Basic Graph Algorithms

Depth First Search and Its Applications



What is graphs?
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Vertex: for an

objective

Edges: for
/ connections
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We can have directions!

Vertex: for an

e objective

Arcs: for directed
/ connections |




Discussions

In a directed graph

- = Arc (u,v) means we can only go from u to v.

In an undirected graph
- Edge (u,v) means we can go from u to v or go from v to w.

Undirected graph & directed graph
- Undirected graph is a SPECIAL directed graph
- edge (u,v) - arc (u,v) & (v,u) -

How many arcs at most in an undirected graph?
- G(V,E)
- 0 < [E|l = VI(V] = 1) < 0(IVI?)



How to store a graph?

= ‘Adjacency Matrix '
= Adjacency List



Adjacency Matrix [space: O(VZ)]
- V] x |V| matrik (2d(.a.r'ray)
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Adjacency List {Space oV . E)J

= Linked list adj_[u] foreachu € V'

« The list contains all u’s neighbor.




Adjacency List [SPBCE oV [ E)]
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« Linked list adj[u] for eachu € V
= Node '

- v:the vertex
- hext

= Example

- adj[1]

" adj|2]

3

2
" adj|3.
4

- = adj[4]



How to prog ram?

= Input: The graph Size |V| and |E|, and |E| arcs.
- Qutput: Thé Adjacent Matrix or List

Create the Adjacent List
Foreach (w,v) € E
" node <« new Node
node.v < v _
node.next < adj[u]
adj[u] = node




Basic Graph Properties

= Reachability

- Can we go from u to v? |

- - Is v the friend of the friend of the friend ....... of v?
-“Can we travel from city u to v?

» Connected Components
— Undirected version ‘
- A maximal subgraph that each two vertices are reachable.
- A group of people who know each others
- Directed version?

S — < = - ———



Reachability problem

= - = . e

Input A graph G(V E) represented by an Adjacent Matrix,
~and a vertex u.

- Output: The set of vertices u can reach.



Observations | »

= Basic observation:
~ - Ifvisin the'Adjacent List (neighbor set) of u?
- vis reachable. '

. Advanced observation:

- If v is reachable |
- Vertices in v's Adjacent List (neighbor set) is also reachable.



Algorithmic Idea

= Explore & Explore
- Explore fromu

= Ifvis in the Adjacent List of u
= Continue to explore from v



Algorithmic Idea
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= Explore & Explore
- Explore fromu | |
= If visin the Adjacent List of u
= Continue to explore from v

= Have a try!
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Algorithmic Idea
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Explore & Explore
- Explore fromu

= Ifvisin the Adjacent List of u
= Continue to explore from v

Have a try!

Problem: Cycle!
-152-53->4->51

Solution
- Mark a vertex when we reach it
- Do not explore marked vertices




Dept_h—FirstSéarch

~+ Implement the Explore idea.

= What is DF_S'?'
- Explore & Explore

» Questions
- ‘How to loop all (u,v) € E?

- What is the running time of DFS? '

Function explore(v)
marked[v] « true
foreach (u,v) € E .

if marked[v] = false
explore(v)

Function dfs(G)
foreachveV
if marked[v] = false
explore(v)




DES in undirected graphs
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 How we DFS an undirected graph? Enction o raoE
: marked[v] « true
foreach (u,v) €E
[if marked[v] = false
explore(v) |

Function dfs(G)
foreachveV
if marked[v] = false
explore(v)
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DFS in undirected graphs |
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DFS in undiret_ted graphs |
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 How we DFS an undirected graph? Eunction cxalora b
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DFS in undiret_ted graphs
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 How we DFS an undirected graph? [ ction explore) -
: marked[v] « true
foreach (u,v) €E
\if marked[v] = false
explore(v) '

Function dfs(G)
foreachveV
if marked[v] = false
explore(v)




Discussion

= How many connected components?
- How to prove your solution?

e —

——

Function explore(v)

marked[v] « true
foreach (u,v) €E
\if marked[v] = false
explore(v) '

Functiondfs(G)
foreachveV
if marked[v] = false
explore(v)




DFS Tree (O'néConne‘ctedCompOnent)
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» Show the relationship among vertices | g ction explorew) -
- - Root: the first explored vertex . marked[v] « true

- If we explore v from u, then v is s child. foreach (u,v) €E
S < [if marked[v] = false

explore(v)




DFS Tree (O'ne'Conne‘ctedCo,mjb'onent) ‘
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= Show the relationship among vertices [ nction explore()

- Root: the first explored vertex . marked[v] < true
- If we explore v from u, then v is u's child. foreach (u,v) € E .
< [if marked[v] = false

explore(v)

* Kind of edges
* Tree edges
* Back edges




Why we introduce the DFS tree?

E——

. Do we have cycles 'in an undirected graph?

= What is a cycle? ‘
- @ (0,0,(0d) (20

» Observation
- There must be a marked vertex a.
- (z,a) should be a back edge.

« T: DFS tree of G

= Conjecture: T has back edges «— G has cycles

= How to prove it?-



Proof of The Conjecture

E——

= Conjecture: T has back edges «— G has cycles
= Proof

« —:1f T has a back edge, then G has a cycle.
- Can we point out a cycle based on this back edge?

= «: If G has a cycle, then T has a back edge.
- Can we point out one back edge in the cycle?



DFS on Directed Graphs

What is the difference?




DFS‘onDir'ect'e_d Graphs

e —

Answer verbatlm but Wlth
dlrectlons |

Function explore(v)

marked[v] « true
foreach (u,v) €E
\if marked[v] = false
explore(v) '

Function dfs(G)
foreachveV
if marked[v] = false
explore(v)




DFS\onDir‘ect'e_d Graphs
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- What about DFS trees? Eunction exploreivh.
: marked[v] « true
foreach (u,v) €E
\if marked[v] = false
explore(v) '

* Kind of edges
* Tree edges
~* Backedges




DFS on Directed Graphs

S — . S

=

Function explore(v)
marked[v] « true
foreach (w,v) €E .

\if marked[v] = false
explore(v) ‘

~« What about DFS trees?

* Kind of edges
* Tree edges
~* Forward edges
e Back edges
 Cross edges




Application: Topological Orderihg

S S

. A pre-requisite requ'irements'graph

« We want to find an order to finish these course.

= Can we find an order in any given graph?
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Why we can not find an order? :
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= A directed Cycle

- 1->3->4->1 ,
- - Compare to undirected cycle
- What if there is no cycle?

» Directed Acyclic Graph (DAG)

- a directed graph that does not contain any
cycle.




Topological Ordering for DAG

et = - —

» Is DAG equals to a topological order?
= Known: not DAG -> no order

. Unknown: DAG -> an order

 How to prove?

= Design an algorithm do topological ordering for DAG.



Topological Ordering for DAG

e = : —_—

= Observation |
- DAG must have a tail.
- Tail: vertices that do not have outgoing edges.

= Proof
- Start from v
- Does v has outgoing edges?
- Yes: go to next v’
- No: we are ok

- Fact: we do not have cycle > we can not go back - we must stop at
a talil. - ;



Topological O'rdering for DAG

S S

Observation |
- - DAG must have a tail.

: - Tail: vertices that do not have outgoing edges.

‘Tail can be the last one in the topological order.

Algorithm

- Find a tail. ;
Put it to be the last one in the topological order.
Remove the tail in the graph. '
Repeat...
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Topological O.rdering for DAG
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Observation

- - DAG must have a tail.

Tail: vertices that do not have outgoing edges.
Tail can be the last one in the topological order.

Algorithm

Find a tail. :

Put it to be the last one in the topological order.
Remove the tail in the graph. '
Repeat...




Topological Ordering for DAG

- Tail can be the last one in the topological order. ‘

= - = ' —

Observation |
- DAG must have a tail.
- Tail: vertices that do not have outgoing edges.

Algorithm

- Find a tail. ,

- Put it to be the last one in the topological order.
- Remove the tail in the graph. '

- Repeat... = 3



Topological Ordering for DAG
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Observation |
- DAG must have a tail.
- Tail: vertices that do not have outgoing edges.

Algorithm

- Find a tail. ,

- Put it to be the last one in the topological order.
- Remove the tail in the graph. '

- Repeat... = 3



Running Time?

= Running Time
- - |V]rounds = -
- Find a tail: o(|V])
- 'Remove a tail update: o(|V])
- Total: 0(|V]?)

» |s'the order feasible?

= Conclusion
- We can find a feasible topological order for DAG.
- DAG <~ A topological order



Improve it ‘by'DFS 3

e — - - __

=

Function explore(v)
marked|[v] « true
foreach (u,v) €E

\if marked[v] = false
explore(v) :

"; DFS tree for a DAG -

* Kind of edges
* Tree edges
~* Forward edges
* Back edges
 Cross edges




Improve it by DFS

— = - = : - - ———

Observatlon | ‘ Function explore(v)
= We do not have back edges in DAG . marked[v] < true
foreach (u,v) €E
\if marked[v] = false
explore(v) ‘

* Kind of edges
* Tree edges
~* Forward edges
+Backedges

 Cross edges




Topological Ordering by DFS

S S

E -'.Run DFS first! |

= Record the Start time and finish time.

time < 0 ’
Function explore(v)

start|[v] < time

time + +

marked|v] « true

foreach (u,v) € E

if marked[v] = false
explore(v)
finish[v] « time
time + +
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Discussion

- ‘We need repeat findinga tail.
= Who must be a tail in DFS?




Discussion

= ‘We need repeat findinga tail.

= After remoVihg'the g, who mut be a tail?




Discussion

= ‘We need repeat findinga tail.

* Who must be a tail when we do it again?




Conjecture
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We can seIect the vertex with the earliest finish time to be
the tail. |

= Algorithm: sort vertlces by descending order of finish time.




Prove the conjecture
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£ Claim: no arc (1, v),ﬂi,f finish[v] > finish[u].

= Proof: _

. = If (w,v) exists,

- Can (u,v) be a tree edge?

- Can (u,v) be a forward edge?
- Can (u,v) be a cross edge?




Prove the conjecture
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? Claim: no arc (u, v),-ih if finish[v] > finish[u].

Proof _

. = If (w,v) exists,
——Gan—éu—v}—be—a—tre&eelgel

—Can-(wv)-beaforward-edge?

—Can-(Gv)-be-acrossedge?
- Can (u,v) be a back edge?




Prove the conjecture
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? Claim: no arc (1, V),'T if finish[v] > finish[u].

Proof ,

- If (u, v) exists,
——Gan—éu—v}—be—a—tre&eelgel
——Can-(Gv)-beaforward-edge?
——Can-Guv)-bea-crossedge?
- Can (u,v) be a back edge? ~

Corollary: the descending order
of finish time is a topological order.

= Question: running time?



Running Time ‘

« 0|l loglV| +|ED?
— Run DFS with finish time
- Sort the finish time
- Output the topological order

= Smarter implementation
— During the DFS,
— When we finish a vertex,
— Append it to the topological order!

= O(|V| + |E|)?



Connect|V|ty In Dlrected
Graphs




Recall
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= Connect Componént(CC) in undirected graphs
= DFS can directly find CC in undirected graphs.
. How to define CC in directed graphs?



Connect Components in Directed Graphs
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Is the componént c‘anected?

= |t is weakly connected
- A weak connected component
- Undirected version is connected

How to make it strong?

What do we mean strong?
- Each pair (u, v)
- u can reach v, v can reach u.




Connect Components in Directed Graphs
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Is the componént c‘anected?

= |t is weakly connected
- A weak connected component
- Undirected version is connected

How to make it strong?

What do we mean strong?
- Each pair (u, v) =

- u can reach v, v can reach u.

- Called strongly connected




Strongly Connected Cbmpo_neht .(SCC)
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= The maximal subset of vertices
- - Each pair (w,v) |
- ucan reach v, v can reach w.

) @ |




ls SCCs a Partition?




Claim

= Want to prove
- Let ¢y, Cy, G35, C,y bE m connected components of G(V,E),
= GG UG, =V
- VC #C,C NG = 0.

= Claim:
- For each vertex v .
~- There exists and only exists one C; that contains v.



Proof

S _ S

= —: there exists a ¢; contains v.
- {v}is strongly connected.

- Keep explore {v} until it is maximal.

- It becomes a connected component.

= «: only one C; contains v.




One more ‘prOperty of strongly connected

e = x = - — — Aah s SLTRS e £

= Transitivity

- If a and b are strongly connected, and b and ¢ are strongly
- connected, then a and ¢ are strongly connected.

= Proof
- We have patha - b and b - a.
- We have path b - cand ¢ - b.
- So, we have patha - b - c.
- So, we have path ¢ > b - a.

= Corollary

- If a set C is strongly connected and b is strongly connected to a € C, '
then C U {a} Is strongly connected.



Proof
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= —: there exists a C; contains v.
- {v}is strongly connected.
- Keep explore {v} until it is maximal.
- It becomes a connected component.

= «: only one C; contains v.
- {1,2,v} is strongly connected
- {v,3,4} is strongly connected
- {1,2,3,4,v} is strongly connected
- Contradiction! |




The set of SCCs forms a
Partltlon of V' —=




Can we use DFS to fmd
SCCs7

—_—



= A Simple Attempt

S — _ S

= Start DFS from vertéx &




A Simple Atte'mpt =
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e Start DFS from vertéx 1=
- - Seemsgood




A Simple Atte'mpt =
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= Start DFS from vertex 5.
- - Bad: We cover two SCCs!




- Whatis the'tr'o‘uble? =

e — _ . ——

= Trouble: goin.goutﬂo'f the SCC

c o ¥




Question: can we handle it?
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? ‘Why start fro_m 5 is-‘ bad?
= Why start from 1 is good?

. What kind of start points are
good? |




Question: can we handle it?
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: ‘Why start from 5 is bad?
= Why start from 1 is good?

. What kind of start points are
good? |

= It's good if we are in a SCC
without outgoing edges. |




Does such SCC exist?

= Move to a big picture
- Let SCCs be Super Nodes.
- Vertices inside are somehow equivalent.

- (G ) exists € (u,v) exists (u € Cv € G)

= Questions
- Can we find a tail SCC in the SCC Graph?
- If we can not, what happens?
= There is a cycle ¢, Cs, ..., C,, forms a cycle.
= C, UG, ..U, is strongly connected.
- Corollary: the SCC Graph is a DAG!




A Better Attempt

et = - —

= Follow the descending topological order to DFS vertices.
- - Explore from a vertices inside the tail SCC.
- Form the SCC and remove it from the graph.

= Puzzle
- 1f we know the topological order, we know SCCs?
- If we know who are in the tail SCC, why we need to form it?

=« Answer

- We have an AMAZING way to find one vertex surely inside the tail
SCC.



Find one vertex surely inside the tail SCC.

—— = =S = - e —————

= Recall the topological ordering

- Tail is the one with smallest finish time.

~ - Can we apply it here?
- Start from 57? '




Find one vertex surely inside ,thé' tail SCC.

— - S = - = — - e

= Recall the topological ordering

- Tail is the one with smallest finish time.

~ - Can we apply it here?
- Start from 57 =
- 8is not in the Tail SCC.

= Problems
- We may have back edges.



Find one vertex surely inside the tail SEE

— = e - = - e —————

= Recall the topological ordering

- Tail is the one with smallest finish time.

~ - Can we apply it here?
- Start from 57 =
- 8is not in the Tail SCC.

» Can we ﬁnd a head?

- What about the vertex with Iargest
finish tlme?



Find one vertex surely inside the tail SCC.

S — < = - ———

= Naive Idea: the SCC contains the largest
finish time vertex must be the head SCC.

- Proof

- Assume
= u has the largest f|n|sh time.
= v inside another SCC has a path to w.

— Claim 1: u is the root of one DFS tree.
= Finish time property.

- Claim 2: v can not start earlier than u
= v is the root.

- Claim 3: v can not in u’'s DFS tree.
= u,v can not be strongly connected.

- Claim 4: v can not'in another DFS tree.
= p start later > v finish later.




How to use this property?




Find one vertex surely inside ,thé' tail SCC.

- =i ~ ' — : e T o

e The amazing idea!
~ - Find the vertex in the head SCC in the reverse graph!




How efficient you can do?




Realize the idea efficiently

E————

= Basic Plan

Construct GR

DFS G® with finish time.

Choose v with the largest finish time.
Explore(v) in G.

.. When it returns, reached vertices form one SCC.
Remove them in both ¢ and GX. ¢

Repeat from 2.

N o U s W=



Realize the idea efficiently

E————

= Super Plan |
1. DFS G® and maintain a sorted list by the finish time.
2. DFS G by the descending order of the finish time.

1. Keep explore vertices by the descending order.
3. Each explore() forms a SCC.



Today’s goal '

Learn DFS

Learn applications of DFS

- Connected Components

- Cycle

- Topological Order

- Strongly Connected Components

Learn to form a nice property of graphs
- Strongly Connected Components

Learn to analyze design the correctness of graph
algorithm -



