

What is Greedy?

Follows the "looks good" strategy.

Recap the Graph Algorithm

DFS (walking in a maze)

- If we can explore, then explore.
- If we can not explore, backtrack.
- Do not re-visit a vertex.
- Applications
 - Cycle
 - Topological
 - SCC

Recap the Graph Algorithm

BFS (waterfront)

- 1 step from r
- -2 steps from r
- Application
 - Shortest Path

Recap the Graph Algorithm

Dijkstra (a generalized BFS)

- Explore s.
- Explore the closet vertex from *s*.
- Explore the second closest vertex from *s*.
- We can use Fibonacci heap to improve it.
- Bellman-Ford

Are they Greedy?

Do we have any other Greedy?

Examples

- Finding Shortest Path
 - Dijkstra.
- Finishing homework
 - Keep finishing the one with the **closest** deadline.

Is that optimal?

Formalize the problem

Input: n homework, each homework j has a size s_j, and a deadline d_j.

• **Output:** output a time schedule of doing homework!

Algorithm

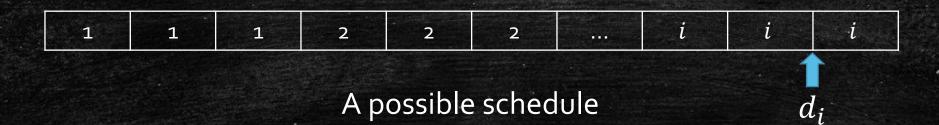
Greedy

- Keep finishing the homework with the **closest** deadline.
- Prove it is optimal.
- What is optimal?
- Claim: If we can not finish all the homework by the greedy order, then no one can finish all the homework on time.

Proof

 Claim: If we can not finish all the homework by the greedy order, then no one can finish all the homework on time.

- Proof:
 - If there exist *i*, finished later than d_i , what do we have?

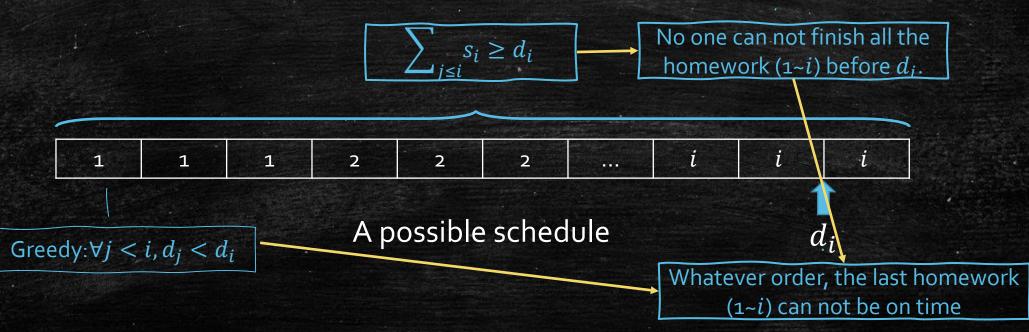


Proof

 Claim: If we can not finish all the homework by the greedy order, then no one can finish all the homework on time.

Proof:

– If there exist *i*, finished later than d_i , what do we have?



Minimum Spanning Tree

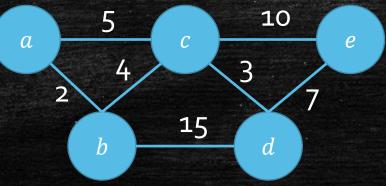
Prime & Kruskal

Spanning Tree

- **Input:** Given a connected undirected graph G = (V, E)
- Output: A spanning tree of *G* is, i.e., a subset of edges that forms a tree and contains all the vertices in *G*.
- Applications
 - Building a network, connecting all hubs via minimum number of cables.
- Solutions
 - BFS, DFS.

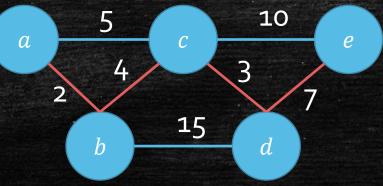
Minimum Spanning Tree

- Input: Given a connected undirected graph G = (V, E), and a weight function w(e) for each $e \in E$.
- Output: A spanning tree of G is, i.e., a subset of edges, with minimized total weight.
- Applications
 - Building a network, connecting all hubs via minimum number of cables.



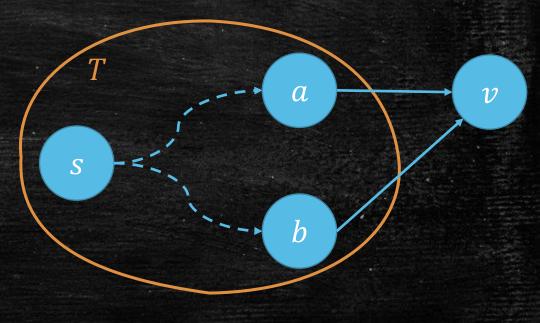
Minimum Spanning Tree

- Input: Given a connected undirected graph G = (V, E), and a weight function w(e) for each $e \in E$.
- Output: A spanning tree of G is, i.e., a subset of edges, with minimized total weight.
- Applications
 - Building a network, connecting all hubs via minimum number of cables.



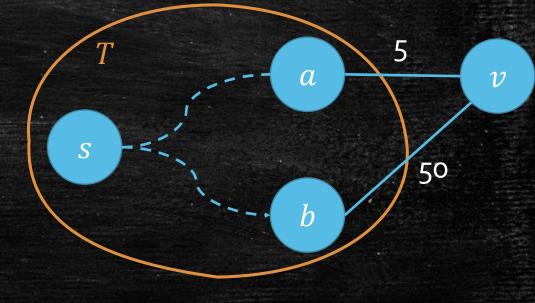
Dijkstra's growing idea

- Given a small SPT,
- choose a proper vertex v to find a larger SPT.
- New Plan for MST:
- Given a small MST,
- choose a proper vertex v to find a larger MST.



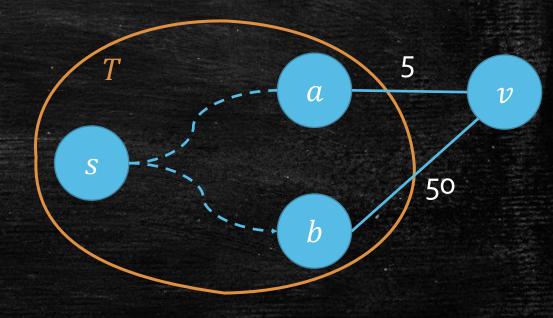
Prim's growing idea

- Given a small MST,
- choose a proper vertex v to find a larger MST.
- Which *v* is good?
- Dijkstra: v with smallest T-distance to s.
- Now: v with smallest cost!



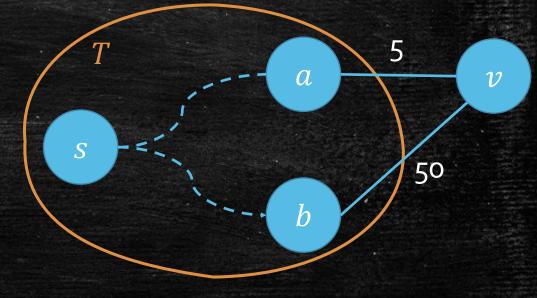
Prim's growing idea

- Given a small MST,
- choose a proper vertex v to find a larger MST.
- Grow v with smallest cost!
- Is it correct?
- Challenge:
 - How to define small MST



How to define small MST?

- T = (V', E') is a small MST if it is an MST for V'.
- Problem
 - are those edges in T still ok?
- A better choice:
- *T* is a P-MST (Partial MST) if it is a part of a complete MST for *G*.



a

b

S

5

12

 Let's say T* is the complete MST that contains T, and suppose (a, v) ∉ T*.

- Given: a small P-MST T.
- Want: a larger P-MST.
- Can we explore v (smallest cost) into T?

There must has path from *T* to *v*.

a

b

S

5

12

 \mathcal{U}

• Let's say T^* is the complete MST that contains T, and suppose $(a, v) \notin T^*$.

- Given: a small P-MST T.
- Want: a larger P-MST.
- Can we explore v (smallest cost) into T?

There must be a vertex

u adjacent to T.

There must be a path from *T* to *v*.

a

b

S

• Let's say T^* is the complete MST that contains T, and suppose $(a, v) \notin T^*$.

- Given: a small P-MST T.
- Want: a larger P-MST.
- Can we explore v (smallest cost) into T?

There must be a path from *T* to *v*.

Its weight must be at least 5.

5

12

 \mathcal{U}

a

b

S

• Let's say T^* is the complete MST that contains T, and suppose $(a, v) \notin T^*$.

- Given: a small P-MST T.
- Want: a larger P-MST.
- Can we explore v (smallest cost) into T?

There must be a path from *T* to *v*.

Its weight must be at least 5.

5

12

 \mathcal{U}

a

b

S

• Let's say T^* is the complete MST that contains T, and suppose $(a, v) \notin T^*$.

Repacing (b, u) with (a, u): still an MST.

12

 \mathcal{U}

- **Given:** a small P-MST *T*.
- Want: a larger P-MST.
- Can we explore v (smallest cost) into T?

There must be a path from *T* to *v*.

Its weight must be at least 5.

5

a

b

S

Repacing (b, u) with (a, u): still an MST.

12

 \mathcal{U}

- Given: a small P-MST T.
- Want: a larger P-MST.
- Can we explore v (smallest cost) into T?

 $T \cup \{(a, v)\}$ must be a part of an MST.

There must be a path from *T* to *v*.

Its weight must be at least 5.

5

Prim Algorithm [Jarník '30, Prim '57, Dijkstra '59]

Prim(G = (V, E))

1. Initialize

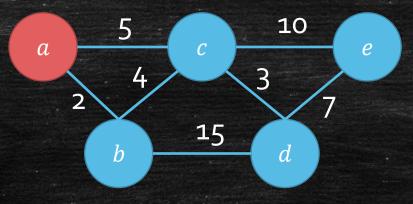
- *T* ← { }, S ← {s} ; #s is an arbitrary vertex.
- cost[s] = 0, $cost[v] \leftarrow \infty$ for all v other than s.
- $cost[v] \leftarrow w(s, v), pre[v] = s \text{ for all } (s, v) \in E.$

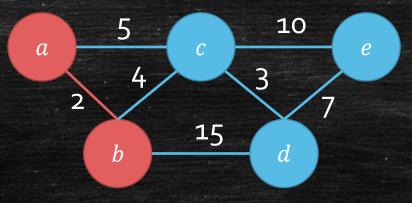
2. Explore

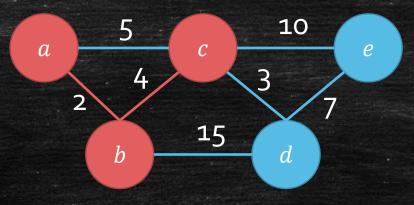
- Find $v \notin S$ with smallest cost[v].
- $S \leftarrow S + \{v\}; T \leftarrow T + \{(pre[v], v)\}$

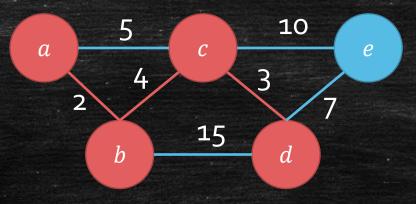
3. Update cost[u]

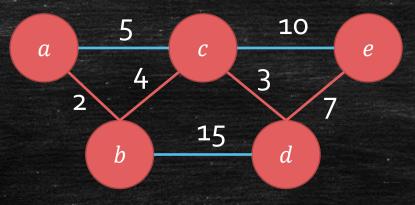
- $cost[u] = min\{cost[u], w(v, u)\}$ for all $(v, u) \in E$
- If cost[u] is updated, then pre[u] = v.











Running Time

I believe you know how to analyze it:
We can do it in O(|E| + |V| log|V|).

Kruskal Algorithm [Kruskal 1956]

Another Greedy!

Kruskal(G = (V, E))

Sort the edge set E to descending order.

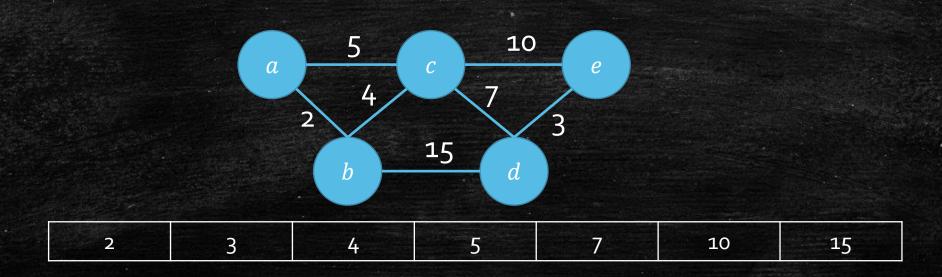
- For each $e \in E$ in descending order
 - If e do not create a cycle, then choose it.

Kruskal Algorithm

Kruskal(G = (V, E))

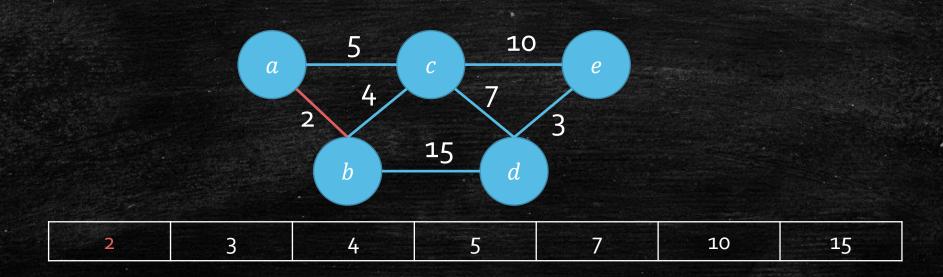
• Sort the edge set *E* to ascending order.

- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.



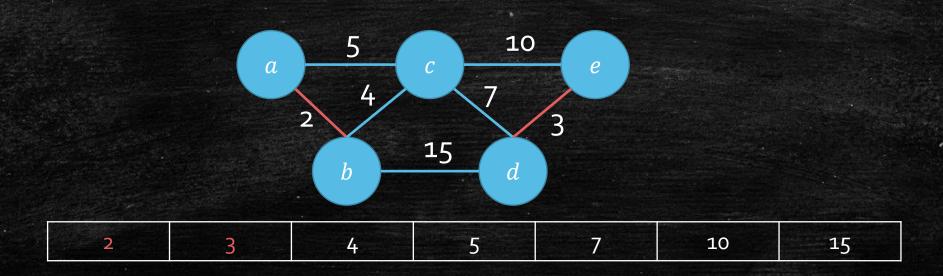
Kruskal(G = (V, E))

- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.



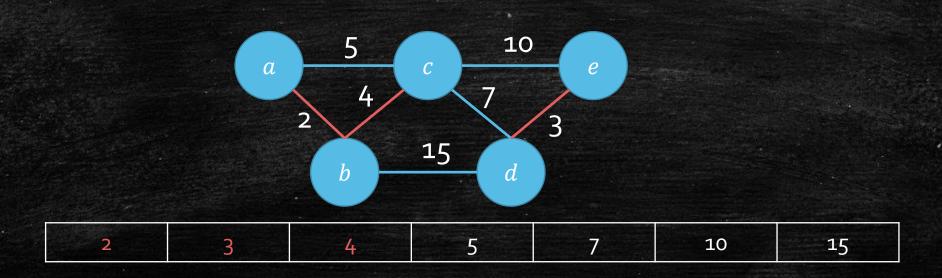
Kruskal(G = (V, E))

- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.



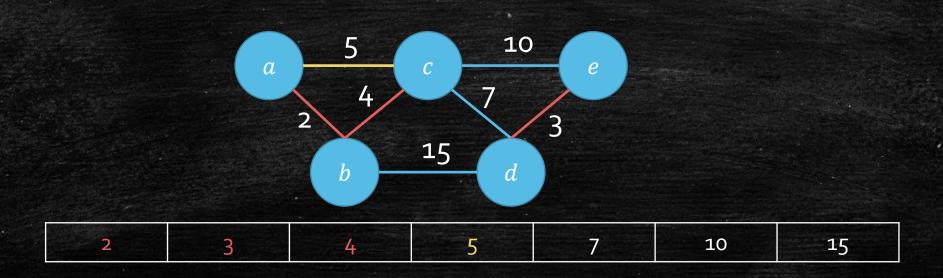
Kruskal(G = (V, E))

- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.



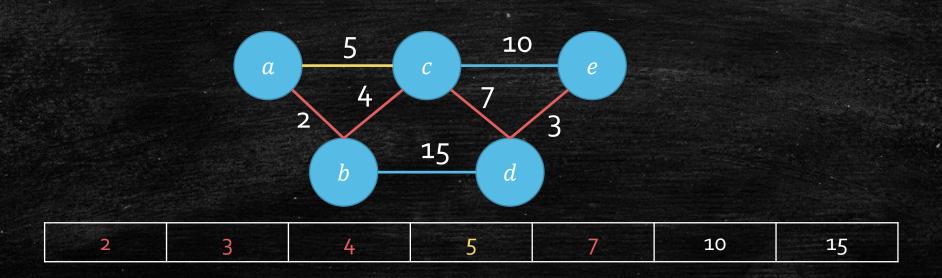
Kruskal(G = (V, E))

- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.



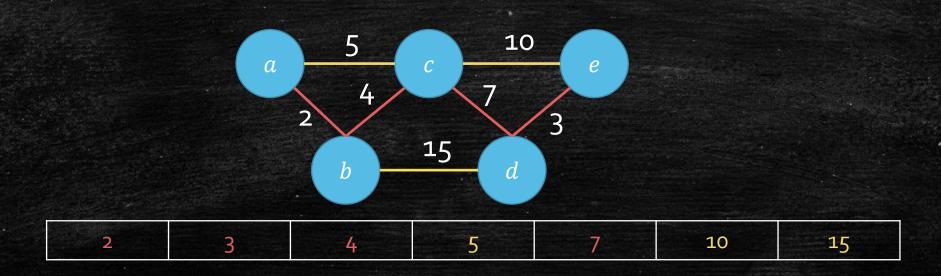
Kruskal(G = (V, E))

- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.



Kruskal(G = (V, E))

- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.



Correctness of Prim's Growing idea

a

b

S

5

12

 Let's say T* is the complete MST that contains T, and suppose (a, v) ∉ T*.

- Given: a small P-MST T.
- Want: a larger P-MST.
- Can we explore v (smallest cost) into T?

There must has path from *T* to *v*.

Correctness of Kruskal's Growing idea

• Let's say T^* is the complete MST that contains T, and suppose $(a, v) \notin T^*$.

 \mathcal{A}

b

S

• Given: a small P-MST T.

• Want: a larger P-MST.

e

g

Correctness of Kruskal's Growing idea

• Let's say T^* is the complete MST that contains T, and suppose $(a, v) \notin T^*$.

 \mathcal{A}

b

S

- Given: a small P-MST T.
- Want: a larger P-MST.

e

 \mathcal{G}

 Add the smallest red edge get a larger P-MST.

Correctness of Kruskal's Growing idea

C

 \mathcal{G}

• Let's say T^* is the complete MST that contains T, and suppose $(a, v) \notin T^*$.

 \mathcal{A}

b

S

- Given: a small P-MST T.
- Want: a larger P-MST.

roveby

e

Add the smallest red edge get a larger P-MST

Olliv

Running Time

Kruskal(G = (V, E))

- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.
- $O(|E|\log|E|)$ for sorting.
- *|E|* round: check cycle!

When an edge is a back edge (to marked vertices),
It forms a cycle.

During Kruskal

S

When an edge connect the same group vertices,It forms a cycle.

C

 \mathcal{G}

d

e

T

 \boldsymbol{a}

b

Kruskal (refine)

Kruskal(G = (V, E))

- For each $(u, v) \in E$ in ascending order
 - If group(u)! = group(v)
 - Choose (*u*, *v*).
 - union(group(u), group(v))

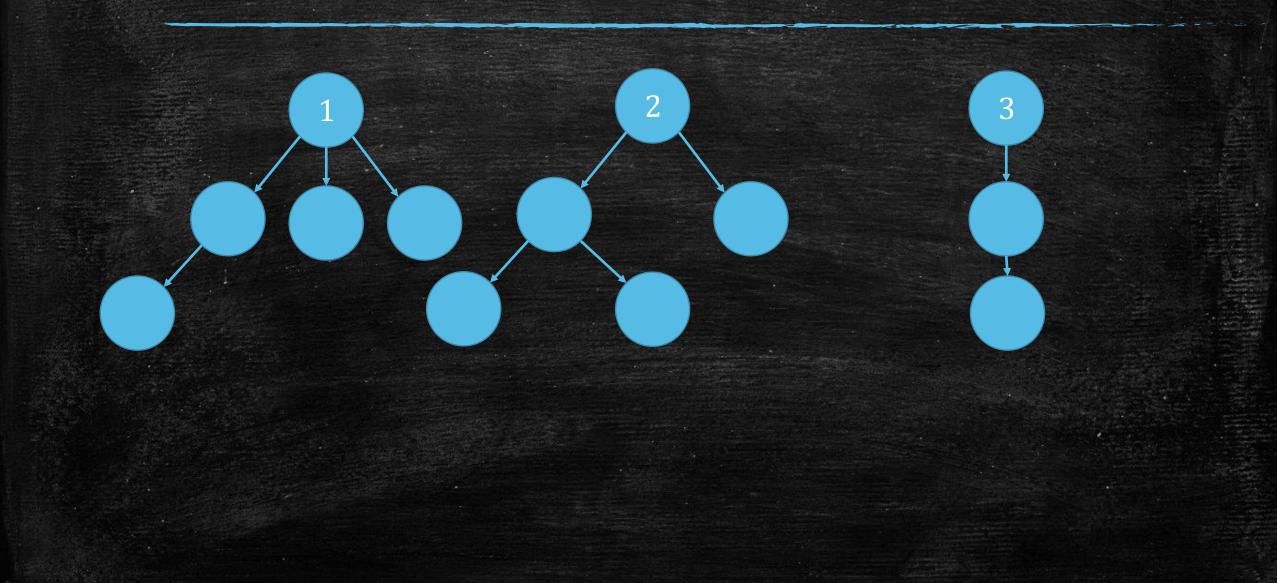
Running Time: Kruskal (refine)

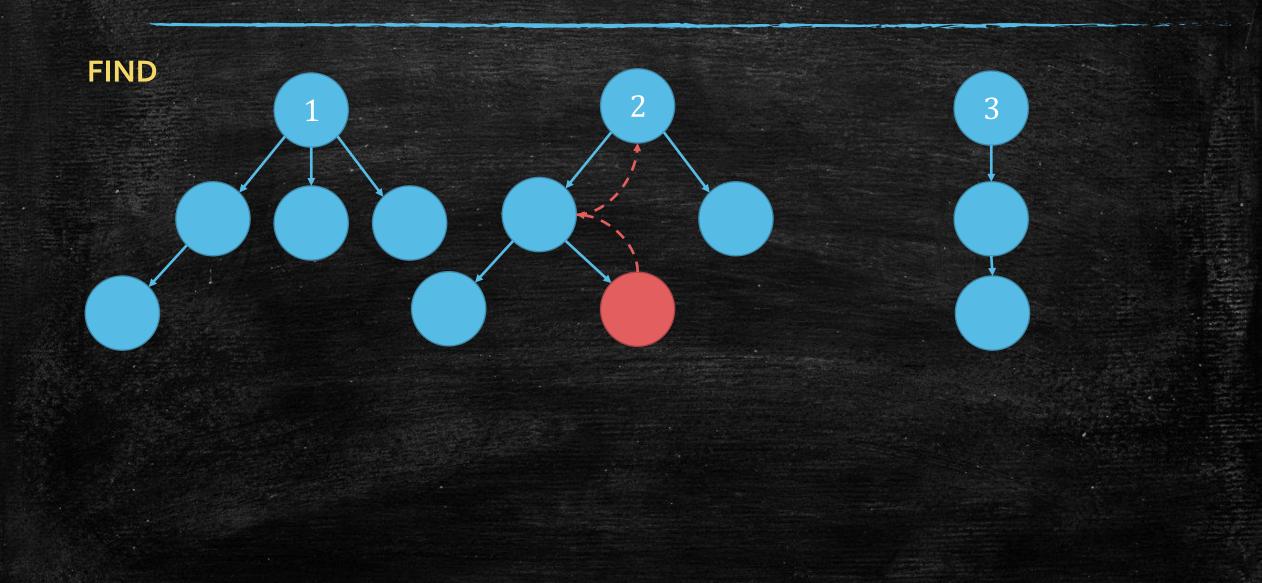
Kruskal(G = (V, E))

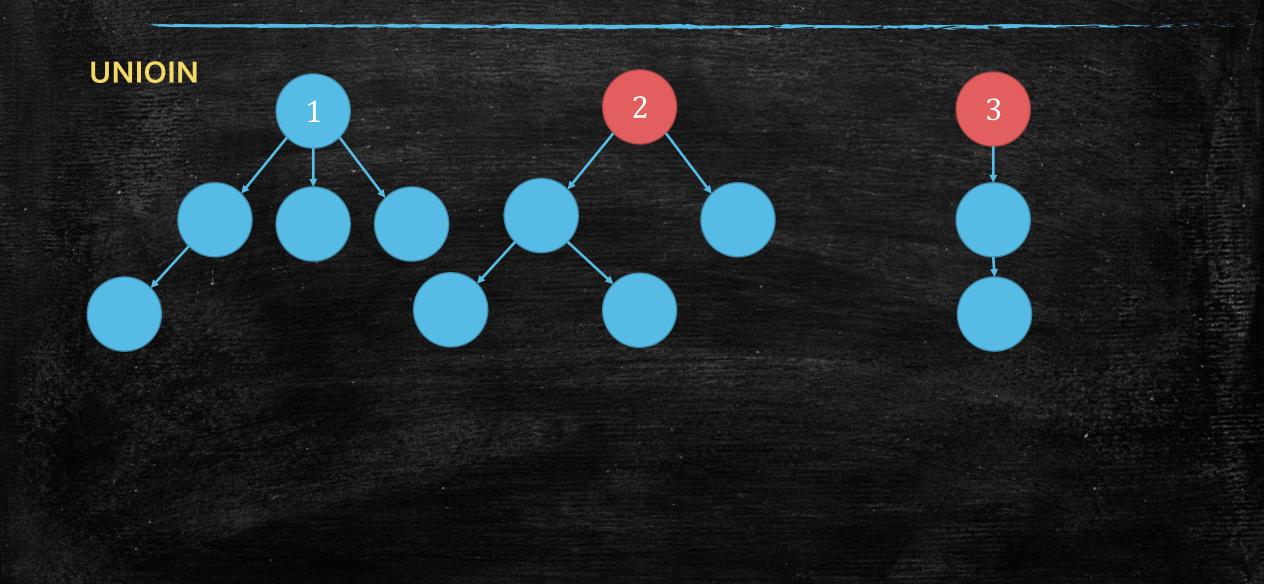
- For each $(u, v) \in E$ in ascending order
 - If group(u)! = group(v)
 - Choose (*u*, *v*).
 - union(group(u), group(v))
- $O(|E|\log|E|)$ for sorting.
- 2|E| round: check group
- IV round: union group

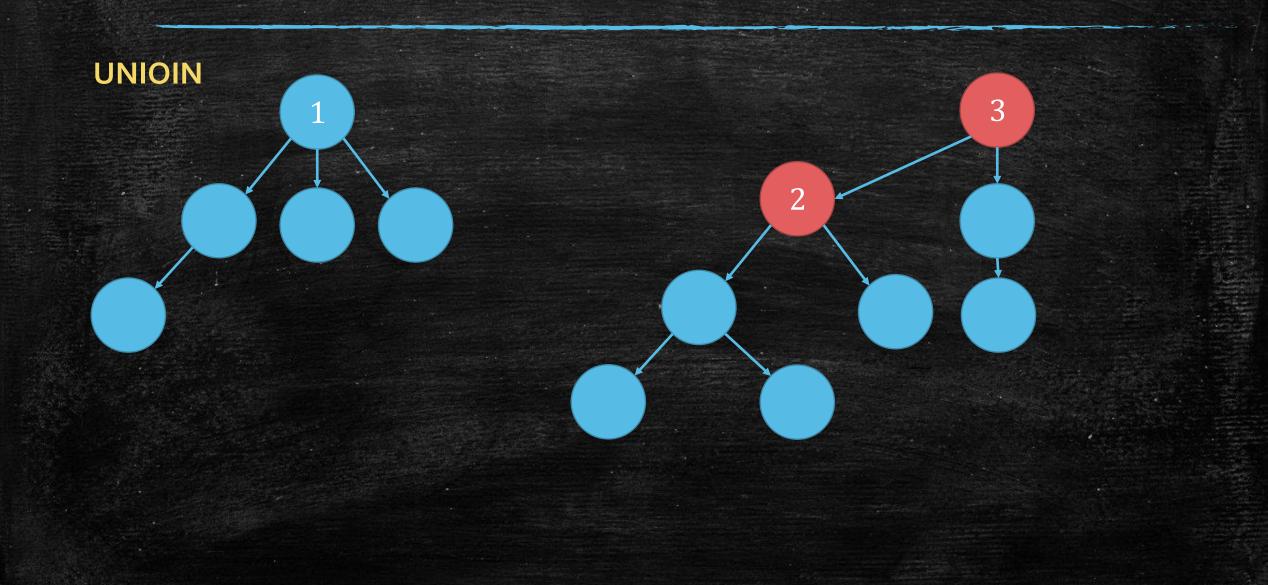
Union-Find Set

- Recall Union-Find Set
 - Find: $O(\log n)$
 - Union: 0(1)
- Kruskal
 - $O(|E|\log|E|)$ for sorting.
 - 2|*E*| round: check group
 - |V| round: union group
 - $O(|E|\log|E|) = O(|E|\log|V|)$



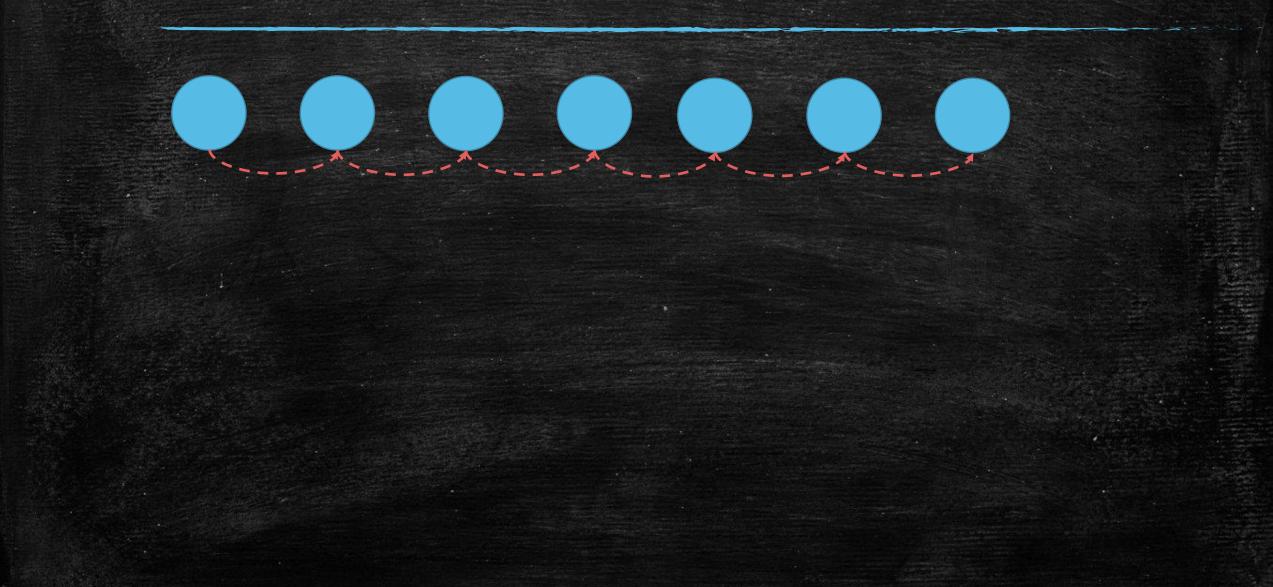


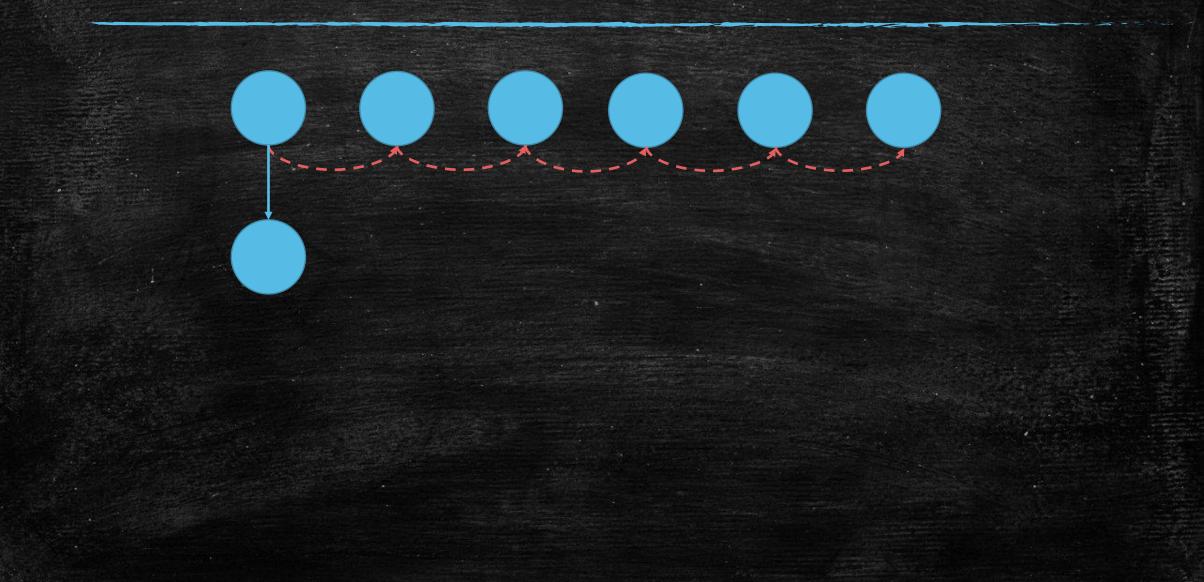


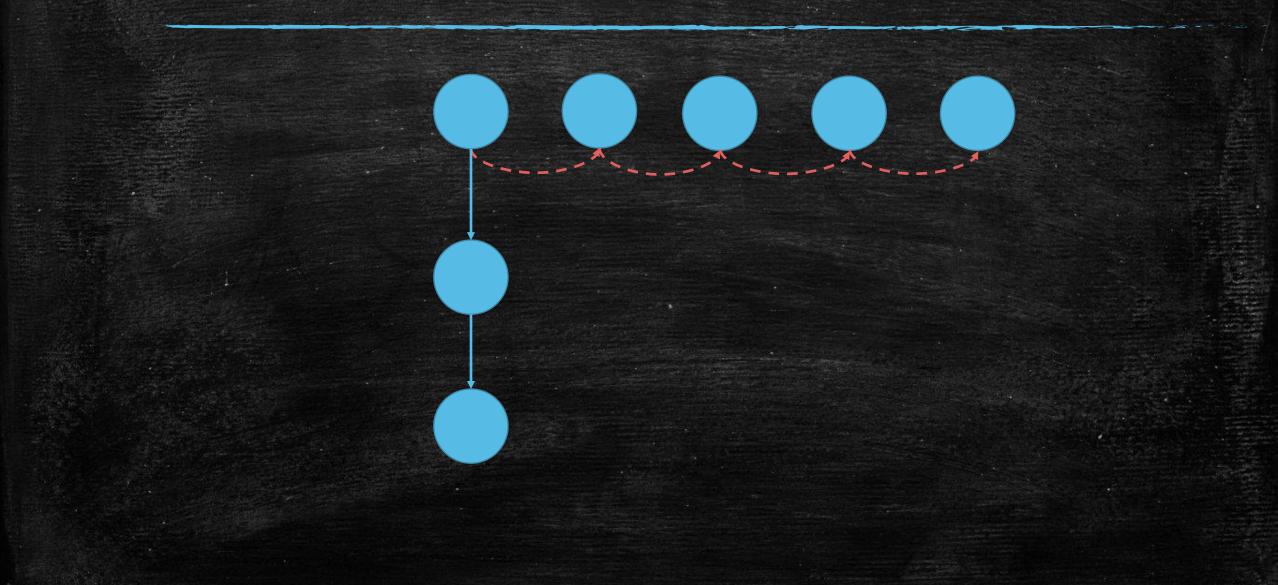


Time Complexity

- Find
 - O(max{Tree height})
- Union
 - 0(1)





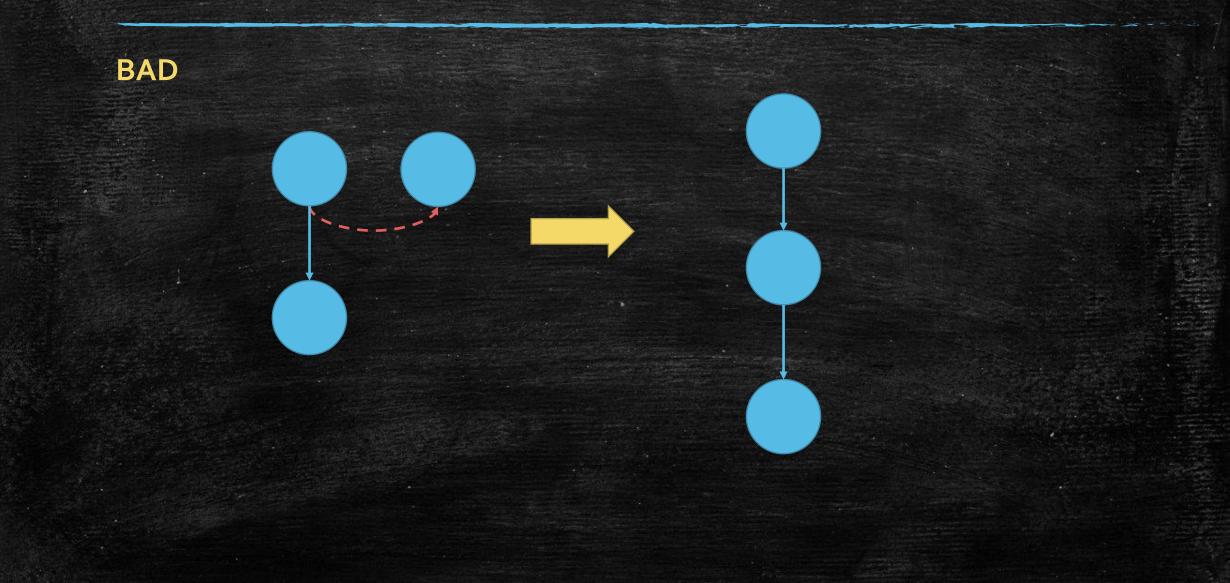


O(n) tree height

How to improve

Find

- O(max{Tree height})
- O(n)!
- Union
 - 0(1)
- To Do
 - Reduce Tree Height



Intuition

GOOD

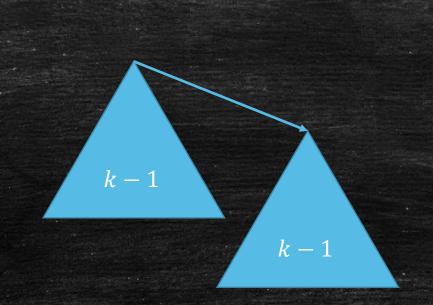
We should merge to a same root! We should merge short tree to high tree!

Implement

- Record Tree's height (rank).
- rank[v]: the rank of tree rooted at v.
- Union: *u* and *v*.
 - Rooted at u: if $rank[u] \ge rank[v]$
 - Rooted at *v*: if rank[u] < rank[v]
 - Update rank[u]++: if rank[u] = rank[v]
- We make it hard to build a large rank tree!

How to build a rank k tree?

How to build a rank k tree?



How to build a rank k tree?

k-1

We should at least use 2^k nodes!

K

k ·

Max tree height

Build a rank k tree: We should at least use 2^k nodes!
What is the max tree height (rank)?

• $O(\log n)$

- Find
 - O(max{Tree height})
 - $O(\log n)!$
- Union (rank based)
 - 0(1)

Union-Find Set

- Recall Union-Find Set
 - Find: $O(\log n)$
 - Union: 0(1)
- Kruskal
 - $O(|E|\log|E|)$ for sorting.
 - 2|*E*| round: check group
 - |V| round: union group
 - $O(|E|\log|E|) = O(|E|\log|V|)$

Can we do better?

- Karger-Klein Tarjan (1995)
 - O(m) randomized algorithm.

Chazelle (2000)

- $O(m \cdot \alpha(n))$ deterministic algorithm.
- $\alpha(n)$ is the inverse Ackermann function $\alpha(9876!) \leq 5$.
- Ackermann function: $A(4,4) \approx 2^{2^{2^{2^{16}}}}$
- Pettie-Ramachandran (2002)
 - O(optimal #comparison to determine solution)
 - We know #comparison = $\Omega(n) = O(m \cdot \alpha(n))$

Can we do better for Union-Find Set?

• Have you heard Path Compression?

Path Compression

FIND

We put every red vertices to the first level.

Path Compression

FIND

We put every red vertices to the first level.

Path Compression

FIND

We put every red vertices to the first level.

Good for next FIND!

You know what the next step!

Amortized Analysis

Time Complexity

- Find (Path Compression)
 - O(log* n) [Hopcroft & Ullman 1973]
 - $-\log^*(2^{2^{2^2}}) = \log^*(2^{65536}) = 5$
 - $O(\alpha(n))$ [Tarjan 1975]
 - $\alpha(n)$ is the inverse Ackermann function $\alpha(9876!) = 5$.
- Union (rank based)
 - 0(1)

Rank Based Union + Find with Path Compression

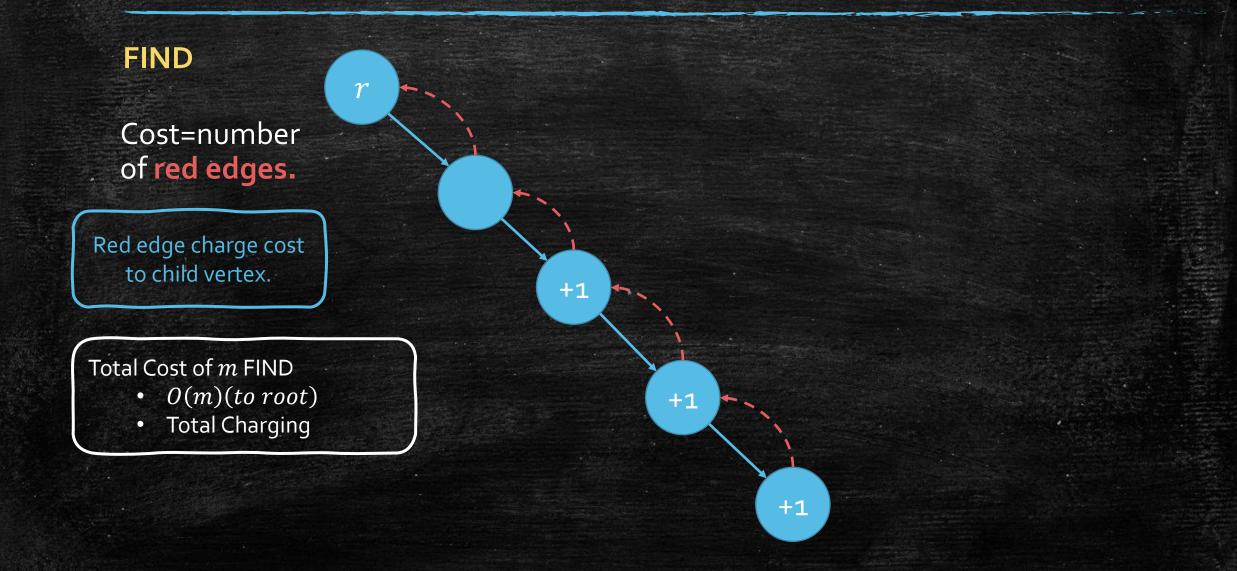
- It is still an amortized analysis
- We prove:
 - *m* find operation, totally cost $O(m \log^* n)$.

Analysis

FIND

Cost=number of red edges.

Key Idea: Charge Cost to Vertices



How much each vertex will be charge?

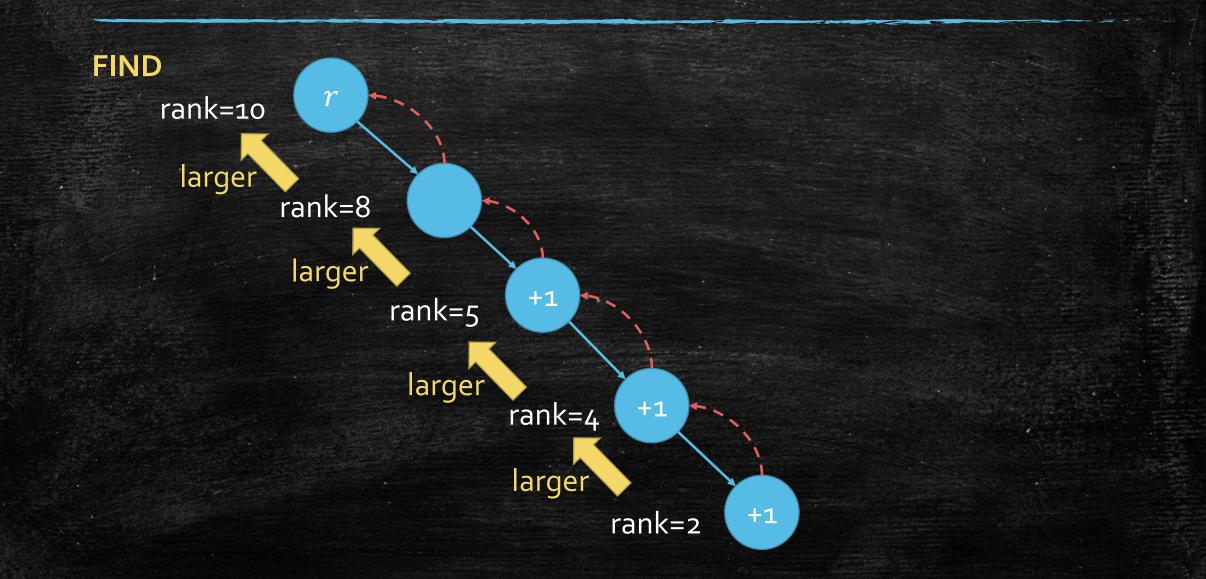
What is rank now?

- No path compression
 - rank[v]: the max height of the subtree rooted at v.
- With path compression
 - The max height of the subtree rooted at v can be changed.
 - But we still have a rank for each v. So, we call it rank but not height :)
- Recall rank[v]
 - Originally rank[v] = 1.
 - When *u* is merged to *v*, and rank[v] > rank[u], nothing changed.
 - When *u* is merged to *v*, and rank[v] = rank[u], rank[v] + +
 - When v is merged to any other vertices, rank[v] will not be changed.

Property of rank

- Parent's rank is strictly larger than the child.
- Because
 - We only merge small rank to large rank.
 - If we merge two same root, the new root's rank will +1.
 - Even if we do path compression, v's parent become stronger (rank larger).

Key Fact in FIND



Group Vertices

Group vertices by rank

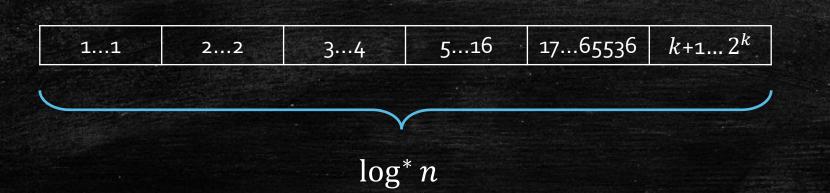
- Group 1: $k_1 = 0$
- Group 2: $k_2 = 1$
- Group *i*: $k_i = 2^{k_{i-1}}$
- Property: group $[k + 1, 2^k]$ at most have $n/2^k$ vertices.
- Recall: build rank k need 2^k vertices. (Think why it is still right when we use Path Compression.)

	11	22	34	516	1765536	<i>k</i> +1 2 ^{<i>k</i>}
--	----	----	----	-----	---------	-----------------------------------

 $\log^* n$

Different Type Charging

- Two kind of charging
 Same Group Charging (SGC)
 Across Group Charing (AGC)
- AGC for all vertices: $m \cdot \log^* n$
 - -m FIND
 - Each FIND at most log* n AGC

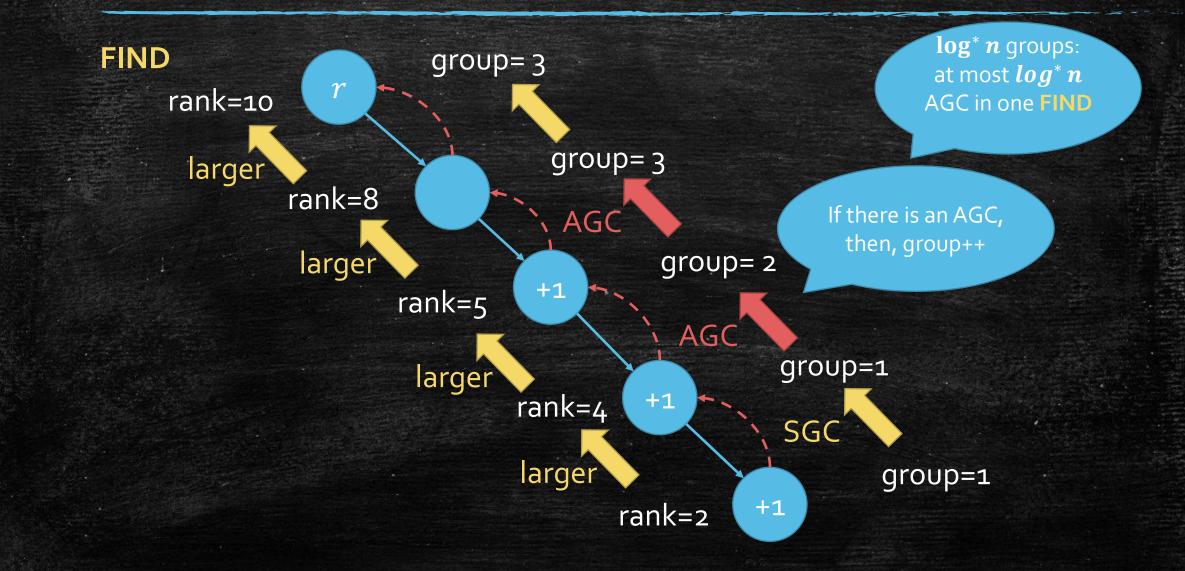


+1

+1

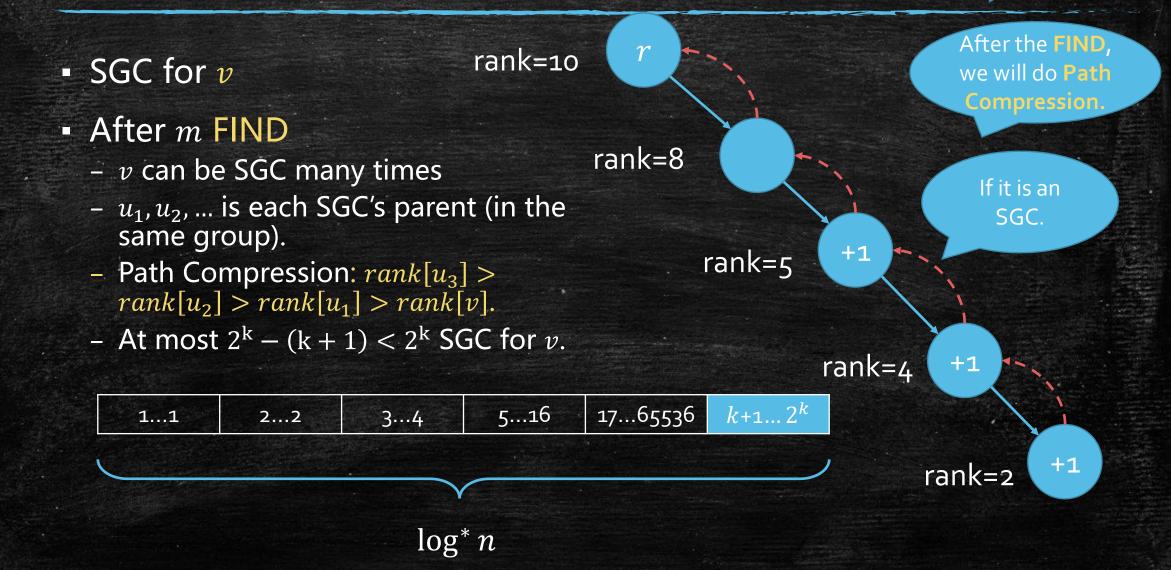
+1

Cost of Across Group Charing (AGC)



Bound Same Group Charing (SGC)

Parent of it become larger than 5



Bound Same Group Charing (SGC)

Parent of it become larger than 5

 SGC for v 			rank=10	r,			After the we will do	Path
 After m Fl v can be At most 2 	SGC mar 2 ^k – (k +	$(1) < 2^k$ So	GC for <i>v</i> .	rank=8			Compres If it is ar SGC.	
 In a grou n/2^k ver Each 2^k Totally n Totally: lo 	tices SGC SGC		n SGC		ank=5	+1		
11	22	34	516	1765536	<i>k</i> +12 ^{<i>k</i>}]		
						,	rank=2	+1
		log	* n					

Bound Total cost

Total Cost of m FIND

- *O*(*m*)(*to root*)
- Total AGC
 - $m \cdot \log^* n$
- Total SGC
 - $n \cdot \log^* n$
- Total : $m \log^* n$

	1 22 34 516 1765536 <i>k</i> +12 ^k	1	22	34	5 16	17 65526	$k_{\pm 1} 2^{k}$
						7 555	
				-			
				Y			

r

+1

+1

+1

Today's goal

- Learn what is Greedy!
- Learn to use Greedy to finish homework!
- Learn Prim and Kruskal!
- Again, how to use Data Structure to improve Algorithms.
- Review Union-Find Set!
- Learn another Amortized Analysis!