Shortest Path

BFS and Dijkstra

What is path?

Today we discuss directed graphs!

• 1 to 4 Path 1 \rightarrow 2 \rightarrow 3 \rightarrow 4

4

Not a 1 to 4 path

Length: the number of arcs in the path.

Vertices Distance

- How to define distance?
- d(u, v): the length of shortest path from u to v.

Vertices Distance

- How to define distance?
- d(u, v): the length of shortest path from u to v.

1

2

5

6

3

4

• d(1,4) = 2

Single-Source Shortest Path Problems

 Input: A directed graph G(V,E), represented by an Adjacent Matrix, and a source vertex s.

• **Output:** Distance d(s, v), for all $v \in V$.

Single-Source Shortest Path Problems

 Input: A directed graph G(V,E), represented by an Adjacent Matrix, and a source vertex s.

S

2

6

3

• **Output:** Distance d(s, v), for all $v \in V$.

Key Idea

 Input: A directed graph G(V,E), represented by an Adjacent Matrix, and a source vertex s.

- **Output:** Distance d(s, v), for all $v \in V$.
- Idea

.....

- Walk from *s*
- Keep walking
- Walk 1 step: Arrive distance 1 vertices
- Walk 2 steps: Arrive distance 2 vertices
- Walk 3 steps; Arrive distance 3 vertices

Can DFS help us?

- DFS after 4 explorations.
- Problems:
 - Vertex 5 not visited (only distance 1)

6

3

4

2

5

- Arrive vertex 4 with length 3

How to Implement the Idea?

• V_k : the set of vertices v with d(s, v) = k.

 V_3

6

3

 V_2

 V_1

- $V_0 = \{s\}$
- Key question
 - Can we know V_{k+1} , if we know V_1, V_2, \dots, V_k ?
 - Yes!
 - $v \in V_{k+1}$ if and only if
 - $u \in V_k$ and (u, v) exists
 - $v \notin V_l$, $\forall l \leq k$.

 V_3

6

3

 V_2

 V_1

2

5

S

- A water frontier.
 - Explore *s*

 V_3

6

3

 V_2

 V_1

2

5

S

- A water frontier.
 - Explore s
 - Explore V_1

 V_3

6

3

 V_2

 V_1

2

5

S

- A water frontier.
 - Explore s
 - Explore V_1
 - Explore V_2

 V_3

6

3

 V_2

 V_1

2

5

S

 V_0

- A water frontier.
 - Explore s
 - Explore V_1
 - Explore V_2

...

BFS Tree

- A water frontier.
 - Explore *s*
 - Explore V_1
 - Explore V_2

-

...

The layer of the vertex

 V_3

6

 V_1

2

5

3

4

 V_0

S

The distance from s

How to program?

Output Path?

- What if we want to output the shortest path?
- Solution
 - Maintain an array *pre[v]* means who v is explored by.

```
Breadth First Search
Function bfs(G, s)
    for each v \in V marked[v] \leftarrow [0]
    i \leftarrow 0 (layer counter)
    V_0 \leftarrow \{s\}
    while V<sub>i</sub> is not empty
         for each u \in V_i
              for each (u, v) \in E
                    if marked[v] = false
                        marked[v] \leftarrow true
                        Add v into V_{i+1}
                        pre[v] \leftarrow u
         i \leftarrow i + 1
```

DFS vs BFS

	DFS	BFS
Detecting Cycles	YES	NO
Topological Ordering	YES	NO
Finding CCs	YES	YES
Finding SCCs	YES	NO
Shortest Path	NO	YES

Hard to separate cross edge and back edges in BFS

• Finish time is meaningful in BFS

What if edges have length?

Dijkstra Algorithm

 \mathcal{O}

2

5

h

3

C

1

3

1

a

e

3

4

S

New Input!

- w(u, v) for each edge (u, v)
- Means the weight or length.

- The number of edges in the path?
- The sum of edges' length in the path.
- Length $s \rightarrow e \rightarrow c = 9$
- Length $s \rightarrow a \rightarrow b \rightarrow c = 5$

 \mathcal{O}

2

5

h

3

C

1

3

1

a

e

3

4

S

New Input!

- w(u, v) for each edge (u, v)
- Means the weight or length.

- The number of edges in the path?
- The sum of edges' length in the path.
- Length $s \rightarrow e \rightarrow c = 9$
- Length $s \rightarrow a \rightarrow b \rightarrow c = 5$

 \mathcal{O}

2

5

h

3

C

1

3

1

a

e

3

4

S

New Input!

- w(u, v) for each edge (u, v)
- Means the weight or length.

- The number of edges in the path?
- The sum of edges' length in the path.
- Length $s \rightarrow e \rightarrow c = 9$
- Length $s \rightarrow a \rightarrow b \rightarrow c = 5$

 \mathcal{O}

2

5

b

3

1

3

1

a

e

3

4

S

New Input!

- w(u, v) for each edge (u, v)
- Means the weight or length.

- The number of edges in the path?
- The sum of edges' length in the path.
- Length $s \rightarrow e \rightarrow c = 9$
- Length $s \rightarrow a \rightarrow b \rightarrow c = 5$

Q

2

5

b

3

C

1

3

1

a

e

3

4

S

New Input!

- w(u, v) for each edge (u, v)
- Means the weight or length.

- The number of edges in the path?
- The sum of edges' length in the path.
- Length $s \rightarrow e \rightarrow c = 9$
- Length $s \rightarrow a \rightarrow b \rightarrow c = 5$

 \mathcal{O}

2

5

b

3

C

1

3

1

a

e

3

4

S

New Input!

- w(u, v) for each edge (u, v)
- Means the weight or length.

- The number of edges in the path?
- The sum of edges' length in the path.
- Length $s \rightarrow e \rightarrow c = 9$
- Length $s \rightarrow a \rightarrow b \rightarrow c = 5$

Rough Observation

S

Can we use the BFS idea?Do all shortest paths form a tree?

3

4

d

b

1

С

2

1

a

 \boldsymbol{e}

Try to prove!

- Question: do we always have a Shortest Path Tree for a general graph?
- Shortest Path Tree (SPT)
 - $-v \in T$, $s \rightarrow v$ path in T is the shortest path in G.
- Start point
 - $\{s\}$ is a SPT.
- Next
 - Can we always explore current SPT until all vertices are included?

S

Given: a small SPT (not contains all the vertices)
Want: a larger SPT

a

b

S

Can we explore v into T?

a

b

Given: a small SPT (not contains all the vertices)

• Want: a larger SPT

 \mathcal{V}

Key Task

Property of SPT

- True distance: dist(u) = d(s, u)
- Local distance: $dist_T(u)$ only allows to go through T.
- Basic property $dist_T(u) = dist(u)$ if $u \in T$
- $dist_T(v)$: shortest *T*-path $s \to T \to v$
- $dist_T(v) = \min_{u \in T} dist_T(v) + d(u, v)$

- Given: a small SPT (not contains all the vertices)
- Want: a larger SPT
- Can we explore *v* into *T*?

Key Task

Facts for T

- True distance: dist(v) = d(s, v)
- Local distance: $dist_T(v)$ only allows to go through vertices in *T*.
- Basic property $dist_T(v) = dist(v)$ if $v \in T$
- $dist_T(v)$: shortest *T*-path $s \to T \to v$
- $dist_T(v) = \min_{u \in T} dist_T(u) + d(u, v)$
 - $s \rightarrow a \rightarrow v = 9$ • $s \rightarrow b \rightarrow v = 8$ • $dist_T(v) = 8$

- Given: a small SPT (not contains all the vertices)
- Want: a larger SPT
- Can we explore *v* into *T*?

Key Task

- Try to explore v into T
- Naturally, we should connect it to $\underset{u \in T}{\operatorname{argmin} dist_T(u) + d(u, v)}$
- Is that still an SPT?
 - Need to keep: Shortest *T*-path is the shortest path in *G*.
 - All the other vertices except v is ok
 - Shortest *T*-path: $dist_T(v)$
 - Key challenge: $dist_T(v) \le dist(v)$?

- Given: a small SPT (not contains all the vertices)
- Want: a larger SPT
- Can we explore *v* into *T*?

Prove $dist_T(v) \leq dist(v)$

 χ

 \mathcal{A}

h

4

1

 \mathcal{U}

4

5

S

- Assume $dist_T(v) > dist(v)$
- Is that possible?
- Sorry, the answer is YES.

• $s \rightarrow x \rightarrow v = 7, x \notin T$.

- Given: a small SPT (not contains all the vertices)
- Want: a larger SPT
- Can we explore *v* into *T*?

How to handle it?

- Recall BFS idea
- Each time, we explore a closest vertex.

 χ

 \mathcal{A}

h

4

1

12

4

S

- What happens now?
- \boldsymbol{x} is a closer vertex than \boldsymbol{v} .
- Why not explore x?
- Formalize: Choose the vertex v with smallest dist_T(v)!

Prove $dist_T(v) \leq dist(v)$ AGAIN!

12

 \mathcal{A}

h

4

1

2

 χ

S

- Try to explore v into T
- Naturally, we should connect it to $\underset{u \in T}{\operatorname{argmin} dist_T(u)}$
- Assume $dist_T(v) > dist(v)$
- $x \notin T$, $s \to \mathbf{x} \to \nu < dist_T(\nu)$
- $dist_T(x)$ is a part of $s \to x \to v$
- $dist_T(x) < dist_T(v)$
- Contradiction!

Yah! Success

Given: a small SPT (not contains all the vertices)

- Want: a larger SPT
- Can we explore v into T?
- Yes!
- We can find $v = \underset{u \in T}{\operatorname{argmin}} \operatorname{dist}_{T}(u)$ to explore! (Closest)
- Finally, we can get SPT that contains all vertices!
 - Assume *s* can arrive all vertices

Dijkstra Algorithm

$\mathsf{Dijkstra}(G = (V, E), s)$

1. Initialize

 $- T = \{s\},$

- tdist[s] = 0, $tdist[v] \leftarrow \infty$ for all v other than s.
- $tdist[v] \leftarrow w(s, v)$ for all $(s, v) \in E$.

2. Explore

- Find $v \notin T$ with smallest tdist[v].
- $T \leftarrow T + \{v\}$

3. Update *tdist*[*u*]

- $tdist[u] = min\{tdist[u], tdist[v] + w(v, u)\}$ for all $(v, u) \in E$

Output a path?

$\mathsf{Dijkstra}(G = (V, E), s)$

1. Initialize

 $- T \leftarrow \{s\}$

- $tdist[v] \leftarrow w(s, v), \ pre[v] \leftarrow s \text{ for all } (s, v) \in E.$

2. Explore

- Find $v \notin T$ with smallest tdist[v].
- $T \leftarrow T + \{v\}$

3. Update *tdist*[*u*]

- $tdist[u] = min\{tdist[u], tdist[v] + w(v, u)\}$ for all $(v, u) \in E$.
- If tdist[u] is updated, then $pre[u] \leftarrow v$.

Time Complexity

$\mathsf{Dijkstra}(G = (V, E), s)$

1. Initialize

 $- T \leftarrow \{s\}$

- $tdist[v] \leftarrow w(s, v), pre[v] \leftarrow s$ for all $(s, v) \in E$.

2. Explore

- Find $v \notin T$ with smallest tdist[v].
- $T \leftarrow T + \{v\}$

3. Update *tdist*[*u*]

- $tdist[u] = min\{tdist[u], tdist[v] + w(v, u)\}$ for all $(v, u) \in E$.
- If tdist[u] is updated, then $pre[u] \leftarrow v$.

|V| rounds

E rounds

|E| rounds

Time Complexity: Conclusion

- Find Min
 - -|V| rounds
- Update

...

- |E| rounds
- If we use simple array, then
 - First round find min: |V| 1
 - Second round find min: |V| 2
 - Find min totally: $O(|V|^2)$
 - Each update: 0(1)
 - Update totally: O(|E|)
 - Algorithm totally: $O(|V|^2 + |E|)$

Improve Dijkstra by Heap!

- Find Min
 - |V| rounds
- Update
 - |E| rounds
- What about heap?

	Pop Max	Insert	Update Key	Merge	
Binary Heap	$O(\log n)$	$O(\log n)$	$O(\log n)$	0(n)	
<i>d</i> -nary Heap	$O(d\log_d n)$	$O(\log_d n)$	$O(\log_d n)$	<i>O</i> (<i>n</i>)	
Binomial Heap	$O(\log n)$	0(1)	$O(\log n)$	$O(\log n)$	
Fibonacci	$O(\log n)$	0(1)	0(1)	0(1)	
STATISTICS AND ADDRESS OF		A DESCRIPTION OF A DESC		The second s	

Improve Dijkstra by Heap!

Binary Heap

- Find Min: $O(|V| \log |V|)$
- Update: $O(|E| \log |E|)$
- Totally: $O((|V| + |E|) \log |V|)$
- *d*-nary Heap
 - Find Min: $O(|V|d \log_d |V|)$
 - Update: $O(|E| \log_d |E|)$
 - Set d = |E|/|V|
 - Totally: $O(|E| \log_{|E|/|V|} |V|)$

Fibonacci Heap

- Find Min: $O(|V| \log |V|)$
- Update: O(|E|)
- Totally: $O(|E| + |V|\log |V|)$
- Better than $O(|V|^2 + |E|)$

	Pop Min	Insert	Update Key	Merge	
Binary Heap	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)	
<i>d</i> -nary Heap	$O(d\log_d n)$	$O(\log_d n)$	$O(\log_d n)$	O(n)	
Binomial Heap	$O(\log n)$	0(1)	$O(\log n)$	$O(\log n)$	
Fibonacci	$O(\log n)$	0(1)	0(1)	0(1)	

It is still balance!

Still many problems!

Update seems good: *O*(1)
Pop Min need to compare all the roots?
It can be very bad: *O*(*n*)!

Fix the problem!

- Update seems good: 0(1)
- Pop Min need to compare all the roots?
- It can be very bad: O(n)!
- Solution
 - Each degree at most has one root!
 - 1 root with degree 1, 1 root with degree 2.....
 - Bound Largest degree \rightarrow Bound the number of roots!

If we do not do anything?

POPMIN

Degree k root is size k + 1, number of roots = largest degree = \sqrt{n} .

MIN

How to make a degree k tree large?

Build a good tree at the beginning.
We can not break the good property a lot!

Build a Good Tree (Recall Binomial Heap)

Will it become bad?

Will it become bad?

Build a Good Tree (Recall Binomial Heap)

Maximum Broken tree

Maximum Broken tree

0

4

1

0

2

0

1

0

3

0

1

0

2

one child.

We only allow each

non-root node to lose

Degree o subtree: 1 nodes Degree 1 subtree: 1 nodes Degree 2 subtree: 2 nodes Degree 3 subtree: 3 nodes Degree 4 subtree: 5 nodes

Conclusion

- Degree k root contains
- At least F(k) nodes
- $F(k) = \sum_{i=1}^{k} fib(i) = O(C^{k})$
- Max degree is around $D = O(\log n)$.

How to maintain this property?

Cascading Cut

Still many problems...

- What we have:
- We can control $D = O(\log n)$ before moving Min Pointer.

- But!

- How long we pay for the cascading cut?
- How long we pay for the root merging?
- They may be very large at one time
- But we can use **amortized analysis**.

Time Complexity: Update

- Original cut: 1
- Cascading cut: < #marked nodes. (called m)
- Time: *O*(*m*)

Time Complexity: POPMIN

- Delete Min
 - Time = O(D)
- Merge
 - *D* is max degree
 - #roots(before merging) $\leq \#$ roots(before POPMIN) + D
 - Time = $O(t^{-} + D t^{+})$
- Pointer move to new Min
 - Time = $\theta(t^+)$
- Totally: 0(t⁻ + 2D)

Amortized Analysis: Potential Function

- C: actual cost of an operation
- *Ĉ*: Amortized cost of an operation
- Some operation may have small C make later operation bad.
- Let it pay for it by **itself**, so we let $\hat{C} = C + \delta \cdot \Delta \Phi$.
- Φ is a function to evaluate current state.
- A chosen constant.

• $\sum \hat{C} = \sum C + \sum \delta \cdot \Delta \Phi = \sum C + \delta \cdot \Phi$

Amortized Analysis: Stack

Operations

- Pop all elements one by one.
- Push one element.
- Potential Function
 - Φ = #elemnts

Push

- C = O(1)
- $\hat{C} = O(1) + \delta \cdot 1 = O(1)$

Pop

- C = O(k)
- $-\hat{C} = O(k) + \delta \cdot (-k) = \mathbf{0}(1)$

Amortized Analysis: Fibonacci Heap

- **Update:** *O*(*m*)
- **Pop Min:** $O(t^{-} + D)$
- What is bad?
 - #marked nodes
 - #roots
- Potential Function: $\Phi = t + 2m$
- Why we need 2m?
- *m* has two bad things
 - One more cut!
 - One potential root!

Amortized Analysis: Fibonacci Heap

- **Update:** *O*(*m*)
- Pop Min: $O(t^- + D)$
- Potential Function: $\Phi = t + 2m$
- Update
 - $-\hat{C} = O(\#CC+1) + \delta \cdot \Delta \Phi = O(\#CC+1) + \delta \cdot (-\#CC+1) = \mathbf{0}(\mathbf{1})$
 - #CC cascading cuts, remove #CC mark
 - one basic cut, one more mark

We can choose it

Time Complexity: POPMIN

- Delete Min
 - Time = O(D)
- Merge
 - *D* is max degree
 - #roots(before merging) $\leq \#$ roots(before POPMIN) + D
 - Time = $O(t^{-} + D t^{+})$
- Pointer move to new Min
 - Time = $\theta(t^+)$
- Totally: 0(t⁻ + 2D)

Amortized Analysis: Fibonacci Heap

- **Update:** *O*(*m*)
- Pop Min: $O(t^- + D)$
- Potential Function: $\Phi = t + 2m$
- Update
 - $-\hat{C} = O(\#CC+1) + \delta \cdot \Delta \Phi = O(\#CC+1) + \delta \cdot (-\#CC+1) = \mathbf{0}(\mathbf{1})$
 - #CC cascading cuts, remove #CC mark
 - one basic cut, one more mark
- Pop Min
 - $-\hat{C} = O(t^{-} + 2D) + \delta \cdot \Delta t \le O(t^{-} + 2D) + \delta \cdot (D t^{-}) = O(D) = O(\log n)$

We can

choose it

We can

<u>choose i</u>

 $-t^+ \leq D$

Conclusion

Dijkstra + Fibonacci Heap = $O(|E| + |V| \log |V|)$

Today's goal

Learn Dijkstra

- Why it is **correct?**
- How to **design** if you are Dijkstra?
- How to use **Heap** to improve Dijkstra?
- How to use **Data Structures** to improve **Algorithms**?
- Learn Amortized Analysis
 - Roughly get the idea is ok.