
Shortest Path

BFS and Dijkstra



What is path?

▪ Today we discuss directed graphs!

▪ 1 to 4 Path

▪ Not a 1 to 4 path

▪ Length: the number of arcs in the path.
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Vertices Distance

▪ How to define distance?

▪ 𝑑(𝑢, 𝑣): the length of shortest path from 𝑢 to 𝑣.
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Single-Source Shortest Path Problems 

▪ Input: A directed graph 𝐺(𝑉,𝐸), represented by an 
Adjacent Matrix, and a source vertex 𝑠.

▪ Output: Distance d(𝑠, 𝑣), for all 𝑣 ∈ 𝑉.
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Key Idea

▪ Input: A directed graph 𝐺(𝑉,𝐸), represented by an 
Adjacent Matrix, and a source vertex 𝑠.

▪ Output: Distance d(𝑠, 𝑣), for all 𝑣 ∈ 𝑉.

▪ Idea
– Walk from 𝑠

– Keep walking

– Walk 1 step: Arrive distance 1 vertices

– Walk 2 steps: Arrive distance 2 vertices

– Walk 3 steps; Arrive distance 3 vertices

– ……



Can DFS help us?

▪ DFS after 4 explorations.

▪ Problems:
– Vertex 5 not visited (only distance 1)

– Arrive vertex 4 with length 3
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How to Implement the Idea?

▪ 𝑉𝑘: the set of vertices 𝑣 with 𝑑 𝑠, 𝑣 = 𝑘.

▪ 𝑉0={𝑠}

▪ Key question
– Can we know 𝑉𝑘+1, if we know 𝑉1, 𝑉2, … , 𝑉𝑘?

– Yes!

– 𝑣 ∈ 𝑉𝑘+1 if and only if
▪ 𝑢 ∈ 𝑉𝑘 and (𝑢, 𝑣) exists

▪ 𝑣 ∉ 𝑉𝑙 , ∀𝑙 ≤ 𝑘.
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Breadth-First Search (BFS)

▪ A water frontier.
– Explore 𝑠
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Breadth-First Search (BFS)

▪ A water frontier.
– Explore 𝑠

– Explore 𝑉1
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Breadth-First Search (BFS)

▪ A water frontier.
– Explore 𝑠

– Explore 𝑉1
– Explore 𝑉2
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Breadth-First Search (BFS)

▪ A water frontier.
– Explore 𝑠

– Explore 𝑉1
– Explore 𝑉2
– …
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BFS Tree

▪ A water frontier.
– Explore 𝑠

– Explore 𝑉1
– Explore 𝑉2
– …

▪ The layer of the vertex

▪ = The distance from 𝑠
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How to program?

Breadth First Search 
Function bfs(𝐺, 𝑠)

for each v ∈ 𝑉 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← [0]
𝑖 ← 0 (layer counter)
𝑉0 ← {𝑠}

while 𝑉𝑖 is not empty

for each 𝑢 ∈ 𝑉𝑖
for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒
Add 𝑣 into 𝑉𝑖+1

𝑖 ← 𝑖 + 1

Each vertex can be 
only marked once

Each edge can be only 
checked once

Running Time? 
𝑶(𝑽+𝑬)



Output Path?

▪ What if we want to output 
the shortest path?

▪ Solution
– Maintain an array 𝑝𝑟𝑒[𝑣] means 

who 𝑣 is explored by.

Breadth First Search 
Function bfs(𝐺, 𝑠)

for each v ∈ 𝑉 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← [0]
𝑖 ← 0 (layer counter)
𝑉0 ← {𝑠}

while 𝑉𝑖 is not empty

for each 𝑢 ∈ 𝑉𝑖
for each 𝑢, 𝑣 ∈ 𝐸

if 𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 = 𝑓𝑎𝑙𝑠𝑒
𝑚𝑎𝑟𝑘𝑒𝑑 𝑣 ← 𝑡𝑟𝑢𝑒
Add 𝑣 into 𝑉𝑖+1
𝑝𝑟𝑒 𝑣 ← 𝑢

𝑖 ← 𝑖 + 1



DFS vs BFS

DFS BFS

Detecting Cycles YES NO

Topological Ordering YES NO

Finding CCs YES YES

Finding SCCs YES NO

Shortest Path NO YES

▪ Hard to separate cross edge and back edges in BFS

▪ Finish time is meaningful in BFS



What if edges have length?

Dijkstra Algorithm



Single-Source Shortest Path for Weighted 
graphs

▪ New Input! 
– 𝑤(𝑢, 𝑣) for each edge (𝑢, 𝑣)

– Means the weight or length.

▪ New Length of Path
– The number of edges in the path?

– The sum of edges’ length in the path.

– Length 𝑠 → 𝑒 → 𝑐 = 9

– Length 𝑠 → 𝑎 → 𝑏 → 𝑐 = 5 𝑠 𝑎 𝑏 𝑐
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Rough Observation

▪ Can we use the BFS idea?

▪ Do all shortest paths form a tree?

𝑠 𝑎 𝑏 𝑐

𝑒

𝑑

3 1 1
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Try to prove!

▪ Question: do we always have a Shortest Path Tree for a 
general graph?

▪ Shortest Path Tree (SPT)
– 𝑣 ∈ 𝑇, 𝑠 → 𝑣 path in 𝑇 is the shortest path in 𝐺.

▪ Start point
– {𝑠} is a SPT.

▪ Next
– Can we always explore current SPT until all vertices are included?



Key Task

▪ Given: a small SPT (not contains all the vertices)

▪ Want: a larger SPT
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Key Task

▪ Can we explore 𝑣 into 𝑇?

𝑠

𝑎

𝑏

𝑇

▪ Given: a small SPT (not 
contains all the vertices)

▪ Want: a larger SPT

𝑣



Key Task

▪ Given: a small SPT (not 
contains all the vertices)

▪ Want: a larger SPT

▪ Can we explore 𝑣 into 𝑇?

▪ Property of SPT
– True distance: 𝑑𝑖𝑠𝑡(𝑢) = 𝑑(𝑠, 𝑢)

– Local distance: 𝑑𝑖𝑠𝑡𝑇 𝑢 only allows to 
go through 𝑇.

– Basic property 𝑑𝑖𝑠𝑡𝑇(𝑢)=𝑑𝑖𝑠𝑡(𝑢) if 𝑢 ∈ 𝑇

▪ 𝑑𝑖𝑠𝑡𝑇 𝑣 : shortest 𝑇-path 𝑠 → 𝑇 → 𝑣

▪ 𝑑𝑖𝑠𝑡𝑇 𝑣 = min
𝑢∈𝑇

𝑑𝑖𝑠𝑡𝑇(𝑣) + 𝑑(𝑢, 𝑣)
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Key Task

▪ Facts for 𝑇
– True distance: 𝑑𝑖𝑠𝑡(𝑣) = 𝑑(𝑠, 𝑣)

– Local distance: 𝑑𝑖𝑠𝑡𝑇 𝑣 only allows to 
go through vertices in 𝑇.

– Basic property 𝑑𝑖𝑠𝑡𝑇(𝑣)=𝑑𝑖𝑠𝑡(𝑣) if 𝑣 ∈ 𝑇

▪ 𝑑𝑖𝑠𝑡𝑇 𝑣 : shortest 𝑇-path 𝑠 → 𝑇 → 𝑣

▪ 𝑑𝑖𝑠𝑡𝑇 𝑣 = min
𝑢∈𝑇

𝑑𝑖𝑠𝑡𝑇(𝑢) + 𝑑(𝑢, 𝑣)
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▪ Given: a small SPT (not 
contains all the vertices)

▪ Want: a larger SPT

▪ Can we explore 𝑣 into 𝑇?

▪ 𝑠 → 𝑎 → 𝑣 = 9

▪ 𝑠 → 𝑏 → 𝑣 = 8

▪ 𝑑𝑖𝑠𝑡𝑇 𝑣 = 8



Key Task

▪ Try to explore 𝑣 into 𝑇

▪ Naturally, we should connect it to 
argmin

𝑢∈𝑇
𝑑𝑖𝑠𝑡𝑇(𝑢) + 𝑑(𝑢, 𝑣)

▪ Is that still an SPT?
– Need to keep: Shortest 𝑇-path is the 

shortest path in 𝐺.

– All the other vertices except 𝑣 is ok

– Shortest 𝑇-path: 𝑑𝑖𝑠𝑡𝑇(𝑣)

– Key challenge: 𝑑𝑖𝑠𝑡𝑇 𝑣 ≤ 𝑑𝑖𝑠𝑡 𝑣 ? 𝑠

𝑎

𝑏

𝑇 𝑣

▪ Given: a small SPT (not 
contains all the vertices)

▪ Want: a larger SPT

▪ Can we explore 𝑣 into 𝑇?

5

7

4

1



Prove 𝑑𝑖𝑠𝑡𝑇 𝑣 ≤ 𝑑𝑖𝑠𝑡 𝑣

▪ Assume 𝑑𝑖𝑠𝑡𝑇 𝑣 > 𝑑𝑖𝑠𝑡 𝑣

▪ Is that possible?

▪ Sorry, the answer is YES.

▪ 𝑠 → 𝑥 → 𝑣 = 7, 𝑥 ∉ 𝑇.

𝑠

𝑎

𝑏

𝑇
𝑣

▪ Given: a small SPT (not 
contains all the vertices)

▪ Want: a larger SPT

▪ Can we explore 𝑣 into 𝑇?
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How to handle it?

▪ Recall BFS idea

▪ Each time, we explore a closest 
vertex.

▪ What happens now?

▪ 𝒙 is a closer vertex than 𝒗.

▪ Why not explore 𝒙?

▪ Formalize: Choose the vertex 𝑣
with smallest 𝑑𝑖𝑠𝑡𝑇(𝑣)!

𝑠

𝑎

𝑏

𝑇
𝑣5
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Prove 𝑑𝑖𝑠𝑡𝑇 𝑣 ≤ 𝑑𝑖𝑠𝑡 𝑣 AGAIN!

▪ Try to explore 𝑣 into 𝑇

▪ Naturally, we should connect it 
to argmin

𝑢∈𝑇
𝑑𝑖𝑠𝑡𝑇(𝑢)

▪ Assume 𝑑𝑖𝑠𝑡𝑇 𝑣 > 𝑑𝑖𝑠𝑡 𝑣

▪ 𝑥 ∉ 𝑇, 𝑠 → 𝑥 → 𝑣 < 𝑑𝑖𝑠𝑡𝑇 𝑣

▪ 𝑑𝑖𝑠𝑡𝑇 𝑥 is a part of 𝑠 → 𝑥 → 𝑣

▪ 𝑑𝑖𝑠𝑡𝑇 𝑥 < 𝑑𝑖𝑠𝑡𝑇 𝑣

▪ Contradiction!

𝑠

𝑎

𝑏

𝑇 5
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Yah! Success

▪ Given: a small SPT (not contains all the vertices)

▪ Want: a larger SPT

▪ Can we explore 𝑣 into 𝑇?

▪ Yes!

▪ We can find 𝑣 = argmin
𝑢∈𝑇

𝑑𝑖𝑠𝑡𝑇(𝑢) to explore! (Closest)

▪ Finally, we can get SPT that contains all vertices!
– Assume 𝑠 can arrive all vertices



Dijkstra Algorithm

Dijkstra(𝑮 = (𝑽, 𝑬), 𝒔)

1. Initialize 
– 𝑇 = 𝑠 ,

– 𝑡𝑑𝑖𝑠𝑡 𝑠 = 0, 𝑡𝑑𝑖𝑠𝑡 𝑣 ← ∞ for all 𝑣 other than 𝑠.

– 𝑡𝑑𝑖𝑠𝑡 𝑣 ← 𝑤(𝑠, 𝑣) for all 𝑠, 𝑣 ∈ 𝐸.

2. Explore
– Find 𝑣 ∉ 𝑇 with smallest 𝑡𝑑𝑖𝑠𝑡[𝑣].

– 𝑇 ← 𝑇 + {𝑣}

3. Update 𝒕𝒅𝒊𝒔𝒕 𝒖
– 𝑡𝑑𝑖𝑠𝑡 𝑢 = min{𝑡𝑑𝑖𝑠𝑡 𝑢 , 𝑡𝑑𝑖𝑠𝑡 𝑣 + 𝑤(𝑣, 𝑢)} for all 𝑣, 𝑢 ∈ 𝐸
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Sample Run
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Output a path?

Dijkstra(𝑮 = (𝑽, 𝑬), 𝒔)

1. Initialize 
– 𝑇 ← 𝑠

– 𝑡𝑑𝑖𝑠𝑡 𝑣 ← 𝑤 𝑠, 𝑣 , 𝑝𝑟𝑒 𝑣 ← 𝑠 for all 𝑠, 𝑣 ∈ 𝐸. 

2. Explore
– Find 𝑣 ∉ 𝑇 with smallest 𝑡𝑑𝑖𝑠𝑡[𝑣].

– 𝑇 ← 𝑇 + {𝑣}

3. Update 𝒕𝒅𝒊𝒔𝒕 𝒖
– 𝑡𝑑𝑖𝑠𝑡 𝑢 = min{𝑡𝑑𝑖𝑠𝑡 𝑢 , 𝑡𝑑𝑖𝑠𝑡 𝑣 + 𝑤(𝑣, 𝑢)} for all 𝑣, 𝑢 ∈ 𝐸.

– If 𝑡𝑑𝑖𝑠𝑡 𝑢 is updated, then 𝑝𝑟𝑒 𝑢 ← 𝑣.



Time Complexity

Dijkstra(𝑮 = (𝑽, 𝑬), 𝒔)

1. Initialize 
– 𝑇 ← 𝑠

– 𝑡𝑑𝑖𝑠𝑡 𝑣 ← 𝑤 𝑠, 𝑣 , 𝑝𝑟𝑒 𝑣 ← 𝑠 for all 𝑠, 𝑣 ∈ 𝐸. 

2. Explore
– Find 𝑣 ∉ 𝑇 with smallest 𝑡𝑑𝑖𝑠𝑡[𝑣].

– 𝑇 ← 𝑇 + {𝑣}

3. Update 𝒕𝒅𝒊𝒔𝒕 𝒖
– 𝑡𝑑𝑖𝑠𝑡 𝑢 = min{𝑡𝑑𝑖𝑠𝑡 𝑢 , 𝑡𝑑𝑖𝑠𝑡 𝑣 + 𝑤(𝑣, 𝑢)} for all 𝑣, 𝑢 ∈ 𝐸.

– If 𝑡𝑑𝑖𝑠𝑡 𝑢 is updated, then 𝑝𝑟𝑒 𝑢 ← 𝑣.

𝑉 rounds

𝐸 rounds

𝐸 rounds



Time Complexity: Conclusion

▪ Find Min
– |𝑉| rounds

▪ Update
– |E| rounds

▪ If we use simple array, then
– First round find min: |𝑉| − 1

– Second round find min: |𝑉| − 2

– …
– Find min totally: 𝑂( 𝑉 2)

– Each update: 𝑂(1)
– Update totally: 𝑂( 𝐸 )

– Algorithm totally: 𝑶( 𝑽 𝟐 + |𝑬|)



Improve Dijkstra by Heap!

▪ Find Min
– |𝑉| rounds

▪ Update
– |E| rounds

▪ What about heap?

Pop Max Insert Update Key Merge

Binary Heap 𝑂(log 𝑛) 𝑂(log 𝑛) 𝑂(log 𝑛) 𝑂(𝑛)

𝑑-nary Heap 𝑂(𝑑log𝑑 𝑛) 𝑂(log𝑑 𝑛) 𝑂(log𝑑 𝑛) 𝑂(𝑛)

Binomial Heap 𝑂(log 𝑛) 𝑂(1) 𝑂(log 𝑛) 𝑂(log 𝑛)

Fibonacci 𝑂(log 𝑛) 𝑂(1) 𝑂(1) 𝑂(1)



Improve Dijkstra by Heap!

▪ Binary Heap
– Find Min: 𝑂(|𝑉| log |𝑉|)

– Update: 𝑂( 𝐸 log 𝐸 )

– Totally: 𝑶( 𝑽 + 𝑬 𝐥𝐨𝐠 |𝑽|)

▪ 𝑑-nary Heap
– Find Min: 𝑂(|𝑉|𝑑 log𝑑 |𝑉|)

– Update: 𝑂( 𝐸 log𝑑 |𝐸|)

– Set 𝑑 = 𝐸 / 𝑉

– Totally: 𝑶(|𝑬| 𝐥𝐨𝐠 𝑬 / 𝑽 |𝑽|)

Pop Min Insert Update Key Merge

Binary Heap 𝑂(log 𝑛) 𝑂(log 𝑛) 𝑂(log 𝑛) 𝑂(𝑛)

𝑑-nary Heap 𝑂(𝑑log𝑑 𝑛) 𝑂(log𝑑 𝑛) 𝑂(log𝑑 𝑛) 𝑂(𝑛)

Binomial Heap 𝑂(log 𝑛) 𝑂(1) 𝑂(log 𝑛) 𝑂(log 𝑛)

Fibonacci 𝑂(log 𝑛) 𝑂(1) 𝑂(1) 𝑂(1)

▪ Fibonacci Heap
– Find Min: 𝑂(|𝑉| log |𝑉|)

– Update: 𝑂( 𝐸 )

– Totally: 𝑶( 𝑬 + 𝑽 𝐥𝐨𝐠 |𝑽|)

– Better than 𝑶( 𝑽 𝟐 + |𝑬|)



Quick Review (or Preview?): Binary Heap 
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Quick Review (or Preview?): Binary Heap 
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It is still balance!



Quick Review (or Preview?): 𝑑-nary Heap 
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UPDATE

Height:𝑶(𝐥𝐨𝐠𝒅𝒏)
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Quick Review (or Preview?): 𝑑-nary Heap 
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Quick Review (or Preview?): Fibonacci Heap
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Still many problems!

▪ Update seems good: 𝑶 𝟏

▪ Pop Min need to compare all the roots?

▪ It can be very bad: 𝑶 𝒏 !



Fix the problem!

▪ Update seems good: 𝑶 𝟏

▪ Pop Min need to compare all the roots?

▪ It can be very bad: 𝑶 𝒏 !

▪ Solution
– Each degree at most has one root! 

▪ 1 root with degree 1, 1 root with degree 2……

– Bound Largest degree → Bound the number of roots! 



Before move the MIN pointer: Merge
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Before move the MIN pointer: Merge
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If we do not do anything?

…

POPMIN
MIN

Degree 𝑘 root is size 𝑘 + 1, number of roots = largest degree = √𝑛.



How to make a degree 𝑘 tree large?

▪ Build a good tree at the beginning.

▪ We can not break the good property a lot!



Build a Good Tree (Recall Binomial Heap)
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Build a Good Tree (Recall Binomial Heap)
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We only allow each 
non-root node to lose 

one child.



Maximum Broken tree

4

0 21

0 0 1

0

We only allow each 
non-root node to lose 

one child.

3

0 1

0

2



Maximum Broken tree

4

0 21

0 0 1

0

We only allow each 
non-root node to lose 

one child.

3

0 1

0

2Degree 0 subtree: 1 nodes
Degree 1 subtree: 1 nodes
Degree 2 subtree: 2 nodes
Degree 3 subtree: 3 nodes
Degree 4 subtree: 5 nodes 



Conclusion

▪ Degree 𝑘 root contains

▪ At least 𝐹(𝑘) nodes

▪ 𝐹 𝑘 = σ𝑖=1
𝑘 𝑓𝑖𝑏(𝑖) = 𝑂(𝐶𝑘)

▪ Max degree is around 𝐷 = 𝑂(log 𝑛).



How to maintain this
property?

Cascading Cut



Fibonacci Heap: Cascading Cut
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Still many problems…

▪ What we have:

▪ We can control 𝐷 = 𝑂 log 𝑛 before moving Min Pointer.

▪ But!

▪ How long we pay for the cascading cut?

▪ How long we pay for the root merging?

▪ They may be very large at one time

▪ But we can use amortized analysis.



Time Complexity: Update

▪ Original cut: 1

▪ Cascading cut: < #marked nodes. (called 𝑚)

▪ Time: 𝑶 𝒎



Time Complexity: POPMIN

▪ Delete Min
– Time = 𝑂(𝐷)

▪ Merge
– 𝐷 is max degree

– #roots(before merging)  ≤ #roots(before POPMIN) + 𝐷

– Time = 𝑂(𝑡− + 𝐷 − 𝑡+)

▪ Pointer move to new Min
– Time = 𝑂(𝑡+)

▪ Totally: 𝑶(𝒕− + 𝟐𝑫)



Amortized Analysis: Potential Function

▪ 𝐶: actual cost of an operation

▪ መ𝐶: Amortized cost of an operation

▪ Some operation may have small 𝐶 make later operation 
bad.

▪ Let it pay for it by itself, so we let መ𝐶 = 𝐶 + 𝛿 ⋅ ΔΦ.

▪ Φ is a function to evaluate current state. 

▪ σ መ𝐶 = σ𝐶 + σ𝛿 ⋅ ΔΦ = σ𝐶 + 𝛿 ⋅ Φ

A chosen 
constant.

A chosen 
constant.



Amortized Analysis: Stack

▪ Operations
– Pop all elements one by one.
– Push one element. 

▪ Potential Function
– Φ = #elemnts

▪ Push
– 𝐶 = 𝑶(𝟏)

– መ𝐶 = 𝑂 1 + 𝛿 ⋅ 1 = 𝑶(𝟏)

▪ Pop
– 𝐶 = 𝑶(𝒌)

– መ𝐶 = 𝑂 𝑘 + 𝛿 ⋅ −𝑘 = 𝑶(𝟏)



Amortized Analysis: Fibonacci Heap

▪ Update: 𝑂(𝑚)

▪ Pop Min: 𝑂(𝑡− + 𝐷)

▪ What is bad?
– #marked nodes
– #roots

▪ Potential Function： 𝚽 = 𝒕 + 𝟐𝒎

▪ Why we need 2𝑚?

▪ 𝑚 has two bad things
– One more cut!
– One potential root!



Fibonacci Heap: Cascading Cut
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Amortized Analysis: Fibonacci Heap

▪ Update: 𝑂(𝑚)

▪ Pop Min: 𝑂(𝑡− + 𝐷)

▪ Potential Function： 𝚽 = 𝒕 + 𝟐𝒎

▪ Update
– መ𝐶 = 𝑂 #CC + 1 + 𝛿 ⋅ ΔΦ = O #CC + 1 + 𝛿 ⋅ (−#CC + 1) = 𝑶(𝟏)

– #𝐶𝐶 cascading cuts, remove #𝐶𝐶 mark

– one basic cut, one more mark
We can 

choose it 



Time Complexity: POPMIN

▪ Delete Min
– Time = 𝑂(𝐷)

▪ Merge
– 𝐷 is max degree

– #roots(before merging)  ≤ #roots(before POPMIN) + 𝐷

– Time = 𝑂(𝑡− + 𝐷 − 𝑡+)

▪ Pointer move to new Min
– Time = 𝑂(𝑡+)

▪ Totally: 𝑶(𝒕− + 𝟐𝑫)



Amortized Analysis: Fibonacci Heap

▪ Update: 𝑂(𝑚)

▪ Pop Min: 𝑂(𝑡− + 𝐷)

▪ Potential Function： 𝚽 = 𝒕 + 𝟐𝒎

▪ Update
– መ𝐶 = 𝑂 #CC + 1 + 𝛿 ⋅ ΔΦ = O #CC + 1 + 𝛿 ⋅ (−#CC + 1) = 𝑶(𝟏)

– #𝐶𝐶 cascading cuts, remove #𝐶𝐶 mark

– one basic cut, one more mark

▪ Pop Min
– መ𝐶 = 𝑂 𝑡− + 2𝐷 + 𝛿 ⋅ 𝛥𝑡 ≤ 𝑂 𝑡− + 2𝐷 + 𝛿 ⋅ 𝐷 − 𝑡− = 𝑶 𝑫 = 𝑶(𝐥𝐨𝐠 𝒏)

– 𝑡+ ≤ 𝐷

We can 
choose it 

We can 
choose it 



Conclusion

Dijkstra + Fibonacci Heap = 𝑂( 𝐸 + 𝑉 log 𝑉 )



Today’s goal

▪ Learn Dijkstra
– Why it is correct?

– How to design if you are Dijkstra?

– How to use Heap to improve Dijkstra?

– How to use Data Structures to improve Algorithms?

▪ Learn Amortized Analysis
– Roughly get the idea is ok.


