
Basic Graph Algorithms

Depth First Search and Its Applications



What is graphs?
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Large Graphs in Real World

Facebook friends Airlines



We can have directions!
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Arcs: for directed 
connections



Discussions

▪ In a directed graph
– Arc (𝑢, 𝑣) means we can only go from 𝑢 to 𝑣.

▪ In an undirected graph
– Edge (𝑢, 𝑣) means we can go from 𝑢 to 𝑣 or go from 𝑣 to 𝑢.

▪ Undirected graph & directed graph
– Undirected graph is a SPECIAL directed graph

– edge (𝑢, 𝑣) → arc (𝑢, 𝑣) & (𝑣, 𝑢)

▪ How many arcs at most in an undirected graph?
– 𝐺 𝑉, 𝐸

– 0 ≤ 𝐸 ≤ 𝑉 𝑉 − 1 ≤ 𝑂( 𝑉 2)



How to store a graph?

▪ Adjacency Matrix

▪ Adjacency List



Adjacency Matrix

▪ 𝑉 × 𝑉 matrix (2d array)

▪ 𝐴 𝑖, 𝑗 = ቊ
1 𝑖, 𝑗 ∈ 𝐸

0 𝑖, 𝑗 ∉ 𝐸
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1 2 3 4

1 0 0 0 0

2 1 0 1 0

3 0 0 0 0

4 1 0 1 0

Space: 𝑶(𝑽𝟐)



Adjacency List

▪ Linked list 𝑎𝑑𝑗 𝑢 for each 𝑢 ∈ 𝑉

▪ The list contains all 𝑢’s neighbor.
1
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Space: 𝑶(𝑽 + 𝑬)

1 2 3 4

1 0 0 0 0

2 1 0 1 0

3 0 0 0 0

4 1 0 1 0



Adjacency List

▪ Linked list 𝑎𝑑𝑗 𝑢 for each 𝑢 ∈ 𝑉

▪ Node
– 𝑣: the vertex 

– next

▪ Example

▪ 𝑎𝑑𝑗 1

▪ 𝑎𝑑𝑗 2

▪ 𝑎𝑑𝑗 3

▪ 𝑎𝑑𝑗 4
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Space: 𝑶(𝑽 + 𝑬)



How to program?

▪ Input: The graph size |𝑉| and |E|, and |E| arcs.

▪ Output: The Adjacent Matrix or List

Create the Adjacent List
For each 𝑢, 𝑣 ∈ 𝐸

𝑛𝑜𝑑𝑒 ← 𝑛𝑒𝑤 𝑁𝑜𝑑𝑒
𝑛𝑜𝑑𝑒. 𝑣 ← 𝑣
𝑛𝑜𝑑𝑒. 𝑛𝑒𝑥𝑡 ← 𝑎𝑑𝑗[𝑢]
ad𝑗 𝑢 = 𝑛𝑜𝑑𝑒



Basic Graph Properties

▪ Reachability
– Can we go from 𝑢 to 𝑣?

– Is 𝑣 the friend of the friend of the friend ……. of 𝑣?

– Can we travel from city 𝑢 to 𝑣?

▪ Connected Components
– Undirected version

– A maximal subgraph that each two vertices are reachable.

– A group of people who know each others

– Directed version? 



Reachability problem

▪ Input: A graph 𝐺(𝑉,𝐸), represented by an Adjacent Matrix, 
and a vertex 𝑢.

▪ Output: The set of vertices 𝑢 can reach.



Observations

▪ Basic observation:
– If 𝑣 is in the Adjacent List (neighbor set) of 𝑢?

– 𝑣 is reachable.

▪ Advanced observation:
– If 𝑣 is reachable

– Vertices in 𝑣′𝑠 Adjacent List (neighbor set) is also reachable.



Algorithmic Idea

▪ Explore & Explore
– Explore from 𝑢

▪ If 𝑣 is in the Adjacent List of 𝑢

▪ Continue to explore from 𝑣
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Algorithmic Idea

▪ Explore & Explore
– Explore from 𝑢

▪ If 𝑣 is in the Adjacent List of 𝑢

▪ Continue to explore from 𝑣

▪ Have a try!

▪ Problem: Cycle!
– 1 → 2 → 3 → 4 → 1

▪ Solution
– Mark a vertex when we reach it

– Do not explore marked vertices
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Depth-First Search

▪ Implement the Explore idea.

▪ What is DFS?
– Explore & Explore

▪ Questions
– How to loop all 𝑢, 𝑣 ∈ 𝐸?

– What is the running time of DFS?

Function explore(𝑣)
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

Function dfs(𝐺)

for each v ∈ 𝑉

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)



DFS in undirected graphs

▪ How we DFS an undirected graph? Function explore(𝑣)
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

Function dfs(𝐺)

for each v ∈ 𝑉

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)
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Discussion

▪ How many connected components?
– How to prove your solution?

Function explore(𝑣)
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

Function dfs(𝐺)

for each v ∈ 𝑉

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)
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dc
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DFS Tree (One Connected Component)

▪ Show the relationship among vertices
– Root: the first explored vertex

– If we explore 𝑣 from 𝑢, then 𝑣 is 𝑢’s child.

a b d

c

e f
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DFS Tree (One Connected Component)

▪ Show the relationship among vertices
– Root: the first explored vertex

– If we explore 𝑣 from 𝑢, then 𝑣 is 𝑢’s child.

a b d

c

e f

Function explore(𝑣)
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

• Kind of edges
• Tree edges
• Back edges



Why we introduce the DFS tree?

▪ Do we have cycles in an undirected graph?

▪ What is a cycle?
– 𝑎, 𝑏 , 𝑏, 𝑐 , 𝑐, 𝑑 , … . , (𝑧, 𝑎)

▪ Observation
– There must be a marked vertex 𝑎.

– (𝑧, 𝑎) should be a back edge.

▪ 𝑇: DFS tree of 𝐺

▪ Conjecture: 𝑇 has back edges ←→ 𝐺 has cycles

▪ How to prove it?



Proof of The Conjecture

▪ Conjecture: 𝑇 has back edges ←→ 𝐺 has cycles

▪ Proof

▪ →: If 𝑇 has a back edge, then 𝐺 has a cycle.
- Can we point out a cycle based on this back edge?

▪ ←: If 𝐺 has a cycle, then 𝑇 has a back edge.
– Can we point out one back edge in the cycle?



DFS on Directed Graphs

What is the difference?



DFS on Directed Graphs

▪ Answer: verbatim, but with 
directions.

Function explore(𝑣)
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

Function dfs(𝐺)

for each v ∈ 𝑉

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

a b

dc

e f

g

h



DFS on Directed Graphs

▪ What about DFS trees?

a b d

c

e f
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DFS on Directed Graphs

▪ What about DFS trees?

a b d

c

e f

• Kind of edges
• Tree edges
• Forward edges
• Back edges
• Cross edges

Function explore(𝑣)
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)



Application: Topological Ordering

▪ A pre-requisite requirements graph

▪ We want to find an order to finish these course.

▪ Can we find an order in any given graph?
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Why we can not find an order?

▪ A directed Cycle
– 1 -> 3 -> 4 -> 1 

– Compare to undirected cycle

▪ What if there is no cycle?

▪ Directed Acyclic Graph (DAG)
– a directed graph that does not contain any 

cycle.

1

2

43



Topological Ordering for DAG

▪ Is DAG equals to a topological order?

▪ Known: not DAG -> no order

▪ Unknown: DAG -> an order

▪ How to prove?

▪ Design an algorithm do topological ordering for DAG.



Topological Ordering for DAG

▪ Observation
– DAG must have a tail.

– Tail: vertices that do not have outgoing edges.

▪ Proof
– Start from 𝑣

– Does 𝑣 has outgoing edges?

– Yes: go to next 𝑣′

– No: we are ok

– Fact: we do not have cycle → we can not go back → we must stop at 
a tail.



Topological Ordering for DAG

▪ Observation
– DAG must have a tail.

– Tail: vertices that do not have outgoing edges.

– Tail can be the last one in the topological order.

▪ Algorithm
– Find a tail.

– Put it to be the last one in the topological order.

– Remove the tail in the graph.

– Repeat…
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Running Time?

▪ Running Time
– 𝑉 rounds

– Find a tail: 𝑂 𝑉

– Remove a tail update: 𝑂( 𝑉 )

– Total: 𝑶( 𝑽 𝟐)

▪ Is the order feasible?

▪ Conclusion
– We can find a feasible topological order for DAG.

– DAG → A topological order



Improve it by DFS

▪ DFS tree for a DAG Function explore(𝑣)
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

a b d

c

e f

• Kind of edges
• Tree edges
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• Back edges
• Cross edges



Improve it by DFS

▪ Observation
– We do not have back edges in DAG.

Function explore(𝑣)
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for each 𝑢, 𝑣 ∈ 𝐸
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Topological Ordering by DFS

𝑎
(?,?)

𝑏
(?,?)

𝑒
(?,?)

𝑐
(?,?)

𝑑
(?,?)

𝑓
(?,?)

𝑔
(?,?)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Topological Ordering by DFS

𝑎
(1,?)

𝑏
(?,?)

𝑒
(?,?)

𝑐
(?,?)

𝑑
(?,?)

𝑓
(?,?)

𝑔
(?,?)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Topological Ordering by DFS

𝑎
(1,?)

𝑏
(2,?)

𝑒
(?,?)

𝑐
(?,?)

𝑑
(?,?)

𝑓
(?,?)

𝑔
(?,?)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Topological Ordering by DFS

𝑎
(1,?)

𝑏
(2,?)

𝑒
(?,?)

𝑐
(?,?)

𝑑
(?,?)

𝑓
(3,?)

𝑔
(?,?)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Topological Ordering by DFS

𝑎
(1,?)

𝑏
(2,?)

𝑒
(?,?)

𝑐
(?,?)

𝑑
(?,?)

𝑓
(3,?)

𝑔
(4,?)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Topological Ordering by DFS

𝑎
(1,?)

𝑏
(2,?)

𝑒
(?,?)

𝑐
(?,?)

𝑑
(?,?)

𝑓
(3,?)

𝑔
(4,5)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Topological Ordering by DFS

𝑎
(1,?)

𝑏
(2,?)

𝑒
(?,?)

𝑐
(?,?)

𝑑
(?,?)

𝑓
(3,6)

𝑔
(4,5)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Topological Ordering by DFS

𝑎
(1,?)

𝑏
(2,7)

𝑒
(?,?)

𝑐
(?,?)

𝑑
(?,?)

𝑓
(3,6)

𝑔
(4,5)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Topological Ordering by DFS

𝑎
(1,?)

𝑏
(2,7)

𝑒
(?,?)

𝑐
(8,?)

𝑑
(?,?)

𝑓
(3,6)

𝑔
(4,5)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Topological Ordering by DFS

𝑎
(1,?)

𝑏
(2,7)

𝑒
(9,?)

𝑐
(8,?)

𝑑
(?,?)

𝑓
(3,6)

𝑔
(4,5)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Topological Ordering by DFS

𝑎
(1,?)

𝑏
(2,7)

𝑒
(9,10)

𝑐
(8,?)

𝑑
(?,?)

𝑓
(3,6)

𝑔
(4,5)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Topological Ordering by DFS

𝑎
(1,?)

𝑏
(2,7)

𝑒
(9,10)

𝑐
(8,11)

𝑑
(?,?)

𝑓
(3,6)

𝑔
(4,5)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Topological Ordering by DFS

𝑎
(1,?)

𝑏
(2,7)

𝑒
(9,10)

𝑐
(8,11)

𝑑
(12,?)

𝑓
(3,6)

𝑔
(4,5)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Topological Ordering by DFS

𝑎
(1,?)

𝑏
(2,7)

𝑒
(9,10)

𝑐
(8,11)

𝑑
(12,13)

𝑓
(3,6)

𝑔
(4,5)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Topological Ordering by DFS

𝑎
(1,14)

𝑏
(2,7)

𝑒
(9,10)

𝑐
(8,11)

𝑑
(12,13)

𝑓
(3,6)

𝑔
(4,5)

▪ Run DFS first!

▪ Record the start time and finish time.

𝑡𝑖𝑚𝑒 ← 0

Function explore(𝑣)
𝑠𝑡𝑎𝑟𝑡 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒

for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
explore(𝑣)

𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 ← 𝑡𝑖𝑚𝑒
𝑡𝑖𝑚𝑒 + +



Discussion

▪ We need repeat finding a tail.

▪ Who must be a tail in DFS?

𝑎
(1,14)

𝑏
(2,7)

𝑒
(9,10)

𝑐
(8,11)

𝑑
(12,13)

𝑓
(3,6)

𝑔
(4,5)



Discussion

▪ We need repeat finding a tail.

▪ After removing the 𝑔, who mut be a tail?

𝑎
(1,14)

𝑏
(2,7)

𝑒
(9,10)

𝑐
(8,11)

𝑑
(12,13)

𝑓
(3,6)

𝑔
(4,5)

Earliest 
Finish Time



Discussion

▪ We need repeat finding a tail.

▪ Who must be a tail when we do it again?

𝑎
(1,14)

𝑏
(2,7)

𝑒
(9,10)

𝑐
(8,11)

𝑑
(12,13)

𝑓
(3,6)

𝑔
(4,5)

Second 
Finish Time



Conjecture

▪ We can select the vertex with the earliest finish time to be 
the tail. 

▪ Algorithm: sort vertices by descending order of finish time.

𝑎
(1,14)

𝑏
(2,7)

𝑒
(9,10)

𝑐
(8,11)

𝑑
(12,13)

𝑓
(3,6)

𝑔
(4,5)



Prove the conjecture

▪ Claim: no arc (𝑢, 𝑣), if 𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 > 𝑓𝑖𝑛𝑖𝑠ℎ 𝑢 .

▪ Proof:
– If (𝑢, 𝑣) exists,

– Can 𝑢, 𝑣 be a tree edge?

– Can 𝑢, 𝑣 be a forward edge?

– Can 𝑢, 𝑣 be a cross edge?

𝑎
(1,14)

𝑏
(2,7)

𝑒
(9,10)

𝑐
(8,11)

𝑑
(12,13)

𝑓
(3,6)

𝑔
(4,5)



Prove the conjecture

▪ Claim: no arc (𝑢, 𝑣), if 𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 > 𝑓𝑖𝑛𝑖𝑠ℎ 𝑢 .

▪ Proof:
– If (𝑢, 𝑣) exists,

– Can 𝑢, 𝑣 be a tree edge?

– Can 𝑢, 𝑣 be a forward edge?

– Can 𝑢, 𝑣 be a cross edge?

– Can 𝑢, 𝑣 be a back edge?

𝑎
(1,14)

𝑏
(2,7)

𝑒
(9,10)

𝑐
(8,11)

𝑑
(12,13)

𝑓
(3,6)

𝑔
(4,5)



Prove the conjecture

▪ Claim: no arc (𝑢, 𝑣), if 𝑓𝑖𝑛𝑖𝑠ℎ 𝑣 > 𝑓𝑖𝑛𝑖𝑠ℎ 𝑢 .

▪ Proof:
– If (𝑢, 𝑣) exists,

– Can 𝑢, 𝑣 be a tree edge?

– Can 𝑢, 𝑣 be a forward edge?

– Can 𝑢, 𝑣 be a cross edge?

– Can 𝑢, 𝑣 be a back edge?

▪ Corollary: the descending order

of finish time is a topological order.

▪ Question: running time? 

𝑎
(1,14)

𝑏
(2,7)

𝑒
(9,10)

𝑐
(8,11)

𝑑
(12,13)

𝑓
(3,6)

𝑔
(4,5)Yes! That is why 

we need DAG!



Running Time

▪ 𝑂 𝑉 log 𝑉 + 𝐸 ?
– Run DFS with finish time

– Sort the finish time

– Output the topological order

▪ Smarter implementation
– During the DFS,

– When we finish a vertex,

– Append it to the topological order!

▪ 𝑶 𝑽 + 𝑬 ?



Connectivity in Directed 
Graphs



Recall

▪ Connect Component(CC) in undirected graphs

▪ DFS can directly find CC in undirected graphs.

▪ How to define CC in directed graphs?



Connect Components in Directed Graphs

▪ Is the component connected?

▪ It is weakly connected
– A weak connected component

– Undirected version is connected

▪ How to make it strong?

▪ What do we mean strong?
– Each pair 𝑢, 𝑣

– 𝑢 can reach 𝑣, 𝑣 can reach 𝑢.

1
2

3

4



Connect Components in Directed Graphs

▪ Is the component connected?

▪ It is weakly connected
– A weak connected component

– Undirected version is connected

▪ How to make it strong?

▪ What do we mean strong?
– Each pair 𝑢, 𝑣

– 𝑢 can reach 𝑣, 𝑣 can reach 𝑢.

– Called strongly connected

1
2

3

4



Strongly Connected Component (SCC)

▪ The maximal subset of vertices
– Each pair 𝑢, 𝑣

– 𝑢 can reach 𝑣, 𝑣 can reach 𝑢.

1 2

34

5

7

6

8



Is SCCs a Partition?



Claim

▪ Want to prove
– Let 𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑚 be 𝑚 connected components of 𝐺 𝑉, 𝐸 ,

– 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ … ∪ 𝐶𝑚 = 𝑉.

– ∀𝐶𝑖 ≠ 𝐶𝑗 , 𝐶𝑖 ∩ 𝐶𝑗 = ∅. 

▪ Claim:
– For each vertex 𝑣

– There exists and only exists one 𝐶𝑖 that contains 𝑣.



Proof 

▪ →: there exists a 𝐶𝑖 contains 𝑣.
– {𝑣} is strongly connected.

– Keep explore {𝑣} until it is maximal.

– It becomes a connected component.

▪ ←: only one 𝐶𝑖 contains 𝑣.

1
𝑣

2

3

4



One more property of strongly connected

▪ Transitivity
– If 𝑎 and 𝑏 are strongly connected, and 𝑏 and 𝑐 are strongly 

connected, then 𝑎 and 𝑐 are strongly connected.

▪ Proof
– We have path 𝑎 → 𝑏 and 𝑏 → 𝑎.

– We have path 𝑏 → 𝑐 and 𝑐 → 𝑏.

– So, we have path 𝑎 → 𝑏 → 𝑐.

– So, we have path 𝑐 → 𝑏 → 𝑎.

▪ Corollary
– If a set 𝐶 is strongly connected and 𝑏 is strongly connected to 𝑎 ∈ 𝐶, 

then 𝐶 ∪ {𝑎} is strongly connected.



Proof 

▪ →: there exists a 𝐶𝑖 contains 𝑣.
– {𝑣} is strongly connected.

– Keep explore {𝑣} until it is maximal.

– It becomes a connected component.

▪ ←: only one 𝐶𝑖 contains 𝑣.
– 1,2, 𝑣 is strongly connected

– {𝑣, 3,4} is strongly connected

– {1,2,3,4, 𝑣} is strongly connected

– Contradiction!

1
𝑣
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The set of  SCCs forms a  
Partition of 𝑉!



Can we use DFS to find 
SCCs?



A Simple Attempt

▪ Start DFS from vertex 1.
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A Simple Attempt

▪ Start DFS from vertex 1.
– Seems good
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A Simple Attempt

▪ Start DFS from vertex 5.
– Bad: We cover two SCCs! 
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What is the trouble?

▪ Trouble: going out of the SCC
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Question: can we handle it?

▪ Why start from 5 is bad?

▪ Why start from 1 is good?

▪ What kind of start points are 
good? 1 2
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Question: can we handle it?

▪ Why start from 5 is bad?

▪ Why start from 1 is good?

▪ What kind of start points are 
good?

▪ It’s good if we are in a SCC 
without outgoing edges.
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Does such SCC exist?

▪ Move to a big picture
– Let SCCs be Super Nodes.

– Vertices inside are somehow equivalent.

– 𝐶𝑖 , 𝐶𝑗 exists → (𝑢, 𝑣) exists (𝑢 ∈ 𝐶𝑖 , 𝑣 ∈ 𝐶𝑗)

▪ Questions
– Can we find a tail SCC in the SCC Graph?

– If we can not, what happens?
▪ There is a cycle 𝐶1, 𝐶2, … , 𝐶𝑚 forms a cycle.

▪ 𝐶1 ∪ 𝐶2 … ∪ 𝐶𝑚 is strongly connected.

– Corollary: the SCC Graph is a DAG!

𝐶1

𝐶2

𝐶5

𝐶4

𝐶3



A Better Attempt

▪ Follow the descending topological order to DFS vertices.
– Explore from a vertices inside the tail SCC.

– Form the SCC and remove it from the graph.

– Repeat……

▪ Puzzle
– If we know the topological order, we know SCCs?

– If we know who are in the tail SCC, why we need to form it?

▪ Answer
– We have an AMAZING way to find one vertex surely inside the tail

SCC.



Find one vertex surely inside the tail SCC. 

▪ Recall the topological ordering
– Tail is the one with smallest finish time.

– Can we apply it here?

– Start from 5?
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Find one vertex surely inside the tail SCC. 

▪ Recall the topological ordering
– Tail is the one with smallest finish time.

– Can we apply it here?

– Start from 5?

– 8 is not in the Tail SCC.

▪ Problems
– We may have back edges.
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Find one vertex surely inside the tail SCC. 

▪ Recall the topological ordering
– Tail is the one with smallest finish time.

– Can we apply it here?

– Start from 5?

– 8 is not in the Tail SCC.

▪ Can we find a head?
– What about the vertex with largest 

finish time?
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Find one vertex surely inside the tail SCC. 

▪ Naïve Idea: the SCC contains the largest
finish time vertex must be the head SCC.

▪ Proof
– Assume 

▪ 𝑢 has the largest finish time.
▪ 𝑣 inside another SCC has a path to 𝑢. 

– Claim 1: 𝑢 is the root of one DFS tree.
▪ Finish time property.

– Claim 2: 𝑣 can not start earlier than 𝑢
▪ 𝑣 is the root.

– Claim 3: 𝑣 can not in 𝑢′𝑠 DFS tree.
▪ 𝑢, 𝑣 can not be strongly connected.

– Claim 4: 𝑣 can not in another DFS tree.
▪ 𝑣 start later → 𝑣 finish later.

𝑢

𝑣



How to use this property?



Find one vertex surely inside the tail SCC. 

▪ The amazing idea!
– Find the vertex in the head SCC in the reverse graph!

1 2

34

5

7

6

8

1 2

34

5

7

6

8



How efficient you can do?



Realize the idea efficiently

▪ Basic Plan 
1. Construct 𝐺𝑅

2. DFS 𝐺𝑅 with finish time.

3. Choose 𝑣 with the largest finish time.

4. Explore(𝑣) in 𝐺.

5. When it returns, reached vertices form one SCC.

6. Remove them in both 𝐺 and 𝐺𝑅.

7. Repeat from 2.



Realize the idea efficiently

▪ Super Plan
1. DFS 𝐺𝑅 and maintain a sorted list by the finish time.

2. DFS 𝐺 by the descending order of the finish time.

1. Keep explore vertices by the descending order.

3. Each explore() forms a SCC.



Today’s goal

▪ Learn DFS

▪ Learn applications of DFS
– Connected Components

– Cycle

– Topological Order

– Strongly Connected Components

▪ Learn to form a nice property of graphs
– Strongly Connected Components

▪ Learn to analyze design the correctness of graph 
algorithm


