODE

Particular solution
¢ Look for forced response of same form as input f

f Yp
p

#, 0 not characteristic root > B
k=0
)4

, 0 characteristic root of multiplicity m > Bt
k=0

e“, a not characteristic root Be

eMt, \; characteristic root of multiplicity m; Bt

Note cos(wt) = % (€' + e") and sin(wt) = 2% (&' — e ") are
special cases



IVP with Second-order ODE

Example. Second-order system
Y43y +2y=x

at initial rest. Let x(7) = e "u(t).
e Characteristic equation

MNA3A+2=0 = N\ =—-1,\=-2

e Homogeneous solution y, (1) = Aje™ + Aye™
For ¢ > 0, particular solution y,(r) = Bte™"

Yy () 4+ 3y,(t) +2y,(t) =Be' = x(t) =" = B=1

General solution y(7) = te™ + Aje™ + Aye™
Initial rest y(0) =y (0) =0 = y(f) =te '+ e 2 — e



Systems of First-order ODEs
Consider N-th order ODE with ay = 1 (WLOG)
YW +ay yNV + o+ ay +agy = f (1)
Let Yk:y<k>,k=0,1,...,1v—1
oY =Y fork=0,1,... N—-2
° Yy, :y(N) =f- szv ary ®) =f- Zk 0 @Yk
(1) equivalent to

Y =AY + bf
where
Yo 0 1 0 0o ... 0
Y, 0 0 1 o ... 0
Y = : A= : : : : . : b=
Yy_oo 0 0 0 o ... 1

YN_1 —ay —ay —a; —az ... —dy—i



Systems of First-order ODEs

Initial value problem (IVP)

Y fay yNTY -t ay agy = f @)
y(k)(t()):yk, k:O,l,...,N—l
equivalent to
Y =AY + bf @)
Y(to) =Y

where YO = (y(),yl, ... ,yN_l)T.
Solution to (3)
Y(t)= N0y, / f(r)er"bdr

zero- mput response

Zero- state response

matrix exponential ¢ £ > % =1+At+ (A0 + ...



Systems of First-order ODEs

Solution to (2)

t
y(t) =cY(t) = ey, +/f(7')ceA(t_T)de
N—— fo

zero-input response . -~ <

zero-state response

where ¢ = (1,0,0,...,0)

Initial rest

y(t) = /t f(7)ce* " bdr
M

e Recall f = Zbkx(") linear in x
k=0

e y = T(x) causal LTI system; if f = x, h(t) = ce*bu(t)



IVP with Second-order ODE Revisited

Example. Let x(¢) = e 'u(z). Consider IVP

Y43y +2y=x
¥(0_) = 0,y (0-) =y

e LetY = (y,y).
Y =AY + bx

0 1 0
= (5 5) 0= ()
e Fort> 0,

y(t) = (1,0)e* (y") + /0 i x(7)(1,0)eM =) ((1)) dr

Y1

where

¢ Need to compute e



IVP with Second-order ODE Revisited
Example (cont'd). Let x(¢) = e~'u(z). Consider IVP

Y43y +2y=x
¥(0-) = y0,y'(0-) =y,

¢ Diagonalize' A

e Al AT

e Exponentiate At
f oA (1 1\ et 0 2 1
eA_Z;P n! P _(—1 —2J\0 e?)\-1 -1

"Not always possible; may need Jordan canonical form in general.




IVP with Second-order ODE Revisited
Example (cont'd). Let x(¢) = e~'u(z). Consider IVP

y//+3y/+2y:x
y(0-) =0,y (0-) =

e Complete response

0 = v+ )™ = G+ e + [ x(r)gle —ryar

where
2(t) = (1,0)¢" (?) et e

e Zero-state response

t
Vus(t) = / e Tlem ) — e dr = te T 4 e — ¢!
0



IVP with Second-order ODE Revisited

Example. Consider second-order system at initial rest
Y'+3y +2y=x

* Response



Duhamel’s Principle
Solution to vector IVP with first-order ODE

YO = MY () /f Gt - 1)d

zero- mput response -

zero- state response

® G(t) = ¢Mb is homogeneous solution to G’ = AG with
initial condition G(0) = b = (0,...,0,1)"

Solution to scalar IVP with higher-order ODE
() = e ¥() /f (t—7)d

zero- mput response

zero- state response

e g(1) = ce®b = ¢G(r) is homogeneous
solution to Lg = 0 with initial condition
G(0) = b;recall G = (g, &', ¢",...,e™ )T,

Jean-Marie Duhamel
(from Wikipedia)



Impulse Response of Higher-order ODE

Impulse response of 1D system at initial rest

ayh™ +ay_ BN Y gl agh = 6
90 )=0, k=0,1,...,N—1

By Duhamel’s principle
h(t) = ce™h(0_) + /t o(7)g(t — 7)dt = g(t)u(r)

where g satisfies

ang™ +ay 18"V 4 arg +ag =0
gW(0)=0,k=0,1,....N=2; g™D(0) =1/ay



Second Recipe for IVP with Higher-order ODE
VP N
> ayW () = 1)
k=0
y(k)(tO):)’ka k:07177N_1

1. Find homogeneous solution y,

2. Find zero-input response y,;, i.e. homogeneous solution
satisfying initial condition y% (1) = y¢, k= 0,1,...,N — 1

3. Find homogeneous solution g satisfying initial condition
g®(0)=0,0<k<N-—2and g™ 1(0) = 1/ay

t
4. Find zero-state response y () = /f(T)g(t —7)dT
fo

5. Complete solution y = y,; + y,



Second Recipe for IVP with Higher-order ODE

Example. Let x(¢) = e 'u(z). Consider IVP

Y'+3y +2y=x
¥(0-) = 0,5 (0-) =

e Homogeneous solution y, (1) = Aje™ + Aye
e Zero-input response

y(0-) =A1+ A, =y N A =2y+n
Y(0_) = —A; — 24, = y; Ay = —(yo+y1)

SO
yi(t) = (2y0 +y1)e™ — (vo + y1)e ™



Second Recipe for IVP with Higher-order ODE

Example (contd). Let x(¢) = e"u(r). Consider IVP
Y'+3y +2y=x
¥(0-) = 0,5 (0-) =y
* Homogeneous solution y, (1) = Aje™ + Aye
¢ Homogeneous solution g
g(0>:A1+A2:O A1:1
—
g0)=-A-24=1 Ay =—1

SO
gly=e'—e*

e Zero-state response

t
Yus(2) = / e Tlem ) — e dr = te T 4 e — ¢!
0



Second Recipe for IVP with Higher-order ODE

Example. Find impulse response of following LTI system

Y 3y +2y=x
e By previous example,

h(t) = (e — e )u(t)
¢ Alternatively, can find step response

s+ 35 +2s =u
1 1
s(1) = (5 + 56_2’ — e_t> u(r)

Then use

h(t) = 5'(1)



Second Recipe for IVP with Higher-order ODE
Example. Consider LTI system
Y +3yY +2y=x+x
Want to find impulse response, i.e. solve
W +30 +2h =06 +06

By previous example, impulse response of following LTI
system
yl/_|_3y/+2y:x

is
(1) = (™" — e )u(t)
Then

h=nh *(8+06)=h +h = h(t)=eu(t)
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