Shortest Path (Negative)

Bellman-Ford

Is Dijkstra Algorithm always correct?

Shortest Path with Negative Length

What if edges may have negative weight?
Distance: 5 - 3 + 10 = 12

Shortest Path with Negative Length

What if edges may have negative weight?
Distance: 5 - 3 + 10 = 12

Can we still use Dijkstra?

Try Dijkstra on this small graph?

Can we still use Dijkstra?

- Try Dijkstra on this small graph?
- The Fake SPT we get
- It is not True SPT because
 - $dist_T(3) = 3 > dist(3) = \overline{5 3} = 2$

Recall that we have proved it???

What we have proved (last lecture)

- We can explore an **SPT**.
- Choose the closest vertex.
- {1} is an **SPT**.
- 3 is the closest vertex.

We should have something wrong in the proof!

Go back to the proof!

Prove $dist_T(v) \leq dist(v)$ AGAIN!

12

 \mathcal{A}

h

4

1

2

 χ

S

- Try to explore v into T
- Naturally, we should connect it to $\underset{u \in T}{\operatorname{argmin} dist_T(u)}$
- Assume $dist_T(v) > dist(v)$
- $x \notin T$, $s \to \mathbf{x} \to \nu < dist_T(\nu)$
- $dist_T(x)$ is a part of $s \to x \to v$
- $dist_T(x) < dist_T(v)$
- Contradiction!

Prove $dist_T(v) \leq dist(v)$ AGAIN!

12

 \mathcal{A}

h

4

1

2

 χ

S

- Try to explore v into T
- Naturally, we should connect it to $\underset{u \in T}{\operatorname{argmin} dist_T(u)}$
- Assume $dist_T(v) > dist(v)$
- $x \notin T$, $s \to x \to v < dist_T(v)$

• $dist_T(x)$ is a part of $s \to x \to v$

 $\underbrace{dist_T(x)}_{T} < dist_T(v)$

Contradiction!

Prove $dist_T(v) \leq dist(v)$ AGAIN!

12

 \mathcal{A}

h

4

1

-2

 χ

S

5

- Try to explore v into T
- Naturally, we should connect it to $\underset{u \in T}{\operatorname{argmin} dist_T(u)}$
- Assume $dist_T(v) > dist(v)$
- $x \notin T$, $s \to x \to v < dist_T(v)$

• $dist_T(x)$ is a part of $s \to x \to v$

 $\underbrace{dist_T(x)}_{T} < dist_T(v)$

Contradiction!

New solution Bellman-Ford!

Another view of the problem

Dijkstra

- If we update 3 into SPT,
- *dist*(3) **needn't** be updated any more!

5

2

3

3

- We only need to update others!
- Now
 - It is not correct.
 - It can be updated by dist(2) 3.
- Simply solution
 - Don't chose vertex 3.
 - Keep updating everyone!

Another view of the problem

Conclusion

- Dijkstra is very clever
 - It follows a clever order
 - Each edge can be only used once in updating.
- Now the order is not true
- We can only be **stupid**.

Bellman-Ford

Bellman-Ford

Function bellman_ford(G, s) $dist[s] = 0, dist[x] = \infty$ for other $x \in V$ while $\exists dist[x]$ is updated for each $(u, v) \in E$ $dist[v] = \min\{dist[v], dist[u] + d(u, v)\}$

Correctness of Bellman-Ford

Lemma 1

After k rounds, dist(v) is the shortest distance of all k-edge-path.

Proof

paths with at most k edges.

- Base case:
 - After 0 rounds, *dist*[s] is the shortest distance of all 0-edge-path.
- Induction:
 - Suppose it is true for k-1 rounds.
 - Consider a k-edge-path of $v: (s, u_1, u_2, \dots, u_{k-1}, v)$.

- $dist[u_{k-1}] \le d(s, u_1, u_2, \dots, u_{k-1})$
- $dist[u_k] \le d(s, u_1, u_2, \dots, u_{k-1}) + d(u_{k-1}, v)$

We try to update it in Bellman-Ford

Correctness of Bellman-Ford

Observation 2

The shortest distance of all |V|-edge-path can not be shorter than the shortest distance of all (|V| - 1) –edge-path unless there is a Negative Cycle.

Proof

- IV-edge-path must contains a cycle
- If the cycle is not negative, go through it do not make the distance smaller.

Negative Cycle

Negative Cycle

- What if G has a negative cycle?
- The shortest distance become not well defined!
- The shortest distance can as small as we want!

Correctness of Bellman-Ford

Lemma 1

After k rounds, dist(v) is the shortest distance of all k-edgepath.

Observation 2

The shortest distance of all |V|edge-path can not be shorter than the shortest distance of all (|V| - 1) -edge-path unless there is a Negative Cycle. Conclusion After |V| - 1 rounds, dist(v) is the shortest distance, otherwise *G* has a Negative Cycle.

$O(|V| \cdot |E|)$

Refine The Algorithm Run |**V**| **rounds** updating, If distance become shorter in the |V|-th round, output negative cycle, otherwise, output distance.

Today's goal

Learn why Dijkstra is wrong when edge is negative.

- Learn to find a **counter example**.
- Learn to point out the problems in the proof.
- Learn Bellman-Ford
 - What kind of graphs make it correct?
 - Why we only need to consider this kind of graphs?