
Divide and Conquer

Closest Pair



Closest Pair

▪ Input: A set 𝑛 points (𝑥1, 𝑦1), 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛).

▪ Output: A pair of distinct points whose distance is smallest.



Straight-forward Idea

▪ Input: A set 𝑛 points (𝑥1, 𝑦1), 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛).

▪ Output: A pair of distinct points whose distance is smallest.

▪ Plan 1: Brute-force

– Compute all 
𝑛 𝑛−1

2
pairs.

– Output the smallest one.



Straight-forward Idea

▪ Input: A set 𝑛 points (𝑥1, 𝑦1), 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛).

▪ Output: A pair of distinct points whose distance is smallest.

▪ Plan 1: Brute-force

– Compute all 
𝑛 𝑛−1

2
pairs.

– Output the smallest one.

– 𝑶 𝒏𝟐



Can we do better?

▪ Improve it by sorting

▪ Avoid some useless computation



Can we do better?

▪ Improve it by sorting

▪ Avoid some useless computation

▪ Special case: all points are on the same line.

useless computation



Can we do better?

▪ Special case: all points are on the same line.

▪ Plan 2: Sorting

▪ Sort the points (by the x-coordinate)

(4,0)

(10,0)

(0,0)

(3,0)

(6,0)



Can we do better?

▪ Special case: all points are on the same line.

▪ Plan 2: Sorting 

▪ Sort the points (by the x-coordinate)
– Only compute the distance of adjacent point pair.

– Output the closest pair.

(10,0)(6,0)(4,0)(3,0)(0,0)

𝑂(𝑛 log 𝑛)

𝑂(𝑛)



How to extend this Idea to 
general case?



Ok! Let’s move to divide and 
conquer!

Big 
Problem

Small 
Problem

Small 
Problem

Smaller 
Problem

Smaller 
Problem

Smaller 
Problem

Smaller 
Problem



Divide and Conquer 

▪ Input: A set 𝑛 points (𝑥1, 𝑦1), 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛).

▪ Output: A pair of distinct points whose distance is smallest.

▪ Plan 3: Divide and Conquer
– Divide:

▪ Sort the points (by the x-coordinate)
– Assume all x-coordinate are different.

▪ Points are sorted by the x-coordinate.

▪ By a vertical line so that each side has 𝑛/2 points



Divide

▪ Divide:
– Sort the points (by the x-coordinate)

– Draw a vertical line so that each side has 𝑛/2 points.



Recurse

▪ Recurse
– Find the closest pair in each side. 



Recurse

▪ Recurse
– Find the closest pair in each side. 

3

4



Recurse

▪ Combine
– Find the closet pair between two sides.

3

4

2



Recurse

▪ Combine
– Find the closet pair between two sides.

– Output the min of 3 pairs.

3

4

2

How long 
it takes?



Closet pair between two sides

▪ Straight-forward?

– Compute all 
𝑛

2

2
pairs, with one point on each side.

– Return the closest one.

▪ What about the running time?
– Divide: 𝑂(𝑛 log 𝑛)

▪ Points are sorted by the x-coordinate.
▪ By a vertical line so that each side has 𝑛/2 points

– Recurse: 2T(
𝑛

2
)

▪ Find the closest pair in each side. 

– Combine: 𝑂 𝑛2

– Overall: 𝐓 𝐧 = 𝑶 𝒏𝟐 + 𝟐𝑻
𝒏

𝟐
= 𝑶 𝒏𝟐

Master 
Theorem



Closet pair between two sides

▪ Key idea
– We need not compute all pairs

seems useless

seems useless

3

4



Closet pair between two sides

▪ 𝛿𝐿, 𝛿𝑅: smallest distance on left and right

▪ 𝛿: min 𝛿𝐿, 𝛿𝑅 (e.g., 𝛿 = 3, 𝛿𝐿 = 3, 𝛿𝑅 = 4)

3

4



Closet pair between two sides

▪ Draw two lines, with 𝛿 apart from the middle line.

3

4

𝛿 𝛿



Closet pair between two sides

▪ Draw two lines, with 𝛿 apart from the middle line.

▪ Only focus on the points inside the two lines.

𝛿 𝛿



Closet pair between two sides

▪ Only focus on the points inside the two lines.

▪ All the other distance is larger than 𝛿. 

𝛿 𝛿

First 
Bonus



Closest pair in the 2𝛿-strip

▪ Brute-force
– Compute all pairs inside the 2𝛿-strip.

– 𝑂 𝑚2 : number of points inside

– Can we bound 𝑚?

– No: 𝑚 can be equal to 𝑛!

𝛿𝛿

𝛿𝛿



How to improve?

▪ Fix a point 𝑎

▪ Focus on pair 𝑎, 𝑏
– 𝑏 is above 𝑎.

▪ What kind of pairs is impossible to be 
the closest one?

𝑎

𝛿𝛿

𝛿𝛿

𝛿𝛿



How to improve?

▪ Fix a point 𝑎

▪ Focus on pair 𝑎, 𝑏
– 𝑏 is above 𝑎.

▪ What kind of pairs is impossible to be 
the closest one?
– 𝑏 is outside the 𝟐𝜹 × 𝜹-rectangle.

▪ Focus on the 𝟐𝜹 × 𝜹-rectangle

𝛿𝛿

Second 
Bonus 𝑎

𝛿𝛿

𝛿𝛿



Is that enough now?

▪ Why the first bonus is not enough?
– We can not bound the number of points!

▪ Can we bound it now?
– inside the 𝟐𝜹 × 𝜹-rectangle

𝑎

𝛿𝛿

𝛿𝛿

𝛿𝛿



Is that enough now?

▪ Why the first bonus is not enough?
– We can not bound the number of points!

▪ Can we bound it now?
– inside the 𝟐𝜹 × 𝜹-rectangle

𝑎

𝛿𝛿

𝛿𝛿

𝛿𝛿



Is that enough now?

▪ Why the first bonus is not enough?
– We can not bound the number of points!

▪ Can we bound it now?
– inside the 𝟐𝜹 × 𝜹-rectangle

▪ Focus on a 𝛿 × 𝛿-square
𝑎

𝛿𝛿

𝛿𝛿

𝛿𝛿



Points inside a 𝛿 × 𝛿-square

▪ How many points can at most 
appear in the square?

▪ Tips: distance at least 𝛿
– 𝛿 = min(𝛿𝐿, 𝛿𝑅)

𝛿𝛿

𝛿

𝛿



Points inside a 𝛿 × 𝛿-square

▪ How many points can at most 
appear in the square?

▪ Tips: distance at least 𝛿
– 𝛿 = min(𝛿𝐿, 𝛿𝑅)

▪ Divide into four sub-square
– How many point can at most appear in 

the sub-square?

▪ Two points are at most 
𝛿

2
< 𝛿 apart.

▪ At most one point!

▪ At most Four points in the square!

𝛿/2

𝛿/2𝛿/2

𝛿/2

𝛿/2 𝛿/2

𝛿/2𝛿/2

𝛿

2



Is that enough now?

▪ Why the first bonus is not enough?
– We can not bound the number of points!

▪ Can we bound it now?
– inside the 𝟐𝜹 × 𝜹-rectangle

▪ Focus on a 𝛿 × 𝛿-square
𝑎

𝛿𝛿

𝛿𝛿

𝛿𝛿



Is that enough now?

▪ Why the first bonus is not enough?
– We can not bound the number of points!

▪ Can we bound it now?
– inside the 𝟐𝜹 × 𝜹-rectangle

▪ Focus on a 𝛿 × 𝛿-square
– 4 points on the left 𝑎

𝛿𝛿

𝛿𝛿

𝛿𝛿



Is that enough now?

▪ Why the first bonus is not enough?
– We can not bound the number of points!

▪ Can we bound it now?
– inside the 𝟐𝜹 × 𝜹-rectangle

▪ Focus on a 𝛿 × 𝛿-square
– 4 points on the left

– 4 points on the right (including 𝑎)

𝑎

𝛿𝛿

𝛿𝛿

𝛿𝛿



Is that enough now?

▪ Why the first bonus is not enough?
– We can not bound the number of points!

▪ Can we bound it now?
– inside the 𝟐𝜹 × 𝜹-rectangle

▪ Focus on a 𝛿 × 𝛿-square
– 4 points on the left

– 4 points on the right (including 𝑎)

– 8 points totally (including 𝑎)

𝑎

𝛿𝛿

𝛿𝛿

𝛿𝛿



6

Closest pair in the 2𝛿-strip

▪ Brute-force
– Compute all pairs inside the 2𝛿-strip.

– 𝑂 𝑚2 : number of points inside

– Can we bound 𝑚?

– No: 𝑚 can be equal to 𝑛!

▪ Improved way
– Focus on point 𝑎

– Focus on pair 𝑎, 𝑏
▪ 𝑏 is above 𝑎.

– We only need to compute Seven 𝑏 above 𝑎.

3

7

𝑎

𝛿𝛿

𝛿𝛿

𝛿𝛿

1 2

54



Divide and Conquer Algorithm 

Function ClosestPair(𝑺)

▪ Divide:
1. Sort the points (by the x-coordinate).
2. Draw such a vertical line ℓ that each side has 𝑛/2 points.

▪ Recurse
3. Find the closest pair in each side, let 𝛿𝐿 , 𝛿𝑅 be the distance.

▪ Combine
4. Let 𝛿 = min{𝛿𝐿 , 𝛿𝑅} and 𝑆′ be the set of points at most 𝛿 from ℓ.
5. Sort 𝑆′ by the y-coordinate.
6. For each 𝑎 ∈ 𝑆′, check 7 𝑏 above 𝑎 inside 𝑆′, find the closest pair.
7. Return the closest pair among step 3 and 6.



Running time 

Function ClosestPair(𝑺)

▪ Divide:
1. Sort the points (by the x-coordinate).
2. Draw such a vertical line ℓ that each side has 𝑛/2 points.

▪ Recurse
3. Find the closest pair in each side, let 𝛿𝐿 , 𝛿𝑅 be the distance.

▪ Combine
4. Let 𝛿 = min{𝛿𝐿 , 𝛿𝑅} and 𝑆′ be the set of points at most 𝛿 from ℓ.
5. Sort 𝑆′ by the y-coordinate.
6. For each 𝑎 ∈ 𝑆′, check 7 𝑏 above 𝑎 inside 𝑆′, find the closest pair.
7. Return the closest pair among step 3 and 6.

Divide:𝑶(𝒏 log𝒏)

Recurse: 𝟐𝑻(
𝒏

𝟐
)

Recurse: 𝑶(𝒏 log𝒏)



Analysis

▪ 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑂(𝑛 log 𝑛)

▪ Recall Master Theorem

– 𝑇 𝑛 = 𝑂(𝑛 log𝑛) if 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑂(𝑛)

▪ Claim: 𝑇 𝑛 = 𝑂 𝑛 log2 𝑛

– We can not directly apply Master Theorem.

– Prove it by induction!

– Prove it by keep expending 𝑇 𝑛 !



Improve more

▪ Can we improve divide and combine to 𝑂 𝑛 ?

– If we success, then 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑂 𝑛 = 𝑂(𝑛 log 𝑛)

▪ Tips
– Do we actually need sorting every time?

– What happens if do sorting before divide and conquer?

▪ Even more
– A randomized algorithm achieves 𝑂 𝑛 .

▪ Samir Khuller and Yossi Matias (1995).

▪ A simple randomized sieve algorithm for the closest-pair problem.



Today’s goal

▪ Learn the closest pair algorithm

▪ Learn why we have the magical number 7 analytically 

▪ Learn to analyze the running time without Master Theorem


