Shortest Path | i

BFS and Dijkstra



What is path?' _

S— - e ——— - = = ———————

e ‘Today we discuss dﬁirected graphs!

= Not a1 to 4 path m4—<‘

=« Length: the number of arcs in the path.




Vertices Distance
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e How to defin_edisténce?

= d(u,v): the I'ehg’th of shortest path from u to v.
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e ‘How to defin.edista‘nce?
= d(u,v): the I'eh_g'th of shortest path from u to v.
e d(d4) =2 |




Singl_e—Sourcé Shortest Path Problems
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= Input: A directed graph G(V,E), represented by an
~ Adjacent Matrix, and a source vertex s.

. Output: Distance d(s,v), forall v e V.



Single-Source Shortest Path Problems
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« Input: A directed graph G(V,E), represented by an
AdJacent Matrix, and a source vertex s.

0utput Distance d(s v) forall v ev.




Key Idea

E————

= Input: A directed graph G(V,E), represented by an
Adjacent Matrix, and a source vertex s.

- 0utput: Distance d(s,v), forall v e V.

= |dea | —————————————
- Walk froms ' ~ :
- Keep walking
- Walk 1 step: Arrive distance 1 vertices
- Walk 2 steps: Arrive distance 2 vertices
- Walk 3 steps; Arrive distance 3 vertices S
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Can DES help'u‘s?
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~ « DFS after 4 exploraﬁons.

= Problems: _ _
. = Vertex 5 not visited (only distance 1)
- Arrive vertex 4 with length 3



How to Implement the Idea?

—— = =S = - —— - —=- ~ R s e g

. V. the set of vertices v with d(s,v) = k. ¥,
rVo={s} =
= Key question
- Can we know V., 1, if we know V,V,, ..., V;.?
- Yes!' &
- v € Vjyq if and only if

= u €V, and (u,v) exists.
== % Vl’ Vi < k. .




- Breadth-First Search (BFS)
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= A water frontier.
~ - Explores '




~ Breadth-First Search (BFS)
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= A water frontier.
- - Explores
~ - ExploreV;




Breadth—First Search (BFS)
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= A water frontier.
~ - Explores
- Explorev; =
- Explore 1,




Breadth—First Search (BFS)
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= A water frontier.
~ - Explores
- Explorev; .
- Explore 1,




BFS Tree

= A water frontier.
- Explores

' - Explorev; =
© - Explore v,

. The Ia'yer' of the vertex

- = =The distance from s




How to program?

S _ S

Y ~ Breadth First Search
Function bfs(G,s)
- foreachv € V marked[v] « [0]
[ < 0 (layer counter)
Vo < {s}
while V; is not empty
foreachu e ;
for each (u,v) e E
if marked[v] = false
marked[v] « true
Addvinto V; 4

il<—i+1




Output Path?
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= What if we want to output Breadth First Search
- the shortest path? Function bfs(G, s) '

S . for each v € V marked[v] < [0]
= Solution

[ < 0 (layer counter)
- Maintain an array pre[v] means Vo « {s}
who v is explored by. while V; is not empty -

foreachu e V;
for each (u,v) € E
if marked[v] = false
marked|v] « true
AddvintoV;
pre[v] < u
l<i+1




DFS vs BFS

DFS BFS

Détecting Cycless =2 = YES _ ~ NO
'Top_c')logi_caIOrdering' | YES - NO
Finding CCs ~ YES YES
Finding SCCs YES NO.
Shortest Path | NO ' e YES

= Hard to separate'cro_ss edge and back edges in BFS

= Finish time is meaningful in BFS



What |f edges have Iength7

Dijkstra Algorlthm



- Single-Source Shortest Path for Weighted
graphs &

= New Input! |
- - w(u,v) for each edge (u,v)
- Means the weight or length.

- New Length of Path
- The number of edges in the path?
- The sum of edges’ length in the path.
- Lengths - e—->c=9
- Lengths>a—->b->c=5
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- Single-Source Shortest Path for Weighted
graphs &

= New Input! |
- - w(u,v) for each edge (u,v)
- Means the weight or length.

- New Length of Path
- The number of edges in the path?
- The sum of edges’ length in the path.
- Lengths - e—->c=9
- Lengths>a—->b->c=5




Rough Observation

~« Can we use the BFS idea?

= Do all shortest paths form a tree?




Try to prove! '

N . — - ——

Question: do we always have a Shortest Path Tree for a
‘general graph?

Shortest Path Tree (SPT)
- v €T, s - v path in T is the shortest path in G.

Start point
- {s}is a SPT.

Next |
- Can we always explore current SPT until all vertices are included?



Key Task

S _ ——

E Given: a small SPT (not contains all the vertices)
+ Want: a larger SPT




Key Task

S

= Can we explore v into T?

—_ = e

= Given: a small SPT (not

contains all the vertices)

- Want: a larger SPT




Key Task

e . Property of SPT -. : - Given: a small SPT (not
- : s . contains all the vertices)
- True distance: dist(u) = d(s,u)
- Local distance: dist;(u) only allows to | = Want: a larger SPT

.go through T.

. - : = Can we explore v into T?
- Basic property dist;(u)=dist(u) ifu €T

= dist;(v): shortest T-path s - T =

 disty(v) = mindisty(v) + d(u, v)
: (JASY A .

e ——— = e = - —— - ———— e s st



Key Task

E Facts for T | -. ' - Given: a small SPT (not
= : o . contains all the vertices)

- - True distance: dist(v) = d(s, v)
- Local distance: dist;(v) only allows to | = Want: a larger SPT
-go through vertices in T.

: . , = Can we explore v into T?
- Basic property dist;(v)=dist(v) ifv €T

+ dist;(v): shortest T-path s > T > v

 disty(v) = mindisty(w) + d(u, v)
: ueT | :

— = e = - —_—— - — = = e =T



Key Task

—_— 3 e e

E xplor intoT ' - Given: a small SPT (not
1B e PO e = tO' contains all the vertices)

= Naturally, we should connect it to
argmin dist;(u) + d(u V)

UET = Can we explore v into T?

» |s that still an SPT?

- Need to keep: Shortest T- path is the
shortest path in G.

- All the other vertices except v is ok
- Shortest T-path: dist;(v)
- Key challenge: dist(v) < dist(v)?

- Want: a larger SPT




Prove dlStT (v) dlst(v)

E—— - S = - e ———— == = e e

Assume distT(b) > digt(v) ‘ - Given: a small SPT (not
% , | contains all the vertices)

Is that possible?

- Want: a larger SPT

= Can we explore v into T?

SOrry, the answer is YES.

sox—->v=7x€&T.




How to handle it?

Recall BFS idea

Each time, we explore a closest
vertex. :

What happens now?
x is a closer vertex than v.
Why not explore x?

Formalize: Choose the vertex v
with smallest dlstT(v)'




Prove dist;(v) < dist(v) AGAIN!

—— = =S = - —— - _— = e o

Try to explore vinto T

~Naturally, we should connect it

to argmindisty(u)
: ueT

Assume distr(v) > dist(v)

x&T, s> x—>v<distr(v)

disty(x) 1s a part of 55X

disty(x) < disty(v)

Contradiction!




Yah! Success '

———— - = - —

= Given: a small SPT (not contains all the vertices)
= Want: a larger SPT
. Can we explore v into T?

. Yes!

= We can find v = argmin dist;(u) to explore! (Closest)
(JASK : '

= Finally, we can get SPT that contains all vertices!
- Assume s can arrive all vertices



Dijkstra AIgorithm
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Dijkstra(G = (V,E), s)

1. Initialize -
25T = {5
- tdist[s] = 0, tdist[v] « oo for all v other than s.
- tdist[v] « w(s,v) for all (s,v) € E.

2. 'Explore , -
- Find v ¢ T with smallest tdist[v].
- Te<T+{v}

3. Update tdist[u]
— tdist[u] = min{tdist[u], tdist[v] + w(v,u)} for all (v,u) € E




Sample Run |
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Sample Run |




Sample Run |




Sample Run |




Output a path?
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Dijkstra(G = (V,E), s)

1. Initialize
ST (s
- tdist[v] « w(s,v), prelv] < s forall (s,v) € E.

2. Explore |
- Find v ¢ T with smallest tdist[v].
- T« T+ {v}

3. Update tdist[u] |
- tdist[u] = minf{tdist[u], tdist[v] + w(v,w)} for all (v,u) € E.
— If tdist[u] is updated, then pre[u] < v.




Time Comp'IeXity
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Dijkstra(G = (V,E),5)

1. Initialize
SE T sk
- tdist[v] « w(s,v), pre[v] < s for all (s,v) € E.

2. Explore

- Find v ¢ T with smallest tdist[v].

3. Update tdist[u] |
- tdist[u] = min{tdist[u], tdist[v] + w(v,u)} for all (v,u) € E.

- If tdist[u] is updated, then pre[u] « V. '



Time Complexity: Conclusion

Find Min
- |V| rounds

Update

- |E| rounds

If we use simple array, then
— First round find min: |[V| -1
- Second round find min: |V| — 2

- Find min totally: 0(|V|%)

- Each update: 0(1)

- Update totally: O(|E|)

- Algorithm totally: o(|V|* + |E|)



Improve Dijkstra by Heap!

= Find Min
~ - |[V]rounds

+ Update
- |E| rounds

= What about heap?

BinaryHeap / O(logn) \ O(logn) [ O(logn) 0(n)
d-nary Heap O(dlogy n) O(loggn) O(logg n) O(n)
Binomial Heap \ O(logn) 0(1) \ O(logn) / O(logn)
Fibonacci \ 0(logn) g oy o

S E et




Improve Dijkstra by

Heap!

= Binary Heap
- Find Min: o(|V|log [V])

- Update: 0(|E|log|E])

- Totally: o((|V] + |E]) log |V])

= d-nary Heap
~ Find Min: 0(|V|d log, |V])
- Update: 0(|E|logy |E])

EE———

= Fibonacci Heap

Find Min: o(|V|log|V])
Update: 0(|E]) |
Totally: O(|E| + |V|log |V])
Better than O(|V|? + |E|)

- Setd = |E|/|V|

- Totally: O(|E|logg v V)

Pop Min Insert Update Key Merge
Binary Heap O(logn) O(logn) O(logn) 0(n)
d-nary Heap  O(dlogzn)  O(loggn) 0(log, n) 0(n)
Binomial Heap  O(logn) 0(1) O(logn) O (logn)
Fibonacci 0(logn) 0(1) o1 . o0@Q)




Quick Review'(or Preview?): B,iné'ry Heap‘
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Quick Review'(or Preview?): B,iné'ry Heap‘

S — - E——— < — - —a——

~ POPMIN




It Is still balance! | ‘



Quick Review'(or Preview?): _d,—n"a'ry Heap‘
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 UPDATE

* Height:0(logn)



Quick Review'(or Preview?): _d,—nua'ry Heap‘
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POPMIN
- (*Each push down
- Need to compare
- dnodes)



Quick Review.(or Preview?): Fibonacci Héap




~ Quick Review (or Preview?): Fjbbnacci Héap
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Quick Review'(or Preview?): Fjbbnacci Héap
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~ Quick Review (or Preview?): Fjbbnacci Héap
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~ Quick Review (or Preview?): Fjbbnacci Héap
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~ Quick Review (or Preview?): Fjbbnacci Héap

— - e = - - —— - —_— = o S e

2 ~ MIN
POPMIN




Still many problems!

. Update seems good: 0(1)
= Pop Min need to compare all the roots?

. It can be very bad: 0(n)!



Fix the problem!

= Update seems good: 0(1)
= Pop Min need to compare all the roots?
- It can be very bad: 0(n)!

= Solution
- Each degree at most has one root!.
= 1 root with degree 1, 1 root with degree 2......
- Bound Largest degree —» Bound the number of roots!



~ Before move the MIN pointer: Merge
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~ POPMIN




~ Before move the MIN pointer: M'erge
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~ MIN
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~ Before move the MIN pointer: M'erge
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~ Before move the MIN pointer: M‘erge
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~ Before move the MIN pointer: M'erge
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~ Before move the MIN pointer: M'erge
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~ Before move the MIN pointer: M‘erge

~ POPMIN



Before move the MIN pointer: M‘erge

——— - - ——— - - —_— - _— - e e
T~

= ~ MIN
POPMIN




If we do not do anything?

~ POPMIN

 Degree k root is size k + 1, number of roots = largest degree = e



How to make a degree k tree large?

« Build good tree at the beginning.
= We can not break the good property a lot!



- Build a Good Tree (Recall Bin_c,miial Heap)
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Will it become bad?
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Will it become bad?

— - = S ———




~ Build a Good Tree (Recall Binomial Heap)

= . ——— - = < 7 ‘

: : o
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Maximum Broken tree
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Maximum Broken tree




Conclusion

: Degree k root contains

= At least F(k) nodes

« F(k) = T, fib(i) = 0(C*)
- Max degree is around D = O(logn).



How to maintain thls
property7 '

Cascading Cut



~ Fibonacci Heap: Cascading C,ut’u |
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Still many problems...

? ‘What we have: |

= We can control D = 0(logn) before moving Min Pointer.
. But! |

* How long we pay for the cascading cut?

- How long we pay for the root merging?

- They may be very large at one time

= But we can use amortized analysis.



Time Complexity: Update
- Original cut: 1 |

= Cascading cut: < #marked nodes. (called m)
- Time: o(m)



Time Complexity: POPMIN

—

Delete Min
- Time = 0(D) :

Merge

- D is max degree

- #roots(before merging) < #roots(before POPMIN) +D
- Time=0(t"+ D—t")

Pointer move to new Min
- Time = 0(t")

Totally: 0(t~ + 2D)



Amo_rtized'An.aIysis: Potential Function

S — < = - ———

C: actual cost of an operation

C: Amortized cost of an operation

. Some operation may have small ¢ make later operation
bad.

. Let it pay for it by itself, sowelet ( =C + 6 - Ad.

® is a function tol evaluate current state. - V

SC=YC+Y6-AD=YC+6-D




Amortized'An'aIysis: Stack

E————

= Operations
- Pop all elements one by one.
- - Push one element.

. Potential Function
- & = #elemnts

= Push
e =0(1) ,
- C=01)+6-1=0(1)
= Pop
- C=0(k)
- C=0])+6-(=k)=0(1)



AmortizedAn'aIysis: Fibonacci Heap

E——

: Update: 0(m) |
= Pop Min: 0(t™ + D)
- What is bad?

- #marked nodes

—~ #roots

= Potential Function: ® =t + 2m
» Why we need 2m?
= m has two bad things

- One more cut!
- One potential root!



Fibonacci Heap: Cascading C,ut"' |
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= MIN
UPDATE

Marked




Fibonacci Heap: Cascading C,ut"' |
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= MIN
UPDATE




Amortized Analysis: Fibonacci Heap

: Update: 0(m) |
: Pop Min: O(t~ + D)
» Potential Function: @ =t + 2m

» Update .
- C=0#CC+1)+6-AP =0#CC+ 1)+ (—#CC+ 1) = 0(1)

- #(CC cascading cuts, remove #CC mark
- one basic cut, one more mark



Time Complexity: POPMIN

—

Delete Min
- Time = 0(D) :

Merge

- D is max degree

- #roots(before merging) < #roots(before POPMIN) +D
- Time=0(t"+ D—t")

Pointer move to new Min
- Time = 0(t")

Totally: 0(t~ + 2D)



Amortized Analysis: Fibonacci Heap

— - s = - ==

?_Update O(m)
. Pop Min: O(t +D)
. Potential Function: & =t + 2m

» Update .
- C=0#CC+1)+6-AP =0#CC+ 1)+ (—#CC+ 1) = 0(1)

- #(CC cascading cuts, remove #CC mark _ -
- one basic cut, one more mark

* Pop Min
it +2D)+6 -4t < 0(t +2D)+5 (D —t~ )—O(D)—O(logn)




Conclusion

Dijkstra + Fibonacci Heap = O(|E| + |V|log|V|)



Today’s goal |

= Learn Dijkstra
- - Why itis correct?
~ - How to design if you are Dijkstra?
- 'How to use Heap to improve Dijkstra?
- How to use Data Structures to improve Algorithms?

» Learn Amortized Analysis
- Roughly get the idea is ok.



