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Linear Constant-coefficient Difference Equations
Example. Balance of bank account

y[n] = (1 + r)y[n− 1] + x[n] r interest rate

Example. Discretization of differential equation

y′(t) = x(t) =⇒ y(nT)− y((n− 1)T)

T
≈ x(nT)

Let x[n] = x(nT), y[n] = y(nT). Discretized equation

y[n] = y[n− 1] + Tx[n] (Euler’s method)

Example. Exponential smoothing

y[n] = (1− α)y[n− 1] + αx[n], α ∈ (0, 1) smoothing factor
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Linear Constant-coefficient Difference Equations

System described by linear constant-coefficient difference
equation

N∑
k=0

aky[n− k] =
M∑

k=−M1

bkx[n− k]

where a0 6= 0, aN 6= 0

• also called recursive equation or recursion
• N: order of difference equation
• focus on M1 = 0 for causal systems
• input-output relation specified implicitly
• solve difference equation for explicit input-output relation
• difference equation alone does not uniquely determine T
• need auxiliary conditions, typically initial conditions
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Linear Constant-coefficient Differential Equations

Initial value problem (IVP)

Ly = f , where L =
N∑

k=0

akτk

with initial conditions

y[k] = yk, k = n0 − 1, n0 − 2, . . . , n0 − N

• N-th order difference equation needs N initial conditions
• may use any N consecutive values as “initial” values
• often n0 = 0
• typically f [n] = 0 for n < n0
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Initial Rest
• If input x[n] = 0 for n < n0, output y[n] = 0 for n < n0

I output zero until changed by input
I equivalent to causality for linear systems

• Adapt initial time n0 to input x: if x becomes nonzero
at n0, use y[n0 − k] = 0 for k = 1, 2, . . . ,N, i.e. solve{

Ly = f
y[k] = 0, k = n0 − 1, n0 − 2, . . . , n0 − N

• Linear constant-coefficient difference equation with
initial rest condition specifies causal and LTI system
for right-sided inputs
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Iterative Method
Iteratively compute y[n] from y[n− 1], . . . , y[n− N] and x

y[n] =
1
a0

(
M∑

k=0

bkx[n− k]−
N∑

k=1

aky[n− k]

)

Special case N = 0

y[n] =
M∑

k=0

(
bk

a0

)
x[n− k]

• explicit function of present and past input values
• nonrecursive equation, no need for auxiliary conditions
• causal LTI system with finite impulse response (FIR)

h[n] =
M∑

k=0

(
bk

a0

)
δ[n− k]
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Iterative Method
Example. Consider exponential smoothing

y[n]− ay[n− 1] = x[n]

with y[−1] = y−1.

• For n ≥ 0, go forward in time

y[0] = ay[−1] + x[0] = ay−1 + x[0]

y[1] = ay[0] + x[1] = a2y−1 + ax[0] + x[1]

y[2] = ay[1] + x[2] = a3y−1 + a2x[0] + ax[1] + x[2]

...

y[n] = ay[n− 1] + x[n] = an+1y−1 +
n∑

k=0

an−kx[k]
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Iterative Method
Example (cont’d). Consider exponential smoothing

y[n]− ay[n− 1] = x[n]

with y[−1] = y−1.

• For n ≥ 0, go forward in time

y[n] = ay[n− 1] + x[n]

ay[n− 1] = a2y[n− 2] + ax[n− 1]

...

an−1y[1] = any[0] + an−1x[1]

any[0] = an+1y[−1] + anx[0]

Summing up all equations, y[n] = an+1y−1 +
n∑

k=0

an−kx[k]
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Iterative Method
Example (cont’d). Consider exponential smoothing

y[n]− ay[n− 1] = x[n]

with y[−1] = y−1.

• n < −1, go backward in time

y[−2] = a−1y[−1]− a−1x[−1] = a−1y−1 − a−1x[−1]

y[−3] = a−1y[−2]− a−1x[−2] = a−2y−1 −
−1∑

k=−2

a−3−kx[k]

...

y[n] = a−1y[n + 1]− a−1x[n + 1] = an+1y−1 −
−1∑

k=n+1

an−kx[k]

Thus y[n] = an(ay−1 + 1) for n ≥ 0
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Iterative Method
Example (cont’d). Consider difference equation

y[n]− ay[n− 1] = x[n]

with y[−1] = y−1.

• Response

y[n] = an+1y−1︸ ︷︷ ︸
zero-input response

+

(
n∑

k=0

−
−1∑

k=n+1

)
an−kx[k]︸ ︷︷ ︸

zero-state response

where by convention
∑m2

k=m1
· = 0 if m2 < m1

• Initial rest: causal LTI system with impulse response

h[n] = anu[n]

I infinite impulse response (IIR) system
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Decomposition of Solutions (1)

Linear inhomogeneous difference equation

Ly = f , where L =
N∑

k=0

akτk

Particular solution
Lyp = f

Homogeneous solution (natural response)

Lyh = 0

General solution
y = yp + yh
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Homogeneous Solution
Characteristic equation

N∑
k=0

akα
N−k = 0

• Obtained from Lyh = 0 upon substitution of yh[n] = αn

• r distinct characteristic roots αi of multiplicity mi,
i = 1, 2, . . . , r; note

∑r
i=1 mi = N

• Homogeneous solution takes form

yh[n] =
r∑

i=1

mi∑
k=1

Aiknk−1αn
i

i.e. space of all homogeneous solutions has basis

αn
1, nα

n
1, . . . , n

m1−1αn
1; . . . ;α

n
r , nα

n
r , . . . , n

m1−1αn
r .



13/38

Particular Solution

• Look for forced response of same form as input f

f yp

np, 1 not characteristic root
p∑

k=0

Bknk

np, 1 characteristic root of multiplicity m
p∑

k=0

Bknm+k

αn, α not characteristic root Bαn

αn
i , αi characteristic root of multiplicity mi Bnmiαn

i

Note cos(ωn) = 1
2 (ejωn + e−jωn) and sin(ωn) = 1

2j (ejωn − e−jωn)
are special cases
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Example
Fibonacci sequence{

y[n]− y[n− 1]− y[n− 2] = 0
y[1] = y[2] = 1

• Characteristic equation

α2 − α− 1 = 0 =⇒ α1,2 =
1±
√

5
2

• Homogeneous solution

y[n] = A1α
n
1 + A2α

n
2

• Determine A1, A2 from initial conditions{
y[1] = A1α1 + A2α2 = 1
y[2] = A1α

2
1 + A2α

2
2 = 1

=⇒

{
A1 = 1√

5

A2 = − 1√
5
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Example
Solve difference equation

y[n] + 2y[n− 1] = x[n]− x[n− 1]

with input x[n] = n2 and initial condition y[−1] = −1
• Characteristic equation α + 2 = 0 =⇒ α = −2
• Homogeneous solution yh[n] = A(−2)n

• Particular solution
I find f [n] = x[n]− x[n− 1] = n2 − (n− 1)2 = 2n− 1
I look for solution of form yp[n] = B1n + B0

yp[n] + 2yp[n− 1] = 3B1n + 3B0 − 2B1 = f [n] = 2n− 1

I compare coefficients{
3B1 = 2
3B0 − 2B1 = −1

=⇒

{
B1 = 2

3

B0 = 1
9
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Example (cont’d)
Solve difference equation

y[n] + 2y[n− 1] = x[n]− x[n− 1]

with input x[n] = n2 and initial condition y[−1] = −1
• General solution

y[n] =
2
3

n +
1
9

+ A(−2)n

• Determine A from initial condition

y[−1] =
2
3

(−1) +
1
9

+ A(−2)−1 = −1 =⇒ A =
8
9

• Complete solution

y[n] =
2
3

n +
1
9︸ ︷︷ ︸

forced response

+
8
9

(−2)n︸ ︷︷ ︸
natural response
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Decomposition of Solutions (2)
IVP {

Ly = f
y[k] = yk, k = n0 − 1, n0 − 2, . . . , n0 − N

Zero-input response: linear in initial state{
Lyzi = 0
yzi[k] = yk, k = n0 − 1, n0 − 2, . . . , n0 − N

Zero-state response: linear in input{
Lyzs = f
yzs[k] = 0, k = n0 − 1, n0 − 2, . . . , n0 − N

Complete solution y = yzi + yzs
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Zero-state Response{
Lyzs = f
yzs[k] = 0, k = n0 − 1, n0 − 2, . . . , n0 − N

Focus on case where f [n] = 0 for n < n0 =⇒ initial rest

Causal and LTI system with output

yzs[n] = (f ∗ h)[n] = u[n− n0]
n∑

k=n0

f [k]h[n− k]

where h is impulse response of Ly = x, i.e.{
Lh = δ, n ≥ 0
h[k] = 0, k = −1,−2, . . . ,−N

or equivalently{
Lh = 0, n ≥ 1
h[k] = 0, k = −1,−2, . . . , 1− N; h[0] = 1/a0



19/38

Example
Solve difference equation

y[n] + 2y[n− 1] = x[n]− x[n− 1]

with input x[n] = n2u[n] and initial condition y[−1] = −1

• Homogeneous solution yh[n] = A(−2)n

• Zero-input response, i.e. homogeneous solution with
yzi[−1] = −1

A(−2)−1 = −1 =⇒ A = 2 =⇒ yzi = 2(−2)n

• Impulse response of y[n] + 2y[n− 1] = x[n], i.e.
solution of following IVP{

h[n] + 2h[n− 1] = δ[n]

h[−1] = 0
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Example (cont’d)
Solve difference equation

y[n] + 2y[n− 1] = x[n]− x[n− 1]

with input x[n] = n2u[n] and initial condition y[−1] = −1
• Homogeneous solution yh[n] = A(−2)n

• Impulse response{
h[n] + 2h[n− 1] = δ[n], n ≥ 0
h[−1] = 0

I by iterative method h[0] = δ[0]− 2h[−1] = 1
I now solve {

h[n] + 2h[n− 1] = 0, n ≥ 1
h[0] = 1

I h[0] = A = 1 =⇒ h[n] = (−2)nu[n]
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Example (cont’d)
Solve difference equation

y[n] + 2y[n− 1] = x[n]− x[n− 1]

with input x[n] = n2u[n] and initial condition y[−1] = −1
• Impulse response h[n] = (−2)nu[n]
• RHS f [n] = x[n]− x[n− 1] = (2n− 1)u[n− 1]
• Zero-state response for n ≥ 1

yzs[n] = (f ∗ h)[n] =
n∑

k=1

h[n− k](x[k]− x[k − 1])

=
n∑

k=1

(−2)n−k(2k − 1) =
2
3

n +
1
9
− 1

9
(−2)n

• Total response

y[n] = yzi[n]+yzs[n] = 2(−2)n+

[
2
3

n +
1
9
− 1

9
(−2)n

]
u[n−1]
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Systems of First-order Difference Equations
Consider N-th order difference equation with a0 = 1

y + a1τ1y + · · ·+ aN−1τN−1y + aNτNy = f

Let Yk = τky, k = 0, 1, . . . ,N − 1
• Yk = τ1Yk−1 for k = 1, 2, . . . ,N − 1
• Y0 = y = f −

∑N
k=1 akτky = f −

∑N
k=1 akτ1Yk−1

Equivalent vector equation

Y = Aτ1Y + bf

where

Y =


Y0

Y1
...

YN−2

YN−1

 ,A =


−a1 −a2 −a3 . . . −aN−1 −aN

1 0 0 . . . 0 0
0 1 0 . . . 0 0
...
0 0 0 . . . 1 0

 , b =


1
0
0
...
0


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Systems of First-order Difference Equations
Initial value problem (IVP){

y + a1τ1y + · · ·+ aN−1τN−1y + aNτNy = f
y[k] = yk, k = n0 − 1, n0 − 2, . . . , n0 − N

(1)

equivalent to {
Y = Aτ1Y + bf
Y[n0 − 1] = Yn0−1

(2)

where Yn0−1 = (yn0−1, yn0−2, . . . , yn0−N)T .

Solution to (2)

Y[n] = An−n0+1Yn0−1︸ ︷︷ ︸
zero-input response

+

(
n∑

k=n0

−
n0−1∑

k=n+1

)
An−kbf [k]︸ ︷︷ ︸

zero-state response
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Systems of First-order Difference Equations

Solution to (1)

y[n] = cY(t) = cAn−n0+1Yn0−1︸ ︷︷ ︸
zero-input response

+

(
n∑

k=n0

−
n0−1∑

k=n+1

)
f [k]cAn−kb︸ ︷︷ ︸

zero-state response

where c = (1, 0, 0, . . . , 0)

Initial rest

y(t) =
n∑

k=−∞

f [k]cAn−kb

• Recall f =
M∑

k=0

bkτkx linear in x

• y = T(x) causal LTI system; if f = x, h[n] = cAnbu[n]
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Block Diagram for y[n] + ay[n− 1] = bx[n]

Rewrite input-output relation as

y[n] = −ay[n− 1] + bx[n]

x[n]
b

+ y[n]

D

−a
y[n− 1]

Basic elements
• adder
• scalar multiplication
• unit delay D = τ1
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Block Diagram for y′(t) + ay(t) = bx(t)

Assuming y(−∞) = 0, rewrite input-output relation as

y(t) =

∫ t

−∞
[bx(τ)− ay(τ)]dτ

x(t)
b

+
∫

y(t)

−a

y′(t)

Basic elements
• adder
• scalar multiplication
• integrator (preferred over differentiator for robustness)
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Unit Impulse Revisited
Recall unit impulse

δ(t) = lim
∆→0

r∆(t)

where
r∆(t) =

u(t + ∆
2 )− u(t − ∆

2 )

∆

t

Idealization for quantities of very large
magnitude but very small duration (e.g. impulse
force) or spatial span (e.g. point mass/charge)

Recall unit impulse response

h = T(δ) = lim
∆→0

T(r∆)

Idealization: pulse so short that system response only
depends on area, but not on shape and duration
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Unit Impulse Revisited

For systems described by linear constant-coefficient ODE
at initial rest

y(t) =

∫
R

x(τ)h(t − τ)dτ

Response to r∆

[T(r∆)](t) =

∫
R

r∆(τ)h(t − τ)dτ =
1
∆

∫ ∆/2

−∆/2
h(t − τ)dτ

Indeed
lim
∆→0

T(r∆) = h

at points of continuity of h. Same as

[T(δ)](t) =

∫
R
δ(τ)h(t − τ)dτ = h(t)
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Unit Impulse Revisited
Recall second definition of δ∫

R
δ(t)φ(t)dt = φ(0)

Let C be set of functions continuous at 0. Above defines
mapping

δ : C → R
φ 7→ φ(0)

Also denoted by δ[φ] = φ(0). δ is linear functional on C

δ[a1φ1 + a2φ2] = a1φ1(0) + a2φ2(0) = a1δ[φ1] + a2δ[φ2]

called generalized function or distribution
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Unit Doublet
What’s impulse response of differentiator?

h(t) = δ′(t)

Expect output y of differentiator for input x to satisfy

y = x ∗ h = x′

or ∫
R

x(τ)δ′(t − τ)dτ = x′(t)

at points where x is differentiable.

First definition of u1 = δ′

x ∗ δ′ = x′
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Unit Doublet

Second definition. Since δ , lim∆→0 r∆, define

δ′ , lim
∆→0

r′∆

meaning ∫
R
δ′(t)φ(t) = lim

∆→0

∫
R

r′∆(t)φ(t)dt

∫
R

r′∆(t)φ(t)dt =

∫
R

1
∆

[
δ

(
t +

∆

2

)
− δ

(
t − ∆

2

)]
φ(t)

=
1
∆

[
φ

(
−∆

2

)
− φ

(
∆

2

)]
∫
R
δ′(t)φ(t) = −φ′(0)
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Unit Doublet

Third definition. For φ continuously differentiable at 0

δ′[φ] = −δ[φ′]

Intuition: integration by parts should work∫
R

f ′(t)φ(t)dt = [f (t)φ(t)]
∣∣∣∞
−∞
−
∫
R

f (t)φ′(t)dt

If φ has compact support, i.e. vanishes outside finite
interval ∫

R
f ′(t)φ(t)dt = −

∫
R

f (t)φ′(t)dt

Take f = δ ∫
R
δ′(t)φ(t)dt = −

∫
R
δ(t)φ′(t)dt
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Unit Doublet

Example. Show f (t)δ′(t) = f (0)δ′(t)− f ′(0)δ(t)

Proof.∫
R

f (t)δ′(t)φ(t)dt =

∫
R
δ′(t)[f (t)φ(t)]dt

= −
∫
R
δ(t)[f (t)φ(t)]′dt

= −f ′(0)φ(0)− f (0)φ′(0)

= −
∫
R

f ′(0)δ(t)φ(t) + f (0)

∫
R
δ′(t)φ(t)dt

=

∫
R
[f (0)δ′(t)− f ′(0)δ(t)]φ(t)dt

In particular, tδ′(t) = −δ(t)
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Distributional Derivative

Distributional derivative of function(al) g defined by∫
R

g′(t)φ(t)dt = −
∫
R

g(t)φ′(t)dt

Example. Show u′(t) = δ(t)

Proof. For continuously differentiable φ with compact
support∫

R
u′(t)φ(t)dt = −

∫
R

u(t)φ′(t)dt = −
∫ ∞

0
φ′(t)dt

= φ(0) =

∫
R
δ(t)φ(t)dt
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Higher-order Derivatives of δ

First definition

uk = δ(k) = u1 ∗ u1 ∗ · · · ∗ u1︸ ︷︷ ︸
k times

, k ≥ 1

Thus
uk ∗ f = f (k)

Second definition∫
R
δ(k)(t)φ(t)dt = (−1)k

∫
R
δ(t)φ(k)(t)dt

Use integration by parts k times
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Higher-order Antiderivatives of δ

Let u0 = δ be unit impulse, u−1 = u unit step

u−k = u−1 ∗ u−1 ∗ · · · ∗ u−1︸ ︷︷ ︸
k times

, k ≥ 1

Thus

u−k(t) =
tk−1

(k − 1)!
u(t)

u−2 called unit ramp function

Property

um ∗ un = um+n, m, n ∈ Z
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