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Initial Rest
Often work with right-sided inputs, i.e. x(t) = 0 for t < t0

• stimulus turned on at some point

Initial rest condition
• If input x(t) = 0 for t < t0, output y(t) = 0 for t < t0

I output zero until changed by input (cf. Newton’s law)
I equivalent to causality for linear systems

• Adapt initial time t0 to input x: if x becomes nonzero at
t0, use y(k)(t0) = 0 for k = 0, 1, . . . ,N − 1, i.e. solve{

Lyy = f
y(k)(t0) = 0, k = 0, 1, . . . ,N − 1

Linear constant-coefficient ODE with initial rest condition
specifies causal and LTI system for right-sided inputs
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Initial Rest
Example. Newton’s second law

mx′′(t) = f (t)

f

Initial rest
• stays at origin x = 0
• zero velocity v = 0 (at rest!)
• stays so unless changed by external force

(Newton’s first law)

If force starts at t = 0
• x(0) = 0, v(0) = x′(0) = 0

If force starts on at t = 1
• x(1) = 0, v(1) = x′(1) = 0
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Initial Rest
Example. RLC circuit

C
d2

dt2 v(t) +
1
R

d
dt

v(t) +
1
L

v(t) =
d
dt

iS(t)

R

iS(t)

R L C

+

−

v(t)

iR iL iC

Initial rest
• no stored energy in L, C
• zero voltage and current

If source on at t = 0
• v(0) = 0
• iC(0) = Cv′(0) = 0

If source on at t = 1
• v(1) = 0
• iC(1) = Cv′(1) = 0
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Initial Rest

General IVP with first-order ODE{
y′(t) + ay(t) = f (t)
y(t0) = y0

Solution

y(t) = y0e−a(t−t0)︸ ︷︷ ︸
zero-input response

+

∫ t

t0

f (τ)e−a(t−τ)dτ︸ ︷︷ ︸
zero-state response

Initial rest: zero-input response always 0; take t0 → −∞

y(t) =

∫ t

−∞
f (τ)e−a(t−τ)dτ

f=f ·τt0 u
====⇒ y(t) = u(t−t0)

∫ t

t0

f (τ)e−a(t−τ)dτ
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Initial Rest

Example.
y′(t) + 2y(t) = x(t)

with initial rest condition and input x(t) = u(t + 1)

Response

y(t) =

∫ t

−∞
x(τ)e−2(t−τ)dτ =

∫ t

−∞
u(τ + 1)e−2(t−τ)dτ

For t < −1

y(t) =

∫ t

−∞
0 · e−2(t−τ)dτ = 0

For t > −1

y(t) =

∫ t

−1
e−2(t−τ)dτ =

1
2

(1− e−2(t+1))



7/31

Non-initial Rest

Example.
y′(t) + 2y(t) = x(t)

with initial condition y(0) = 0 and input x(t) = u(t + 1)

Response

y(t) =

∫ t

0
x(τ)e−2(t−τ)dτ =

∫ t

0
u(τ + 1)e−2(t−τ)dτ

For t > −1

y(t) =

∫ t

0
e−2(t−τ)dτ =

1
2

(1− e−2t)

For t < −1

y(t) =

∫ −1

0
e−2(t−τ)dτ =

1
2

(e−2 − 1)e−2t
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Comparison of Initial Conditions
Example.

y′(t) + 2y(t) = u(t + 1)

t

x

0−1

1

t

y

0−1

initial rest1
2

t

y

0−1

y(0) = 0
1
2

1
2(1− e2)
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Jump from 0− to 0+

Need more care for initial condition with singular input

Example. What’s impulse response of causal LTI system
described by y′(t) + 2y(t) = x(t) with initial rest condition?

Method 1. Solve {
h′(t) + 2h(t) = δ(t)
h(0) = 0

• For t 6= 0, reduces to{
h′(t) + 2h(t) = 0
h(0) = 0

• General solution h(t) = Ae−2t for t 6= 0

• h(0) = 0 =⇒ h(t) = 0 for t 6= 0, something wrongE
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Jump from 0− to 0+

Need more care for initial condition with singular input

Example. What’s impulse response of causal LTI system
described by y′(t) + 2y(t) = x(t) with initial rest condition?

Method 2. Response

y(t) =

∫ t

−∞
x(τ)e−2(t−τ)dτ =⇒ h(t) = e−2tu(t)

Observation: h discontinuous at t = 0
• h(0−) = 0, h(0+) = 1, due to singularity of δ at t = 0
• For t > 0,

h(t) =

∫ t

−∞
δ(τ)e−2(t−τ)dτ =

∫ t

0−
δ(τ)e−2(t−τ)dτ
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Jump from 0− to 0+

IVP {
y′(t) + ay(t) = f (t)
y(0−) = y0

vs.

{
y′(t) + ay(t) = f (t)
y(0+) = y0

Solution
y(t) = y(0−)e−at +

∫ t

0−
f (τ)e−a(t−τ)dτ

vs.

y(t) = y(0+)e−at +

∫ t

0+
f (τ)e−a(t−τ)dτ

Initial rest: use y(0−) = 0

y(0+) = y(0−) +

∫ 0+

0−
f (τ)eaτdτ

• if f (τ) has no singularity at τ = 0, y(0+) = y(0−) = 0
• if f (τ) has singularity at τ = 0, y(0+) may be different
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Jump from 0− to 0+

Example. Impulse response of y′(t) + 2y(t) = x(t) revisited.{
h′(t) + 2h(t) = δ(t)
h(0−) = 0

• For t 6= 0, reduces to{
h′(t) + 2h(t) = 0, t > 0
h(0−) = 0

{
h′(t) + 2h(t) = 0, t < 0
h(0−) = 0

• General solution h(t) = A+e−2tu(t) + A−e−2tu(−t)

• A+ = h(0+), but used A+ = A− = h(0−) = 0 in first try E
h(t) = h(0−)e−at +

∫ t

0+
δ(τ)e−a(t−τ)dτ
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Recipe for IVP with First-order ODE
IVP {

y′(t) + ay(t) = f (t)
y(t0) = y0

Solution for all cases

y(t) = y(t0)e−a(t−t0) +

∫ t

t0

f (τ)e−a(t−τ)dτ

• If t0 means t0+ or t0−, be consistent in all places!
• Matters only if f has singularity at t0

Initial rest

y(t) =

∫ t

−∞
f (τ)e−a(t−τ)dτ
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Higher-order ODE

Ly =
N∑

k=0

ak
dk

dtk y = f , (aN 6= 0)

General solution

y = yh︸︷︷︸
homogeneous solution

+ yp︸︷︷︸
particular solution

Characteristic equation

N∑
k=0

akλ
k = 0

• LHS obtained from L by substituion d
dt → λ; note dk

dtk =
(

d
dt

)k

• N (complex) roots by Fundamental Theorem of Algebra
(root of multiplicity k counted as k roots)
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Higher-order ODE
Homogeneous solution

• r distinct characteristic roots λi of multiplicity mi,
i = 1, 2, . . . , r (note

∑r
i=1 mi = N)

• Homogeneous solution takes form

yh(t) =
r∑

i=1

mi∑
k=1

Aiktk−1eλit

i.e. space of all homogeneous solutions has basis

eλ1t, teλ1t, . . . , tm1−1eλ1t; . . . ; eλrt, teλrt, . . . , tmr−1eλrt.

• When ak ∈ R, ∀k, complex roots σ ± jω appear in pairs
I in calculus, used eσt cos(ωt) and eσt sin(ωt)
I here, use e(σ+jω)t and e(σ−jω)t

I equivalent by Euler’s formula



16/31

Higher-order ODE
Particular solution

• Look for forced response of same form as input f

f yp

tp, 0 not characteristic root
p∑

k=0

Bktk

tp, 0 characteristic root of multiplicity m
p∑

k=0

Bktm+k

eat, a not characteristic root Beat

eλit, λi characteristic root of multiplicity mi Btmieλit

Note cos(ωt) = 1
2 (ejωt + e−jωt) and sin(ωt) = 1

2j (ejωt − e−jωt) are
special cases
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IVP with Second-order ODE

Example. Second-order system

y′′ + 3y′ + 2y = x

at initial rest. Let x(t) = e−tu(t).

• Characteristic equation

λ2 + 3λ+ 2 = 0 =⇒ λ1 = −1, λ2 = −2

• Homogeneous solution yh(t) = A1e−t + A2e−2t

• For t > 0, particular solution yp(t) = Bte−t

y′′p(t) + 3y′p(t) + 2yp(t) = Be−t = x(t) = e−t =⇒ B = 1

• General solution y(t) = te−t + A1e−t + A2e−2t

• Initial rest y(0) = y′(0) = 0 =⇒ y(t) = te−t + e−2t − e−t
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Systems of First-order ODEs
Consider N-th order ODE with aN = 1 (WLOG)

y(N) + aN−1y(N−1) + · · ·+ a1y′ + a0y = f (1)

Let Yk = y(k), k = 0, 1, . . . ,N − 1
• Y ′k = Yk+1 for k = 0, 1, . . . ,N − 2
• Y ′N−1 = y(N) = f −

∑N−1
k=0 aky(k) = f −

∑N−1
k=0 akYk

(1) equivalent to
Y ′ = AY + bf

where

Y =


Y0

Y1
...

YN−2

YN−1

 ,A =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

... . . . ...
0 0 0 0 . . . 1
−a0 −a1 −a2 −a3 . . . −aN−1

 , b =


0
0
...
0
1
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Systems of First-order ODEs
Initial value problem (IVP){

y(N) + aN−1y(N−1) + · · ·+ a1y′ + a0y = f
y(k)(t0) = yk, k = 0, 1, . . . ,N − 1

(2)

equivalent to {
Y ′ = AY + bf
Y(t0) = Y0

(3)

where Y0 = (y0, y1, . . . , yN−1)
T .

Solution to (3)
Y(t) = eA(t−t0)Y0︸ ︷︷ ︸

zero-input response

+

∫ t

t0

f (τ)eA(t−τ)bdτ︸ ︷︷ ︸
zero-state response

matrix exponential eAt ,
∞∑

n=0

(At)n

n! = I + At + 1
2(At)2 + . . .
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Systems of First-order ODEs

Solution to (2)

y(t) = cY(t) = ceA(t−t0)Y0︸ ︷︷ ︸
zero-input response

+

∫ t

t0

f (τ)ceA(t−τ)bdτ︸ ︷︷ ︸
zero-state response

where c = (1, 0, 0, . . . , 0)

Initial rest

y(t) =

∫ t

−∞
f (τ)ceA(t−τ)bdτ

• Recall f =
M∑

k=0

bkx(k) linear in x

• y = T(x) causal LTI system; if f = x, h(t) = ceAtbu(t)
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IVP with Second-order ODE Revisited

Example. Let x(t) = e−tu(t). Consider IVP{
y′′ + 3y′ + 2y = x
y(0−) = y0, y′(0−) = y1

• Let Y = (y, y′)T .
Y ′ = AY + bx

where

A =

(
0 1
−2 −3

)
, b =

(
0
1

)
• For t > 0,

y(t) = (1, 0)eAt

(
y0

y1

)
+

∫ t

0−
x(τ)(1, 0)eA(t−τ)

(
0
1

)
dτ

• Need to compute eAt
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IVP with Second-order ODE Revisited

Example (cont’d). Let x(t) = e−tu(t). Consider IVP{
y′′ + 3y′ + 2y = x
y(0−) = y0, y′(0−) = y1

• Diagonalize1 A

A = PΛP−1 =

(
1 1
−1 −2

)(
−1 0
0 −2

)(
2 1
−1 −1

)
• Exponentiate At

eAt =
∞∑

n=0

P
(Λt)n

n!
P−1 =

(
1 1
−1 −2

)(
e−t 0
0 e−2t

)(
2 1
−1 −1

)
1Not always possible; may need Jordan canonical form in general.
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IVP with Second-order ODE Revisited

Example (cont’d). Let x(t) = e−tu(t). Consider IVP{
y′′ + 3y′ + 2y = x
y(0−) = y0, y′(0−) = y1

• Complete response

y(t) = (2y0 + y1)e−t − (y0 + y1)e−2t +

∫ t

0−
x(τ)g(t − τ)dτ

where

g(t) = (1, 0)eAt

(
0
1

)
= e−t − e−2t

• Zero-state response

yzs(t) =

∫ t

0
e−τ [e−(t−τ) − e−2(t−τ)]dτ = te−t + e−2t − e−t
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IVP with Second-order ODE Revisited

Example. Consider second-order system at initial rest

y′′ + 3y′ + 2y = x

• Response

y(t) =

∫ t

−∞
x(τ)h(t − τ)dτ = (x ∗ h)(t)

where
h(t) = (e−t − e−2t)u(t)

• If x(t) = e−tu(t),

y(t) =

∫ t

−∞
e−τu(τ)[e−(t−τ) − e−2(t−τ)]dτ

= (te−t + e−2t − e−t)u(t)



25/31

Duhamel’s Principle
Solution to vector IVP with first-order ODE

Y(t) = eA(t−t0)Y(t0)︸ ︷︷ ︸
zero-input response

+

∫ t

t0

f (τ)G(t − τ)dτ︸ ︷︷ ︸
zero-state response

• G(t) = eAtb is homogeneous solution to G′ = AG with
initial condition G(0) = b = (0, . . . , 0, 1)T

Solution to scalar IVP with higher-order ODE

y(t) = ceA(t−t0)Y(t0)︸ ︷︷ ︸
zero-input response

+

∫ t

t0

f (τ)g(t − τ)dτ︸ ︷︷ ︸
zero-state response

• g(t) = ceAtb = cG(t) is homogeneous
solution to Lg = 0 with initial condition
G(0) = b; recall G = (g, g′, g′′, . . . , g(N−1))T .

Jean-Marie Duhamel
(from Wikipedia)
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Impulse Response of Higher-order ODE

Impulse response of 1D system at initial rest{
aNh(N) + aN−1h(N−1) + · · ·+ a1h′ + a0h = δ

h(k)(0−) = 0, k = 0, 1, . . . ,N − 1

By Duhamel’s principle

h(t) = ceAth(0−) +

∫ t

0−
δ(τ)g(t − τ)dτ = g(t)u(t)

where g satisfies{
aNg(N) + aN−1g(N−1) + · · ·+ a1g′ + a0g = 0
g(k)(0) = 0, k = 0, 1, . . . ,N − 2; g(N−1)(0) = 1/aN
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Second Recipe for IVP with Higher-order ODE
IVP 

N∑
k=0

aky(k)(t) = f (t)

y(k)(t0) = yk, k = 0, 1, . . . ,N − 1

1. Find homogeneous solution yh

2. Find zero-input response yzi, i.e. homogeneous solution
satisfying initial condition y(k)zi (t0) = yk, k = 0, 1, . . . ,N − 1

3. Find homogeneous solution g satisfying initial condition
g(k)(0) = 0, 0 ≤ k ≤ N − 2 and g(N−1)(0) = 1/aN

4. Find zero-state response yzs(t) =

∫ t

t0

f (τ)g(t − τ)dτ

5. Complete solution y = yzi + yzs
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Second Recipe for IVP with Higher-order ODE

Example. Let x(t) = e−tu(t). Consider IVP{
y′′ + 3y′ + 2y = x
y(0−) = y0, y′(0−) = y1

• Homogeneous solution yh(t) = A1e−t + A2e−2t

• Zero-input response{
y(0−) = A1 + A2 = y0

y′(0−) = −A1 − 2A2 = y1
=⇒

{
A1 = 2y0 + y1

A2 = −(y0 + y1)

so
yzi(t) = (2y0 + y1)e−t − (y0 + y1)e−2t
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Second Recipe for IVP with Higher-order ODE

Example (cont’d). Let x(t) = e−tu(t). Consider IVP{
y′′ + 3y′ + 2y = x
y(0−) = y0, y′(0−) = y1

• Homogeneous solution yh(t) = A1e−t + A2e−2t

• Homogeneous solution g{
g(0) = A1 + A2 = 0
g′(0) = −A1 − 2A2 = 1

=⇒

{
A1 = 1
A2 = −1

so
g(t) = e−t − e−2t

• Zero-state response

yzs(t) =

∫ t

0
e−τ [e−(t−τ) − e−2(t−τ)]dτ = te−t + e−2t − e−t
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Second Recipe for IVP with Higher-order ODE

Example. Find impulse response of following LTI system

y′′ + 3y′ + 2y = x

• By previous example,

h(t) = (e−t − e−2t)u(t)

• Alternatively, can find step response

s′′ + 3s′ + 2s = u

s(t) =

(
1
2

+
1
2

e−2t − e−t

)
u(t)

Then use
h(t) = s′(t)
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Second Recipe for IVP with Higher-order ODE
Example. Consider LTI system

y′′ + 3y′ + 2y = x′ + x

Want to find impulse response, i.e. solve

h′′ + 3h′ + 2h = δ′ + δ

By previous example, impulse response of following LTI
system

y′′ + 3y′ + 2y = x

is
h1(t) = (e−t − e−2t)u(t)

Then

h = h1 ∗ (δ′ + δ) = h1 + h′1 =⇒ h(t) = e−2tu(t)
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