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Linear Constant-coefficient Difference Equations
Example. Balance of bank account
y[n] = (1 +r)yln — 1] + x[n] rinterest rate
Example. Discretization of differential equation

y(nT) —y((n = 1)T)

Y(t) =x(t) = T

~ x(nT)
Let x[n] = x(nT), y[n] = y(nT). Discretized equation

y[n] = y[n — 1] + Tx[n] (Euler’s method)
Example. Exponential smoothing

y[a] = (1 —a)y[n — 1] + ax[n], « € (0, 1) smoothing factor



Linear Constant-coefficient Difference Equations

System described by linear constant-coefficient difference
equation

WE

ayln — k] = Z bix[n — k|

~
|

0
where ay # 0, ay # 0

also called recursive equation or recursion

N: order of difference equation

focus on M; = 0 for causal systems

input-output relation specified implicitly

solve difference equation for explicit input-output relation
difference equation alone does not uniquely determine T
need auxiliary conditions, typically initial conditions



Linear Constant-coefficient Differential Equations

Initial value problem (IVP)

N
Ly=f, whereL =Y a
k=0

with initial conditions

ikl =y, k=no—1,n0—2,...,n0—N

N-th order difference equation needs N initial conditions
® may use any N consecutive values as “initial” values
oftenny =0

typically f[n] = 0 for n < ny



Initial Rest

e If input x[n] = 0 for n < ny, output y[n] = 0 for n < ny

> output zero until changed by input
» equivalent to causality for linear systems

e Adapt initial time n, to input x: if x becomes nonzero
at ng, use y[nop — k| =0fork=1,2,...,N, i.e. solve

Ly=f
y[k]:(), k:no—l,l’lo—z,...,l’lo—N

¢ Linear constant-coefficient difference equation with
initial rest condition specifies causal and LTI system
for right-sided inputs



lterative Method

lteratively compute y[n] from y[n — 1],...,y[n — N] and x
1 M N
y[n] = a_o (Z bix[n — k] — Zak)’[" - k])
k=0 k=1

Special case N =0
M by
= (2 )i
k=0
e explicit function of present and past input values

® nonrecursive equation, no need for auxiliary conditions
e causal LTI system with finite impulse response (FIR)

hin] = XM: (2—’;) Sn — i

k=0



lterative Method
Example. Consider exponential smoothing
yln] — ay[n — 1] = x[n]
with y[—1] = y_;.
e Forn > 0, go forward in time
y[0] = ay[=1] + x[0] = ay_; + x[0]

+ x[1] = @’y_; + ax[0] + x[1]
+x[2] = @’y + a®x[0] + ax[1] + x[2]

v = ayln — 1] +xln] = a""y_ + Y a" Tl



lterative Method

Example (cont'd). Consider exponential smoothing

y[n] — ay[n — 1] = x[n]
with y[—1] = y_;.
e Forn > 0, go forward in time

yln] = ayln — 1]+ x[n]
ayln — 1] = a*y[n — 2] + ax[n — 1]

a"'y[1] = a"y[0] + a" 'x[1]
a"y[0] = a"*'y[—1] + a"x[0]

Summing up all equations, y[n Hly |+ Za” -k



lterative Method
Example (cont'd). Consider exponential smoothing
yln] — ay[n — 1] = x[n]
with y[—1] = y_;.
® n < —1, go backward in time
=2 =alyl-1] —a K- =aly — a1

—1

y=3] = a -2 —a -2 = a s = 3 a K

k=—2



lterative Method

Example (cont'd). Consider difference equation

yln] = ayln — 1] = x[n]

with y[—1] = y_;.
* Response
sl = @y (Z > )
zero-in = k=n+1
put response P

-

zero-state response
where by convention » 3,2 - =0 if my < m,
e |nitial rest: causal LTI system with impulse response

» infinite impulse response (lIR) system



Decomposition of Solutions (1)
Linear inhomogeneous difference equation
N
Ly=f, whereL=> &
k=0

Particular solution
Lyp =f

Homogeneous solution (natural response)

Lyh:()

General solution
Y= + Y



Homogeneous Solution

Characteristic equation

E ClkOé =

e Obtained from Ly, = 0 upon substitution of y,[n] = o

e rdistinct characteristic roots «; of multiplicity m;,
i=1,2,...,r;note > m=N
e Homogeneous solution takes form

yh ZZAtknk : :l

i=1 k=1
i.e. space of all homogeneous solutions has basis

n n mi—1 _n .o.n n mi—1 _n
o, nog, ..., N Q.. 0, n0,, ... 0 Q..



Particular Solution

¢ ook for forced response of same form as input f

f Yp
P
n”, 1 not characteristic root ZBkn"
k=0
p
n”, 1 characteristic root of multiplicity m > Bt
k=0
o", o not characteristic root Ba"
o, oy characteristic root of multiplicity m; Bn™Mia!

Note cos(wn) = % (¢“" + e} and sin(wn) = zij (e¥n — emwm)
are special cases



Example
Fibonacci sequence
yln] =yln = 1] =yl =2 =0
y[]=y[2] =1

e Characteristic equation

5 14++/5

04—04—1:0:>Oél722 >

e Homogeneous solution
y[n] = Ao + Aoy

e Determine A;, A, from initial conditions

y[1] = Aja; + Aoy = 1 _ A=
2] = A0} + Ak =1 A=



Example
Solve difference equation
yln] +2yln = 1] = x[n] — x[n — 1]
with input x[n] = n* and initial condition y[—1] = —1
e Characteristicequatona+2=0 = a= -2
e Homogeneous solution y,[n] = A(—2)"
e Particular solution

» findf[n] =x[n] —xn—1]=n*-(n—-1)?=2n-1
» look for solution of form y,[n] = Bin + By

ypln] +2yp[n — 1] =3Bin + 3By — 2By = fn] =2n— 1

» compare coefficients

3B =2 B =3
e |
3By — 2By = —1 By=§



Example (cont'd)
Solve difference equation
Y] +2y[n — 1] = x[n] — x[n — 1]
with input x[n] = n* and initial condition y[—1] = —1

e General solution

y[n] = zn + 1 +A(=2)"

3 9
e Determine A from initial condition
2 1 8
1] =Z(-1)+=+A(-2)"'=-1 A=—
Y1 = S(=1) + 5 +A(-2) — A=
e Complete solution
2 1
= = — —(=2)"
= Sty + 52
N—— ——

forced response  natural response



Decomposition of Solutions (2)
VP

Ly=f
)’[k]:)’lm k:no_l,n0_2,...,l’l0—N

Zero-input response: linear in initial state

Ly; =0
yzi[k]:ylw kz”o—l,no—z,...,no—N

Zero-state response: linear in input

Lyzs:f
vislk] =0, k=no—1,n0—2,...,n0 — N

Complete solution y = y.; + y,



Zero-state Response

Ly, =f

vislk] =0, k=no—1,n0—2,...,n0 — N
Focus on case where f[n| = 0 for n < ny — initial rest
Causal and LTI system with output

vus[n] = (f % h)[n] = uln — ngy Zf

where & is impulse response of Ly = x, i.e.

Lh=6 n>0
Wk =0, k=—1,-2,...,—N

or equivalently

Lh=0, n>1
h[k]:o, k:—17—2,71—N’h[0]:1/a0



Example
Solve difference equation
y[n] + 2y[n — 1] = x[n] — x[n — 1]

with input x[n] = n*u[n] and initial condition y[—1] = —1

e Homogeneous solution y,[n] = A(—2)"

e Zero-input response, i.e. homogeneous solution with
yzi[_l] =-1

A=) =1 = A=2 = y,=2(-2)"

¢ Impulse response of y[n| + 2y[n — 1] = x[n, i.e.
solution of following IVP

{hm h[n — 1] = 8[n]
H[—1]



Example (cont'd)
Solve difference equation
yln] +2y[n — 1] = x[n] — x[n — 1]
with input x[n] = nu[n] and initial condition y[—1] = —1

e Homogeneous solution y,[n] = A(—2)"
¢ Impulse response

hin| +2hln — 1] =4dn], n>0
h[—1] =0

> by iterative method h[0] = 0[0] — 2h[—1] =1

> now solve



Example (cont'd)
Solve difference equation
yln] +2y[n — 1] = x[n] — x[n — 1]
with input x[n] = n?u[n] and initial condition y[—1] = —1
e Impulse response h[n| = (—2)"uln]
® RHS f[n] = x[n] —x[n — 1] = 2n — 1)u[n — 1]
e Zero-state response forn > 1

yaln] = (f * h)[n Zhn— k] — x[k — 1])

¢ Total response

31 = yulal 3l = 202"+ 3+ 5 = 5(-2) [ ala-1



Systems of First-order Difference Equations
Consider N-th order difference equation with ¢y = 1
yt+amy+--+av_1Tv_1y +ayvy = f
LetYk:Tky,kZO,l,...,N—l
® Y, =71Yi_ for k = 1,2,...,N—1
e Yo=y=f— Zgzl aTy =f — Zgzl T Y-y
Equivalent vector equation

Y = AnY + bf
where
YQ —a, —dp —asz ... —ay—-1 —day
Y) 1 0 0o ... 0 0
Yn_o '

Yy_i 0 0 0o ... 1 0



Systems of First-order Difference Equations

Initial value problem (IVP)

y + alle + ct + aN*lTNfly + aNTNy :f (1)
y[k]:ykv k:no—l,no—Z,...,no—N
equivalent to
Y[I’l() - 1] = Yn()fl

where Yno—l = (yn0—17y"0—27 Ce 7yn0—N>T-

Solution to (2)

no—1
Y[ ] A" no+1Yn0 1+ (Z Z > A kbf

zero- mput response =0 k=nl

~~
zero-state response



Systems of First-order Difference Equations

Solution to (1)

n no—1
yn] = cY(t) = cA" ™y, )+ ( E — E )f[k]cA”kb
————
zero-input response k=no  k=n+1 y

~~
zero-state response

where ¢ = (1,0,0,...,0)

Initial rest

W)= 3 fleA b

k=—o00

M
* Recallf =) hymxlinear in x
k=0
e y = T(x) causal LTI system; if f = x, h[n] = cA"bu[n]
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Block Diagram for y|n| + ay[n — 1] = bx|n|

Rewrite input-output relation as

yln] = —ay[n — 1] + bx[n]

Basic elements
e adder
e scalar multiplication
e unitdelay D = 7



Block Diagram for y'(¢) 4+ ay(t) = bx(t)

Assuming y(—oo) = 0, rewrite input-output relation as

t

¥(t) = / (bx(r) — ay(r))dr

x<r>—”(‘+> = [ e

Basic elements
e adder
e scalar multiplication
e integrator (preferred over differentiator for robustness)
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3. Singularity Functions



Unit Impulse Revisited

Recall unit impulse

d(t) = lim ra(z)

A—0

where rAll) = ut+ %) ;u(t - 2)

Idealization for quantities of very large

magnitude but very small duration (e.g. impulse
force) or spatial span (e.g. point mass/charge)

Recall unit impulse response
h=T(5) = ilino T(ra)

Idealization: pulse so short that system response only
depends on area, but not on shape and duration



Unit Impulse Revisited

For systems described by linear constant-coefficient ODE
at initial rest

W(t) = /R *(7)h(t — )dr

Response to ra

A2
T(ra)](f) = /R ra(r)h(t = )7 = /_ Wt — 7)dr

Indeed
ili[%) T(ra)=nh

at points of continuity of 2. Same as

/5 h(t — 7)dt = h(t)



Unit Impulse Revisited
Recall second definition of §

Let C be set of functions continuous at 0. Above defines
mapping

6:C—R
¢ — ¢(0)

Also denoted by §[¢] = ¢(0). J is linear functional on C

dlargr + ard] = a1901(0) + a202(0) = a19[¢1] + a20(¢s]

called generalized function or distribution



Unit Doublet
What'’s impulse response of differentiator?
h() = &'(1)
Expect output y of differentiator for input x to satisfy
y=x*xh=x
or
/ ()5t — 7)dr = ¥(1)
at points where x ii differentiable.
First definition of u; = ¢’

xx0 =x




Unit Doublet

Second definition. Since § £ lima_ 7, define

A .
§ = lim r)y
A—0

meaning

"(De(1) = lim [ ra(1)p(1)dr

A—0 R

e




Unit Doublet

Third definition. For ¢ continuously differentiable at 0
0'[¢] = —o[¢']
Intuition: integration by parts should work
[rwetwa=iwon)|”_~ [ oo

If » has compact support, i.e. vanishes outside finite
interval

/R £ (06(0)d = - / ()6 (1)di
Take f = ¢

/Ré’(t)gzs(t)dt: —/R5(t)gz§’(t)dt




Unit Doublet

Example. Show f(7)d'(r) = f(0)d'(¢) — f'(0)4(¢)
Proof.

/R F0)8 (1) (0)dr = / 5 (0)[F (1)1

/5 (1)o(1)])'d

0)—f (0)¢’(0)

/ FO)8(06(0) + / (1) (1) d
/ F(0)6'(1) — £/(0)6(1)]6(0)ds

In particular, 15’ () = —4(¢)



Distributional Derivative

Distributional derivative of function(al) g defined by

/R ¢(0)(0)dt = — / $(1) (1dr

Example. Show u/(1) = 6(1)

Proof. For continuously differentiable ¢ with compact
support

/Ru'(t)gb(t)dt: —/Ru(t)¢>’(t)dt: —/Ooo &' (t)dt
= 00) = [ st



Higher-order Derivatives of o

First definition

we = 0% = uy wuy keowuy, k>1

k times

Thus
u * f :f(k)

Second definition

/ 5O () p()dt = (— 1)t / 506 (1)

Use integration by parts k times



Higher-order Antiderivatives of o

Let uy = 6 be unit impulse, u_; = u unit step

U_jp =U_1 *U_1*---xu_;, k>1

~
k times

Thus -
u_ (1) = mu(t)

u_, called unit ramp function

Property

Uy ¥ Uy = Upyn, M,NE Z
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