
Divide and Conquer

Closest Pair



Closest Pair

▪ Input: A set 𝑛 points (𝑥1, 𝑦1), 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛).

▪ Output: A pair of distinct points whose distance is smallest.



Straight-forward Idea

▪ Input: A set 𝑛 points (𝑥1, 𝑦1), 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛).

▪ Output: A pair of distinct points whose distance is smallest.

▪ Plan 1: Brute-force

– Compute all 
𝑛 𝑛−1

2
pairs.

– Output the smallest one.



Straight-forward Idea

▪ Input: A set 𝑛 points (𝑥1, 𝑦1), 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛).

▪ Output: A pair of distinct points whose distance is smallest.

▪ Plan 1: Brute-force

– Compute all 
𝑛 𝑛−1

2
pairs.

– Output the smallest one.

– 𝑶 𝒏𝟐



Can we do better?

▪ Improve it by sorting

▪ Avoid some useless computation
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▪ Avoid some useless computation

▪ Special case: all points are on the same line.
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Can we do better?

▪ Special case: all points are on the same line.

▪ Plan 2: Sorting

▪ Sort the points (by the x-coordinate)
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Can we do better?

▪ Special case: all points are on the same line.

▪ Plan 2: Sorting 

▪ Sort the points (by the x-coordinate)
– Only compute the distance of adjacent point pair.

– Output the closest pair.

(10,0)(6,0)(4,0)(3,0)(0,0)

𝑂(𝑛 log 𝑛)

𝑂(𝑛)



How to extend this Idea to 
general case?



Ok! Let’s move to divide and 
conquer!
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Divide and Conquer 

▪ Input: A set 𝑛 points (𝑥1, 𝑦1), 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛).

▪ Output: A pair of distinct points whose distance is smallest.

▪ Plan 3: Divide and Conquer
– Divide:

▪ Sort the points (by the x-coordinate)
– Assume all x-coordinate are different.

▪ Points are sorted by the x-coordinate.

▪ By a vertical line so that each side has 𝑛/2 points



Divide

▪ Divide:
– Sort the points (by the x-coordinate)

– Draw a vertical line so that each side has 𝑛/2 points.



Recurse

▪ Recurse
– Find the closest pair in each side. 



Recurse

▪ Recurse
– Find the closest pair in each side. 
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Recurse

▪ Combine
– Find the closet pair between two sides.
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Recurse

▪ Combine
– Find the closet pair between two sides.

– Output the min of 3 pairs.
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How long 
it takes?



Closet pair between two sides

▪ Straight-forward?

– Compute all 
𝑛

2

2
pairs, with one point on each side.

– Return the closest one.

▪ What about the running time?
– Divide: 𝑂(𝑛 log 𝑛)

▪ Points are sorted by the x-coordinate.
▪ By a vertical line so that each side has 𝑛/2 points

– Recurse: 2T(
𝑛

2
)

▪ Find the closest pair in each side. 

– Combine: 𝑂 𝑛2

– Overall: 𝐓 𝐧 = 𝑶 𝒏𝟐 + 𝟐𝑻
𝒏

𝟐
= 𝑶 𝒏𝟐

Master 
Theorem



Closet pair between two sides

▪ Key idea
– We need not compute all pairs

seems useless

seems useless
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Closet pair between two sides

▪ 𝛿𝐿, 𝛿𝑅: smallest distance on left and right

▪ 𝛿: min 𝛿𝐿, 𝛿𝑅 (e.g., 𝛿 = 3, 𝛿𝐿 = 3, 𝛿𝑅 = 4)
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Closet pair between two sides

▪ Draw two lines, with 𝛿 apart from the middle line.
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Closet pair between two sides

▪ Draw two lines, with 𝛿 apart from the middle line.

▪ Only focus on the points inside the two lines.

𝛿 𝛿



Closet pair between two sides

▪ Only focus on the points inside the two lines.

▪ All the other distance is larger than 𝛿. 

𝛿 𝛿

First 
Bonus



Closest pair in the 2𝛿-strip

▪ Brute-force
– Compute all pairs inside the 2𝛿-strip.

– 𝑂 𝑚2 : number of points inside

– Can we bound 𝑚?

– No: 𝑚 can be equal to 𝑛!

𝛿𝛿

𝛿𝛿



How to improve?

▪ Fix a point 𝑎

▪ Focus on pair 𝑎, 𝑏
– 𝑏 is above 𝑎.

▪ What kind of pairs is impossible to be 
the closest one?
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How to improve?

▪ Fix a point 𝑎

▪ Focus on pair 𝑎, 𝑏
– 𝑏 is above 𝑎.

▪ What kind of pairs is impossible to be 
the closest one?
– 𝑏 is outside the 𝟐𝜹 × 𝜹-rectangle.

▪ Focus on the 𝟐𝜹 × 𝜹-rectangle

𝛿𝛿

Second 
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Is that enough now?

▪ Why the first bonus is not enough?
– We can not bound the number of points!

▪ Can we bound it now?
– inside the 𝟐𝜹 × 𝜹-rectangle
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Is that enough now?

▪ Why the first bonus is not enough?
– We can not bound the number of points!

▪ Can we bound it now?
– inside the 𝟐𝜹 × 𝜹-rectangle
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Is that enough now?

▪ Why the first bonus is not enough?
– We can not bound the number of points!

▪ Can we bound it now?
– inside the 𝟐𝜹 × 𝜹-rectangle

▪ Focus on a 𝛿 × 𝛿-square
𝑎

𝛿𝛿

𝛿𝛿

𝛿𝛿



Points inside a 𝛿 × 𝛿-square

▪ How many points can at most 
appear in the square?

▪ Tips: distance at least 𝛿
– 𝛿 = min(𝛿𝐿, 𝛿𝑅)

𝛿𝛿

𝛿

𝛿



Points inside a 𝛿 × 𝛿-square

▪ How many points can at most 
appear in the square?

▪ Tips: distance at least 𝛿
– 𝛿 = min(𝛿𝐿, 𝛿𝑅)

▪ Divide into four sub-square
– How many point can at most appear in 

the sub-square?

▪ Two points are at most 
𝛿

2
< 𝛿 apart.

▪ At most one point!

▪ At most Four points in the square!

𝛿/2

𝛿/2𝛿/2

𝛿/2

𝛿/2 𝛿/2

𝛿/2𝛿/2

𝛿
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Is that enough now?

▪ Why the first bonus is not enough?
– We can not bound the number of points!

▪ Can we bound it now?
– inside the 𝟐𝜹 × 𝜹-rectangle

▪ Focus on a 𝛿 × 𝛿-square
𝑎

𝛿𝛿

𝛿𝛿
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Is that enough now?

▪ Why the first bonus is not enough?
– We can not bound the number of points!

▪ Can we bound it now?
– inside the 𝟐𝜹 × 𝜹-rectangle

▪ Focus on a 𝛿 × 𝛿-square
– 4 points on the left 𝑎

𝛿𝛿
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𝛿𝛿



Is that enough now?

▪ Why the first bonus is not enough?
– We can not bound the number of points!

▪ Can we bound it now?
– inside the 𝟐𝜹 × 𝜹-rectangle

▪ Focus on a 𝛿 × 𝛿-square
– 4 points on the left

– 4 points on the right (including 𝑎)

𝑎
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𝛿𝛿

𝛿𝛿



Is that enough now?

▪ Why the first bonus is not enough?
– We can not bound the number of points!

▪ Can we bound it now?
– inside the 𝟐𝜹 × 𝜹-rectangle

▪ Focus on a 𝛿 × 𝛿-square
– 4 points on the left

– 4 points on the right (including 𝑎)

– 8 points totally (including 𝑎)

𝑎

𝛿𝛿

𝛿𝛿

𝛿𝛿
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Closest pair in the 2𝛿-strip

▪ Brute-force
– Compute all pairs inside the 2𝛿-strip.

– 𝑂 𝑚2 : number of points inside

– Can we bound 𝑚?

– No: 𝑚 can be equal to 𝑛!

▪ Improved way
– Focus on point 𝑎

– Focus on pair 𝑎, 𝑏
▪ 𝑏 is above 𝑎.

– We only need to compute Seven 𝑏 above 𝑎.
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Divide and Conquer Algorithm 

Function ClosestPair(𝑺)

▪ Divide:
1. Sort the points (by the x-coordinate).
2. Draw such a vertical line ℓ that each side has 𝑛/2 points.

▪ Recurse
3. Find the closest pair in each side, let 𝛿𝐿 , 𝛿𝑅 be the distance.

▪ Combine
4. Let 𝛿 = min{𝛿𝐿 , 𝛿𝑅} and 𝑆′ be the set of points at most 𝛿 from ℓ.
5. Sort 𝑆′ by the y-coordinate.
6. For each 𝑎 ∈ 𝑆′, check 7 𝑏 above 𝑎 inside 𝑆′, find the closest pair.
7. Return the closest pair among step 3 and 6.



Running time 

Function ClosestPair(𝑺)

▪ Divide:
1. Sort the points (by the x-coordinate).
2. Draw such a vertical line ℓ that each side has 𝑛/2 points.

▪ Recurse
3. Find the closest pair in each side, let 𝛿𝐿 , 𝛿𝑅 be the distance.

▪ Combine
4. Let 𝛿 = min{𝛿𝐿 , 𝛿𝑅} and 𝑆′ be the set of points at most 𝛿 from ℓ.
5. Sort 𝑆′ by the y-coordinate.
6. For each 𝑎 ∈ 𝑆′, check 7 𝑏 above 𝑎 inside 𝑆′, find the closest pair.
7. Return the closest pair among step 3 and 6.

Divide:𝑶(𝒏 log𝒏)

Recurse: 𝟐𝑻(
𝒏

𝟐
)

Recurse: 𝑶(𝒏 log𝒏)



Analysis

▪ 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑂(𝑛 log 𝑛)

▪ Recall Master Theorem

– 𝑇 𝑛 = 𝑂(𝑛 log𝑛) if 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑂(𝑛)

▪ Claim: 𝑇 𝑛 = 𝑂 𝑛 log2 𝑛

– We can not directly apply Master Theorem.

– Prove it by induction!

– Prove it by keep expending 𝑇 𝑛 !



Improve more

▪ Can we improve divide and combine to 𝑂 𝑛 ?

– If we success, then 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑂 𝑛 = 𝑂(𝑛 log 𝑛)

▪ Tips
– Do we actually need sorting every time?

– What happens if do sorting before divide and conquer?

▪ Even more
– A randomized algorithm achieves 𝑂 𝑛 .

▪ Samir Khuller and Yossi Matias (1995).

▪ A simple randomized sieve algorithm for the closest-pair problem.



Today’s goal

▪ Learn the closest pair algorithm

▪ Learn why we have the magical number 7 analytically 

▪ Learn to analyze the running time without Master Theorem


