Divide and Conquer

Closest Pair

Closest Pair

Input: A set n points (x₁, y₁), (x₂, y₂), ..., (x_n, y_n).
Output: A pair of distinct points whose distance is smallest.

Straight-forward Idea

Input: A set n points (x₁, y₁), (x₂, y₂), ..., (x_n, y_n).
Output: A pair of distinct points whose distance is smallest.

- Plan 1: Brute-force
 - Compute all $\frac{n(n-1)}{2}$ pairs.
 - Output the smallest one.

Straight-forward Idea

Input: A set n points (x₁, y₁), (x₂, y₂), ..., (x_n, y_n).
Output: A pair of distinct points whose distance is smallest.

- Plan 1: Brute-force
 - Compute all $\frac{n(n-1)}{2}$ pairs.
 - Output the smallest one.
 - $O(n^2)$

- Improve it by sorting
- Avoid some useless computation

- Improve it by sorting
- Avoid some useless computation
- Special case: all points are on the same line.

useless computation

Special case: all points are on the same line.

- Plan 2: Sorting
- Sort the points (by the x-coordinate)
 (6,0)
 - (3,0)
 (0,0)
 (10,0)
 (4,0)

- Special case: all points are on the same line.
- Plan 2: Sorting
- Sort the points (by the x-coordinate)
 - Only compute the distance of adjacent point pair.
 - Output the closest pair.

 $O(n \log n)$

O(n)

How to extend this Idea to general case?

Ok! Let's move to divide and conquer!

Divide and Conquer

• Input: A set *n* points $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$.

- Output: A pair of distinct points whose distance is smallest.
- Plan 3: Divide and Conquer
 - Divide:
 - Sort the points (by the x-coordinate)
 - Assume all x-coordinate are different.
 - Points are sorted by the x-coordinate.
 - By a vertical line so that each side has n/2 points

Divide

Divide:

- Sort the points (by the x-coordinate)
- Draw a vertical line so that each side has n/2 points.

Recurse

– Find the closest pair in each side.

Recurse

– Find the closest pair in each side.

Combine

- Find the closet pair between two sides.

Combine

- Find the closet pair between two sides.
- Output the min of 3 pairs.

How long

it takes?

- Straight-forward?
 - Compute all $\left(\frac{n}{2}\right)^2$ pairs, with one point on each side.
 - Return the closest one.
- What about the running time?
 - Divide: $O(n \log n)$
 - Points are sorted by the x-coordinate.
 - By a vertical line so that each side has n/2 points
 - Recurse: $2T(\frac{n}{2})$
 - Find the closest pair in each side.
 - Combine: $O(n^2)$
 - Combine: $O(n^2)$ Overall: $T(n) = O(n^2) + 2T(\frac{n}{2}) = O(n^2)^{2}$

- Key idea
 - We need not compute all pairs

seems useless 3 seems useless

δ_L, δ_R: smallest distance on left and right
δ: min{δ_L, δ_R} (e.g., δ = 3, δ_L = 3, δ_R = 4)

• Draw two lines, with δ apart from the middle line.

Draw two lines, with δ apart from the middle line.
Only focus on the points **inside** the two lines.

Only focus on the points **inside** the two lines.
All the other distance is larger than δ.

First

Bonus

Closest pair in the 2δ -strip

Brute-force

- Compute all pairs inside the 2δ -strip.
- $O(m^2)$: number of points inside
- Can we bound *m*?
- No: *m* can be equal to *n*!

How to improve?

- Fix a point *a*
- Focus on pair (a, b)
 - *b* is above *a*.
- What kind of pairs is impossible to be the closest one?

How to improve?

- Fix a point *a*
- Focus on pair (a, b)
 - *b* is above *a*.
- What kind of pairs is impossible to be the closest one?
 - *b* is outside the $2\delta \times \delta$ -rectangle.
- Focus on the $2\delta \times \delta$ -rectangle

δ

δ

 δ

δ

 δ

Why the first bonus is not enough?
We can not **bound** the number of points!

δ

δ

δ

 δ

δ

 δ

- Can we **bound** it now?
 - inside the $2\delta \times \delta$ -rectangle

Why the first bonus is not enough?
 We can not **bound** the number of points!

δ

δ

δ

 δ

δ

- Can we **bound** it now?
 - inside the $2\delta \times \delta$ -rectangle

Why the first bonus is not enough?
We can not **bound** the number of points!

 δ

δ

δ

 δ

- Can we **bound** it now?
 - inside the $2\delta \times \delta$ -rectangle
- Focus on a $\delta \times \delta$ -square

Points inside a $\delta \times \delta$ -square

- How many points can at most appear in the square?
- Tips: distance at least δ
 - $\delta = \min(\delta_L, \delta_R)$

Discussion

δ

δ

δ

Points inside a $\delta \times \delta$ -square

- How many points can at most appear in the square?
- Tips: distance at least δ
 - $\delta = \min(\delta_L, \delta_R)$
- Divide into four sub-square
 - How many point can at most appear in the sub-square?
 - Two points are at most $\frac{\delta}{\sqrt{2}} < \delta$ apart.
 - At most one point!
- At most Four points in the square!

Why the first bonus is not enough?
We can not **bound** the number of points!

 δ

δ

δ

 δ

- Can we **bound** it now?
 - inside the $2\delta \times \delta$ -rectangle
- Focus on a $\delta \times \delta$ -square

• Why the first bonus is not enough?

– We can not **bound** the number of points!

δ

δ

δ

 δ

- Can we **bound** it now?
 - inside the $2\delta \times \delta$ -rectangle
- Focus on a $\delta \times \delta$ -square
 - 4 points on the left

• Why the first bonus is not enough?

– We can not **bound** the number of points!

δ

 δ

 δ

 δ

- Can we **bound** it now?
 - inside the $2\delta \times \delta$ -rectangle
- Focus on a $\delta \times \delta$ -square
 - 4 points on the left
 - 4 points on the right (including *a*)

Why the first bonus is not enough?

- We can not **bound** the number of points!
- Can we **bound** it now?
 - inside the $2\delta \times \delta$ -rectangle
- Focus on a $\delta \times \delta$ -square
 - 4 points on the left
 - 4 points on the right (including *a*)
 - 8 points totally (including *a*)

Closest pair in the 2δ -strip

Brute-force

– Compute all pairs inside the 2δ -strip.

 δ

δ

 δ

δ

 δ

- $O(m^2)$: number of points inside
- Can we bound *m*?
- No: *m* can be equal to *n*!
- Improved way
 - Focus on point *a*
 - Focus on pair (*a*, *b*)
 - *b* is above *a*.
 - We only need to compute **Seven** *b* above *a*.

Divide and Conquer Algorithm

Function ClosestPair(S)

Divide:

- 1. Sort the points (by the x-coordinate).
- 2. Draw such a **vertical line** ℓ that each side has n/2 points.

Recurse

3. Find the closest pair in each side, let δ_L , δ_R be the distance.

Combine

- 4. Let $\delta = \min\{\delta_L, \delta_R\}$ and S' be the set of points at most δ from ℓ .
- 5. Sort *S*' by the y-coordinate.
- 6. For each $a \in S'$, check 7 *b* above *a* inside *S'*, find the closest pair.
- 7. Return the closest pair among step 3 and 6.

Running time

Function ClosestPair(S)

Divide: $O(n \log n)$

Recurse: $2T(\frac{n}{2})$

Recurse: $O(n \log n)$

Divide:

- 1. <u>Sort the points (by the x-coordinate).</u>
- 2. Draw such a **vertical line** ℓ that each side has n/2 points.

Recurse

3. Find the closest pair in each side, let δ_L , δ_R be the distance.

Combine

- 4. Let $\delta = \min{\{\delta_L, \delta_R\}}$ and S' be the set of points at most δ from ℓ .
- 5. <u>Sort S' by the y-coordinate.</u>
- 6. For each $a \in S'$, check 7 *b* above *a* inside *S'*, find the closest pair.
- 7. Return the closest pair among step 3 and 6.

Analysis

- $T(n) = 2T\left(\frac{n}{2}\right) + O(n\log n)$
- Recall Master Theorem
 - $T(n) = O(n \log n)$ if $T(n) = 2T\left(\frac{n}{2}\right) + O(n)$
- Claim: $T(n) = O(n \log^2 n)$
 - We can not directly apply Master Theorem.
 - Prove it by induction!
 - Prove it by keep expending T(n)!

Improve more

Can we improve divide and combine to O(n)?

- If we success, then $T(n) = 2T\left(\frac{n}{2}\right) + O(n) = O(n \log n)$

Tips

- Do we actually need sorting every time?
- What happens if do sorting before divide and conquer?

Even more

- A randomized algorithm achieves O(n).
 - Samir Khuller and Yossi Matias (1995).
 - A simple randomized sieve algorithm for the closest-pair problem.

Today's goal

- Learn the closest pair algorithm
- Learn why we have the magical number 7 analytically
- Learn to analyze the running time without Master Theorem