Algorithm Design and Analysis

Introduction & multiplication

How was your break!?

The Big Questions

Who are we?Why are we here?What is going on?

Who are we?

We are ...

Lecture

1~12

- Instructors
 - 张宇昊 (Yuhao Zhang)
 - zhang_yuhao@sjtu.edu.cn
 - 陶表帅 (Biaoshuai Tao)
 - bstao@sjtu.edu.cn

- Lecture 13~24
- We are from John Hopcroft Center for Computer Science!
 - <u>https://jhc.sjtu.edu.cn/</u>
 - Our Homepage:
 - www.zyhwtc.com
 - https://jhc.sjtu.edu.cn/~bstao
- Ta
 - 汪金奕 jinyi.wang@sjtu.edu.cn
 - 杨宗翰 fstqwq@sjtu.edu.cn

张宇昊

陶表帅

杨宗翰

汪金奕

Why are we here?

Algorithm!

Algorithms are fundamental!

Algorithms are useful!

- We may need to sort something?
- We may need to find the best bundle?
- ...
- When the input is larger and larger,
- Algorithms are more and more important!

Algorithms are fun!

- Algorithm design is also an art!
- You will feel excited when you see a surprising algorithm!
- Your will feel thrilled when you have created a surprising algorithm!
- Also, many interesting research problems...

What is going on?

Course goals

The design and analysis of algorithms

- After this course, you will
 - Think analytically about algorithms
 - Clearly communicate your algorithmic idea
 - Equip with an **algorithmic toolkit**

 Image: system
 Image: s

- Use them **correctly**

Roadmap

Guide questions

- Does the algorithm work?
 Is it fast?
- Can I do **better**?

How to think?

• What is work?

- What is better?
- Do we need to consider worst case?
- Is there any corner case?

Listen to my idea, it is quite intuitive! It should work if everything goes well, trust me!

Detail-oriented

- Precise
- Rigorous

Both side are necessary! • Big-picture • Intuitive • Hand-wavey

How to think in most of this course?

- We usually talk about Exact Algorithms.
- Dose the algorithm work?
 - Return the optimal/correct answer
- Is it fast?
 - Time complexity
 - Worst case

Can I do better?

- More efficient
- Better time complexity

Aside the course.....

• What if the problem is so hard to get the solution?

- Np-hard problems: take too long time
- Online problems: not enough information
- What if a more efficient algorithm is not better?
 - More efficient \rightarrow make private data public
 - More efficient \rightarrow focus on the majority population?

- What if you can not control player's behavior?
 - Auction
 - Public resource allocation

Auction

Public Resources

About the course?

References (optimal)

Algorithms by Dasgupta, Papadimitriou, Vazirani

 Algorithms Illuminated, Vols 1,2 and 3 by Tim Roughgarden

Algorithms

Sanjoy Dasgupta Christos Papadimitriou Umesh Vazirani

Homework

- Homework: 70%
 - 12 (6 writing + 6 programming) homework: $a \le 60\%$
 - 1 midterm (in-class): $b \le 20\%$
- 1 final exam: *c* ≤ 30%
- Overall: $\min\{a + b, 70\} + c$
- We encourage discussion, but please try them on your own before discussion, and conclude them on your own after discussion.

Talk to us and each other!

You can discuss with us at office hours.

- Question: I do not know how to do it? X
- Question: This is my approach, but I got a stuck here...
- Office hours
 - Yuhao (Fri 4:00~5:00pm)
 - Biaoshuai (Mon 3:00~4:00pm)
 - Jinyi (Fri 9:00~10:00am)
 - Zonghan (Thu 4:00~5:00pm)
- Wechat group
 - Check CANVAS

Policy

 We encourage discussion on homework, but you should write down your solution on your own.

- You must **Cite** all collaborators, as well as all sources used (e.g., online materials).
- Late policy
 - Within 3 days: **50%** of your score
 - Out of 3 days: 0%
 - Special Issue

Feedback

It's my first course, so please tell me

- The **pace** of the lecture
- The **difficulty** of the homework
- The **tpyos** in the sldies

Integer Multiplication

Today's goal

- Karatsuba Integer Multiplication
- Algorithmic Technique
 - Divide and conquer
- Algorithmic Analysis tool
 - Intro to asymptotic analysis

Start at very beginning

al-Khwarizmi

- Dixit algorizmi
- "Algorisme" [old French]
 - Arabic number system
 - "Algorithm"

Integer Multiplication

How to calculate 44 × 34
 44
 × 34

• How to calculate 123555589 × 987555321

123555589 × 987555321

How fast is it?

123555589124435234523465324 × 875553211231231231231233123

 $O(n^2)$

n

How many 1-digit operation we need to make?

Roughly

- n^2 multiplication
- n^2 addition for carries
- 2*n* addition finally

Can we do better?

Let us buy our first tool!

Divide and conquer

Divide and Conquer

Divide and conquer for multiplication

- 1284 × 5678
- $1234 = 12 \times 100 + 34$
- $1234 \times 5678 = (12 \times 100 + 34)(56 \times 100 + 78)$ = $(12 \times 56) \cdot 10000 + (12 \times 78 + 34 \times 56) \cdot 100$ + 34×78
- 1 four-digit \rightarrow 4 two-digit

Generally?

- Can we make it generally?
- Two n digit multiplications, suppose n is even
- Design a recursive algorithm for n, suppose n is 2's power.

•
$$xy = \left(a \cdot 10^{\frac{n}{2}} + b\right)\left(c \cdot 10^{\frac{n}{2}} + d\right)$$

= $ac \cdot 10^n + (ad + bc) \cdot 10^{\frac{n}{2}} + bd$

Running time, analytically

- Main question: Is it better than before?
 - Yes! Because we learn it in SJTU!
 - how many 1-digit multiplications we need for 1n-digit multiplication?
 - A: n²; B: n³; C:n; D: n logn;
 - Run the algorithm for 1234 × 5678, how many 1-digit multiplications we need?
 - how many 1-digit multiplications we need for 1 8-digit multiplication?

Analysis

- Claim: we need n² 1-digit multiplications for 1 n-digit multiplication.
- How many levels we need?

 $-\log_2 n$

- How many multiplications we need in level $t = \log_2 n$?
 - Level 0: 1 $n \times n$

 - Level 1: 4 $\frac{n}{2} \times \frac{n}{2}$ Level 2: 16 $\frac{n}{4} \times \frac{n}{4}$
 - Level t: 4^t 1×1
- Conclusion: $4^{\log_2 n} = n^2$

It is just an analysis!

Experiments

Claim: the grade school multiplication is better!

What's wrong?

•
$$xy = \left(a \cdot 10^{\frac{n}{2}} + b\right) \times \left(c \cdot 10^{\frac{n}{2}} + d\right)$$

= $ac \cdot 10^n + (ad + bc) \cdot 10^{\frac{n}{2}} + bd$

- What do we need?
 - ac
 - ad + bc
 - bd
- What do we calculate
 - *ac*
 - ad
 - bc
 - bd

Karatsuba Algorithm

Improve!

- What do we need?
 - ac
 - ad + bc
 - -bd
- How to get ad + bc without ad and bc?
- Solution:
 - Calculate: *ac*, *bd*
 - One more multiplication: z = (a + b)(c + d)
 - Get ad + bc = (a+b)(c+d) ac bd

$$- x \times y = \left(a \cdot 10^{\frac{n}{2}} + b\right) \times \left(c \cdot 10^{\frac{n}{2}} + d\right)$$

= $ac \cdot 10^{n} + (ad + bc) \cdot 10^{\frac{n}{2}} + bd$
= $ac \cdot 10^{n} + (z - ac - bd) \cdot 10^{\frac{n}{2}} + bd$

Improve!

- What is the difference?
 - We now calculate
 - ac
 - z = (a + b)(c + d)
 - bd
 - One *n*-digit \rightarrow Three $\frac{n}{2}$ -digit

Make a guess!

How fast is it?

Is it fast?

- Claim: we need $n^{1.6}$ 1-digit multiplication for 1 n-digit multiplication.
- How many levels we need?

 $-\log_2 n$

- How many multiplications we need in level t?
 - Level 0: 1 $n \times n$

 - Level 1: 3 $\frac{n}{2} \times \frac{n}{2}$ Level 2: 9 $\frac{n}{4} \times \frac{n}{4}$
 - Level t: 3^t 1 × 1
- Conclusion: $3^{\log_2 n} = n^{\log_2 3} \approx n^{1.6}$

What if *n* is **not** 2's power?

Can we do better again?

Better algorithms

• Toom-Cook (1963): Breaking into size $\frac{n}{3}$ -size problems make it better! $\rightarrow O(n^{1.465})$

Think:

- how to break $n \times n$ into $5 \frac{n}{3} \times \frac{n}{3}$?
- Given it is true, why it is $n^{1.465}$?

 $\log^* n := egin{cases} 0 & ext{if } n \leq 1; \ 1 + \log^*(\log n) & ext{if } n > 1 \end{cases}$

Schonhage-Strassen (1971): O(n log n log log n)

- Furer (2007): $O(n \log n \log^* n)$
- Harvey and van der Hoeven (2019): O(n log n)

Our work is expected to be the end of the road for this problem, although we don't know yet how to prove this rigorously.

What about matrix?

- How to multiply two matrices
- $\begin{bmatrix} 2 & 9 \\ 7 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 \times 1 + 9 \times 3 & 2 \times 2 + 9 \times 4 \\ 7 \times 1 + 5 \times 3 & 7 \times 2 + 5 \times 4 \end{bmatrix} = \begin{bmatrix} 29 & 40 \\ 22 & 34 \end{bmatrix}$
- Z = XY
- $z_{ik} = \sum_{1 \le j \le n} x_{ij} y_{jk}$
- How many integer multiplications?
 - n^2 entries of Z to calculate
 - Each takes *n* multiplications
 - Totally n^3
- What about running time?

Word Ram model? Turing model?

How to divide and conquer?

Divide and conquer

• Key fact: If $X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, $Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$. - $\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & BF + DH \end{bmatrix}$.

- How to divide and conquer?
 - 1 *n*-size multiplication $\rightarrow 8 \frac{n}{2}$ -size multiplications
 - AE, BG, AF, BH, CE, DG, BF, DH
 - How many integer multiplications?
 - $8^{\log_2 n} = n^3$
 - The same problem as before!

Do you have any approach?

Strassen's magical idea

• $P_1 = A(F - H)$ • $P_2 = (A + B)H$ • $P_3 = (C + D)E$ • $P_4 = D(G - E)$ • $P_5 = (A + D)(E + H)$ • $P_6 = (B - D)(G + H)$ • $P_7 = (A - C)(E + F)$

• $XY = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix}$ $= \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & BF + DH \end{bmatrix}$ $= \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$ • How many integer multiplications now? • $7^{\log_2 n} = n^{\log_2 7} \approx n^{2.81}$

Goals!

Course goals

- Think **analytically** about algorithms
- Clearly **communicate** your algorithmic idea
- Equip with an algorithmic toolkit
- Today's goals
 - Karatsuba Integer Multiplication
 - Algorithmic Technique
 - Divide and conquer
 - Algorithmic Analysis tool
 - Intro to asymptotic analysis

How about the pace today?

Next time

More divide and conquer

Before next time

- Think the questions in the slides.
- Join the wechat group!
- Try the Online Judge System!

Welcome to discuss research problems with us!