
Greedy

What is Greedy?

Follows the “looks good” strategy.

Recap the Graph Algorithm

▪ DFS (walking in a maze)
– If we can explore, then explore.

– If we can not explore, backtrack.

– Do not re-visit a vertex.

– Applications
▪ Cycle

▪ Topological

▪ SCC

Recap the Graph Algorithm

▪ BFS (waterfront)
– 1 step from 𝑟

– 2 steps from 𝑟

– …

– Application
▪ Shortest Path

Recap the Graph Algorithm

▪ Dijkstra (a generalized BFS)
– Explore 𝑠.

– Explore the closet vertex from 𝑠.

– Explore the second closest vertex from 𝑠.

– …

– We can use Fibonacci heap to improve it.

▪ Bellman-Ford

Are they Greedy?

Do we have any other
Greedy?

Examples

▪ Finding Shortest Path
– Dijkstra.

▪ Finishing homework
– Keep finishing the one with the closest deadline.

Is that optimal?

Formalize the problem

▪ Input: 𝑛 homework, each homework 𝑗 has a size 𝑠𝑗 , and a
deadline 𝑑𝑗 .

▪ Output: output a time schedule of doing homework!

Algorithm

▪ Greedy
– Keep finishing the homework with the closest deadline.

▪ Prove it is optimal.

▪ What is optimal?

▪ Claim: If we can not finish all the homework by the greedy
order, then no one can finish all the homework on time.

Discussion

Proof

▪ Claim: If we can not finish all the homework by the greedy
order, then no one can finish all the homework on time.

▪ Proof:
– If there exist 𝑖, finished later than 𝑑𝑖, what do we have?

1 1 1 2 2 2 … 𝑖 𝑖 𝑖

A possible schedule 𝑑𝑖

Proof

▪ Claim: If we can not finish all the homework by the greedy
order, then no one can finish all the homework on time.

▪ Proof:
– If there exist 𝑖, finished later than 𝑑𝑖, what do we have?

1 1 1 2 2 2 … 𝑖 𝑖 𝑖

A possible schedule 𝑑𝑖Greedy:∀𝑗 < 𝑖, 𝑑𝑗 < 𝑑𝑖

𝑗≤𝑖

𝑠𝑖 ≥ 𝑑𝑖
No one can not finish all the
homework (1~𝑖) before 𝑑𝑖.

Whatever order, the last homework
(1~𝑖) can not be on time

Minimum Spanning Tree

Prime & Kruskal

Spanning Tree

▪ Input: Given a connected undirected graph 𝐺 = 𝑉, 𝐸

▪ Output: A spanning tree of 𝐺 is, i.e., a subset of edges
that forms a tree and contains all the vertices in 𝐺.

▪ Applications
– Building a network, connecting all hubs via minimum number of

cables.

▪ Solutions
– BFS, DFS.

Minimum Spanning Tree

▪ Input: Given a connected undirected graph 𝐺 = 𝑉, 𝐸 , and
a weight function 𝑤(𝑒) for each 𝑒 ∈ 𝐸.

▪ Output: A spanning tree of 𝐺 is, i.e., a subset of edges,
with minimized total weight.

▪ Applications
– Building a network, connecting all hubs via minimum number of

cables.

𝑐

𝑑

𝑎

𝑏

𝑒
5 10

3
7

15
2

4

Minimum Spanning Tree

▪ Input: Given a connected undirected graph 𝐺 = 𝑉, 𝐸 , and
a weight function 𝑤(𝑒) for each 𝑒 ∈ 𝐸.

▪ Output: A spanning tree of 𝐺 is, i.e., a subset of edges,
with minimized total weight.

▪ Applications
– Building a network, connecting all hubs via minimum number of

cables.

𝑐

𝑑

𝑎

𝑏

𝑒
5 10

3
7

15
2

4

Dijkstra's growing idea

▪ Given a small SPT,

▪ choose a proper vertex 𝑣 to find a
larger SPT.

▪ New Plan for MST:

▪ Given a small MST,

▪ choose a proper vertex 𝑣 to find a
larger MST. 𝑠

𝑎

𝑏

𝑇
𝑣

Prim’s growing idea

▪ Given a small MST,

▪ choose a proper vertex 𝑣 to find a
larger MST.

▪ Which 𝑣 is good?

▪ Dijkstra: 𝑣 with smallest 𝑇-distance
to 𝑠.

▪ Now: 𝑣 with smallest cost! 𝑠

𝑎

𝑏

𝑇
𝑣

5

50

Prim’s growing idea

▪ Given a small MST,

▪ choose a proper vertex 𝑣 to find a
larger MST.

▪ Grow 𝑣 with smallest cost!

▪ Is it correct?

▪ Challenge:
– How to define small MST 𝑠

𝑎

𝑏

𝑇
𝑣

5

50

How to define small MST?

▪ 𝑇 = (𝑉′, 𝐸′) is a small MST if it is an
MST for 𝑉′.

▪ Problem
– are those edges in 𝑇 still ok?

▪ A better choice:

▪ 𝑇 is a P-MST (Partial MST) if it is a
part of a complete MST for 𝐺. 𝑠

𝑎

𝑏

𝑇
𝑣

5

50

Correctness of Prim’s Growing idea

▪ Let’s say 𝑇∗ is the complete MST that
contains 𝑇, and suppose a, v ∉ 𝑇∗.

𝑠

𝑎

𝑏

𝑇
𝑣

5

There must has
path from 𝑇 to 𝑣.

▪ Given: a small P-MST 𝑇.

▪ Want: a larger P-MST.

▪ Can we explore 𝑣
(smallest cost) into 𝑇?

Correctness of Prim’s Growing idea

▪ Let’s say 𝑇∗ is the complete MST that
contains 𝑇, and suppose a, v ∉ 𝑇∗.

𝑠

𝑎

𝑏

𝑇
𝑣

5

There must be a
path from 𝑇 to 𝑣.

𝑢
There must be a vertex

𝑢 adjacent to 𝑇.

▪ Given: a small P-MST 𝑇.

▪ Want: a larger P-MST.

▪ Can we explore 𝑣
(smallest cost) into 𝑇?

Correctness of Prim’s Growing idea

▪ Let’s say 𝑇∗ is the complete MST that
contains 𝑇, and suppose a, v ∉ 𝑇∗.

𝑠

𝑎

𝑏

𝑇
𝑣

5

There must be a
path from 𝑇 to 𝑣.

𝑢
There must be a vertex

𝑢 adjacent to 𝑇.Its weight must
be at least 5.

▪ Given: a small P-MST 𝑇.

▪ Want: a larger P-MST.

▪ Can we explore 𝑣
(smallest cost) into 𝑇?

Correctness of Prim’s Growing idea

▪ Let’s say 𝑇∗ is the complete MST that
contains 𝑇, and suppose a, v ∉ 𝑇∗.

𝑠

𝑎

𝑏

𝑇
𝑣

5

There must be a
path from 𝑇 to 𝑣.

𝑢
There must be a vertex

𝑢 adjacent to 𝑇.Its weight must
be at least 5.

▪ Given: a small P-MST 𝑇.

▪ Want: a larger P-MST.

▪ Can we explore 𝑣
(smallest cost) into 𝑇?

Correctness of Prim’s Growing idea

▪ Let’s say 𝑇∗ is the complete MST that
contains 𝑇, and suppose a, v ∉ 𝑇∗.

𝑠

𝑎

𝑏

𝑇
𝑣

5

There must be a
path from 𝑇 to 𝑣.

𝑢
There must be a vertex

𝑢 adjacent to 𝑇.Its weight must
be at least 5.

Repacing (𝑏, 𝑢) with
(𝑎, 𝑢): still an MST.

▪ Given: a small P-MST 𝑇.

▪ Want: a larger P-MST.

▪ Can we explore 𝑣
(smallest cost) into 𝑇?

Correctness of Prim’s Growing idea

▪ Let’s say 𝑇∗ is the complete MST that
contains 𝑇, and suppose a, v ∉ 𝑇∗.

𝑠

𝑎

𝑏

𝑇
𝑣

5

There must be a
path from 𝑇 to 𝑣.

𝑢
There must be a vertex

𝑢 adjacent to 𝑇.Its weight must
be at least 5.

Repacing (𝑏, 𝑢) with
(𝑎, 𝑢): still an MST.

𝑇 ∪ (𝑎, 𝑣) must be
a part of an MST.

▪ Given: a small P-MST 𝑇.

▪ Want: a larger P-MST.

▪ Can we explore 𝑣
(smallest cost) into 𝑇?

Prim Algorithm [Jarník ’30, Prim ’57, Dijkstra ’59]

Prim(𝑮 = (𝑽, 𝑬))

1. Initialize
– 𝑇 ← , S ← s ; #s is an arbitrary vertex.

– 𝑐𝑜𝑠𝑡 𝑠 = 0, 𝑐𝑜𝑠𝑡 𝑣 ← ∞ for all 𝑣 other than 𝑠.
– 𝑐𝑜𝑠𝑡 𝑣 ← 𝑤 𝑠, 𝑣 , 𝑝𝑟𝑒 𝑣 = 𝑠 for all 𝑠, 𝑣 ∈ 𝐸.

2. Explore
– Find 𝑣 ∉ 𝑆 with smallest 𝑐𝑜𝑠𝑡[𝑣].
– 𝑆 ← 𝑆 + 𝑣 ; 𝑇 ← 𝑇 + { 𝑝𝑟𝑒[𝑣], 𝑣 }

3. Update 𝒄𝒐𝒔𝒕 𝒖
– 𝑐𝑜𝑠𝑡 𝑢 = min{𝑐𝑜𝑠𝑡 𝑢 , 𝑤(𝑣, 𝑢)} for all 𝑣, 𝑢 ∈ 𝐸

– If 𝑐𝑜𝑠𝑡 𝑢 is updated, then 𝑝𝑟𝑒 𝑢 = 𝑣.

Sample Run

𝑐

𝑑

𝑎

𝑏

𝑒
5 10

3
7

15
2

4

Sample Run

𝑐

𝑑

𝑎

𝑏

𝑒
5 10

3
7

15
2

4

Sample Run

𝑐

𝑑

𝑎

𝑏

𝑒
5 10

3
7

15
2

4

Sample Run

𝑐

𝑑

𝑎

𝑏

𝑒
5 10

3
7

15
2

4

Sample Run

𝑐

𝑑

𝑎

𝑏

𝑒
5 10

3
7

15
2

4

Running Time

▪ I believe you know how to analyze it:

▪ We can do it in 𝑂 𝐸 + 𝑉 log 𝑉 .

Kruskal Algorithm [Kruskal 1956]

▪ Another Greedy!

Kruskal(𝑮 = (𝑽, 𝑬))

▪ Sort the edge set 𝐸 to descending order.

▪ For each 𝑒 ∈ 𝐸 in descending order
– If e do not create a cycle, then choose it.

Kruskal Algorithm

Kruskal(𝑮 = (𝑽, 𝑬))

▪ Sort the edge set 𝐸 to ascending order.

▪ For each 𝑒 ∈ 𝐸 in ascending order
– If e do not create a cycle, then choose it.

𝑐

𝑑

𝑎

𝑏

𝑒
5 10

7
3

15
2

4

2 3 4 5 7 10 15

Kruskal Algorithm

Kruskal(𝑮 = (𝑽, 𝑬))

▪ Sort the edge set 𝐸 to ascending order.

▪ For each 𝑒 ∈ 𝐸 in ascending order
– If e do not create a cycle, then choose it.

𝑐

𝑑

𝑎

𝑏

𝑒
5 10

7
3

15
2

4

2 3 4 5 7 10 15

Kruskal Algorithm

Kruskal(𝑮 = (𝑽, 𝑬))

▪ Sort the edge set 𝐸 to ascending order.

▪ For each 𝑒 ∈ 𝐸 in ascending order
– If e do not create a cycle, then choose it.

𝑐

𝑑

𝑎

𝑏

𝑒
5 10

7
3

15
2

4

2 3 4 5 7 10 15

Kruskal Algorithm

Kruskal(𝑮 = (𝑽, 𝑬))

▪ Sort the edge set 𝐸 to ascending order.

▪ For each 𝑒 ∈ 𝐸 in ascending order
– If e do not create a cycle, then choose it.

𝑐

𝑑

𝑎

𝑏

𝑒
5 10

7
3

15
2

4

2 3 4 5 7 10 15

Kruskal Algorithm

Kruskal(𝑮 = (𝑽, 𝑬))

▪ Sort the edge set 𝐸 to ascending order.

▪ For each 𝑒 ∈ 𝐸 in ascending order
– If e do not create a cycle, then choose it.

𝑐

𝑑

𝑎

𝑏

𝑒
5 10

7
3

15
2

4

2 3 4 5 7 10 15

Kruskal Algorithm

Kruskal(𝑮 = (𝑽, 𝑬))

▪ Sort the edge set 𝐸 to ascending order.

▪ For each 𝑒 ∈ 𝐸 in ascending order
– If e do not create a cycle, then choose it.

𝑐

𝑑

𝑎

𝑏

𝑒
5 10

7
3

15
2

4

2 3 4 5 7 10 15

Kruskal Algorithm

Kruskal(𝑮 = (𝑽, 𝑬))

▪ Sort the edge set 𝐸 to ascending order.

▪ For each 𝑒 ∈ 𝐸 in ascending order
– If e do not create a cycle, then choose it.

𝑐

𝑑

𝑎

𝑏

𝑒
5 10

7
3

15
2

4

2 3 4 5 7 10 15

Correctness of Prim’s Growing idea

▪ Let’s say 𝑇∗ is the complete MST that
contains 𝑇, and suppose a, v ∉ 𝑇∗.

▪ Given: a small P-MST 𝑇.

▪ Want: a larger P-MST.

▪ Can we explore 𝑣
(smallest cost) into 𝑇?

𝑠

𝑎

𝑏

𝑇
𝑣

5

There must has
path from 𝑇 to 𝑣.

Correctness of Kruskal’s Growing idea

▪ Let’s say 𝑇∗ is the complete MST that
contains 𝑇, and suppose a, v ∉ 𝑇∗.

𝑠

𝑎

𝑏

𝑇

𝑐

𝑒

𝑑

𝑓 𝑔

▪ Given: a small P-MST 𝑇.

▪ Want: a larger P-MST.

Correctness of Kruskal’s Growing idea

▪ Let’s say 𝑇∗ is the complete MST that
contains 𝑇, and suppose a, v ∉ 𝑇∗.

▪ Given: a small P-MST 𝑇.

▪ Want: a larger P-MST.

▪ Add the smallest red
edge get a larger P-MST.

𝑠

𝑎

𝑏

𝑇

𝑐

𝑒

𝑑

𝑓 𝑔

Correctness of Kruskal’s Growing idea

▪ Let’s say 𝑇∗ is the complete MST that
contains 𝑇, and suppose a, v ∉ 𝑇∗.

▪ Given: a small P-MST 𝑇.

▪ Want: a larger P-MST.

▪ Add the smallest red
edge get a larger P-MST.

𝑠

𝑎

𝑏

𝑇

𝑐

𝑒

𝑑

𝑓 𝑔

Running Time

▪ 𝑂(𝐸 log 𝐸) for sorting.

▪ |𝐸| round: check cycle!

Kruskal(𝑮 = (𝑽, 𝑬))

▪ Sort the edge set 𝐸 to ascending order.

▪ For each 𝑒 ∈ 𝐸 in ascending order
– If e do not create a cycle, then choose it.

Recall DFS

▪ When an edge is a back edge (to marked vertices),

▪ It forms a cycle.

During Kruskal

▪ When an edge connect the same group vertices,

▪ It forms a cycle.

𝑠

𝑎

𝑏

𝑇

𝑐

𝑒

𝑑

𝑓 𝑔

Kruskal (refine)

Kruskal(𝑮 = (𝑽, 𝑬))

▪ Sort the edge set 𝐸 to ascending order.

▪ For each (𝑢, 𝑣) ∈ 𝐸 in ascending order
– If 𝑔𝑟𝑜𝑢𝑝 𝑢 ! = 𝑔𝑟𝑜𝑢𝑝(𝑣)

▪ Choose (𝑢, 𝑣).

▪ 𝑢𝑛𝑖𝑜𝑛(𝑔𝑟𝑜𝑢𝑝 𝑢 , 𝑔𝑟𝑜𝑢𝑝 𝑣)

Running Time: Kruskal (refine)

Kruskal(𝑮 = (𝑽, 𝑬))

▪ Sort the edge set 𝐸 to ascending order.

▪ For each (𝑢, 𝑣) ∈ 𝐸 in ascending order
– If 𝑔𝑟𝑜𝑢𝑝 𝑢 ! = 𝑔𝑟𝑜𝑢𝑝(𝑣)

▪ Choose (𝑢, 𝑣).

▪ 𝑢𝑛𝑖𝑜𝑛(𝑔𝑟𝑜𝑢𝑝 𝑢 , 𝑔𝑟𝑜𝑢𝑝 𝑣)

▪ 𝑂(𝐸 log 𝐸) for sorting.

▪ 2|𝐸| round: check group

▪ |𝑉| round: union group

Union-Find Set

▪ Recall Union-Find Set
– Find: 𝑂(log 𝑛)

– Union: 𝑂(1)

▪ Kruskal
– 𝑂(𝐸 log 𝐸) for sorting.

– 2|𝐸| round: check group

– |𝑉| round: union group

– 𝑂 𝐸 log 𝐸 = 𝑂(𝐸 log 𝑉)

Review Union-Find Set

1 2 3

Review Union-Find Set

1 2 3
FIND

Review Union-Find Set

1 2 3
UNIOIN

Review Union-Find Set

1

2

3
UNIOIN

Time Complexity

▪ Find
– 𝑂(max{𝑇𝑟𝑒𝑒 ℎ𝑒𝑖𝑔ℎ𝑡})

▪ Union
– 𝑂(1)

A bad Case

A bad Case

A bad Case

A bad Case

O(n) tree height

How to improve

▪ Find
– 𝑂(max{𝑇𝑟𝑒𝑒 ℎ𝑒𝑖𝑔ℎ𝑡})

– 𝑂 𝑛 !

▪ Union
– 𝑂(1)

▪ To Do
– Reduce Tree Height

Intuition

BAD

Intuition

GOOD

We should merge to a same root!
We should merge short tree to high tree!

Implement

▪ Record Tree’s height (rank).

▪ 𝑟𝑎𝑛𝑘[𝑣]: the rank of tree rooted at 𝑣.

▪ Union: 𝑢 and 𝑣.
– Rooted at 𝑢: if 𝑟𝑎𝑛𝑘 𝑢 ≥ 𝑟𝑎𝑛𝑘[𝑣]

– Rooted at 𝑣: if 𝑟𝑎𝑛𝑘 𝑢 < 𝑟𝑎𝑛𝑘[𝑣]

– Update 𝑟𝑎𝑛𝑘 𝑢 ++: if 𝑟𝑎𝑛𝑘 𝑢 = 𝑟𝑎𝑛𝑘[𝑣]

▪ We make it hard to build a large rank tree!

How to build a rank 𝑘 tree?

𝑘 − 1 𝑘 − 1

How to build a rank 𝑘 tree?

𝑘 − 1

𝑘 − 1

How to build a rank 𝑘 tree?

𝑘 − 1

𝑘 − 1

𝑘 − 2

𝑘 − 2

𝑘 − 2

𝑘 − 2

We should at least use 𝟐𝒌 nodes!

Max tree height

▪ Build a rank 𝑘 tree: We should at least use 𝟐𝒌 nodes!

▪ What is the max tree height (rank)?

▪ 𝑶(𝐥𝐨𝐠𝒏)

▪ Find
– 𝑂(max{𝑇𝑟𝑒𝑒 ℎ𝑒𝑖𝑔ℎ𝑡})

– 𝑶 𝐥𝐨𝐠𝒏 !

▪ Union (rank based)
– 𝑂(1)

Union-Find Set

▪ Recall Union-Find Set
– Find: 𝑂(log 𝑛)

– Union: 𝑂(1)

▪ Kruskal
– 𝑂(𝐸 log 𝐸) for sorting.

– 2|𝐸| round: check group

– |𝑉| round: union group

– 𝑂 𝐸 log 𝐸 = 𝑂(𝐸 log 𝑉)

Can we do better?

▪ Karger-Klein Tarjan (1995)
– 𝑂(𝑚) randomized algorithm.

▪ Chazelle (2000)
– 𝑂(𝑚 ⋅ 𝛼(𝑛)) deterministic algorithm.

– 𝛼 𝑛 is the inverse Ackermann function 𝛼 9876! ≤ 5.

– Ackermann function: 𝐴 4,4 ≈ 22
22

16

.

▪ Pettie-Ramachandran (2002)
– O(optimal #comparison to determine solution)

– We know #comparison = Ω 𝑛 = 𝑂(𝑚 ⋅ 𝛼 𝑛)

Can we do better for Union-Find Set?

▪ Have you heard Path Compression?

Path Compression

FIND

We put every red vertices
to the first level.

Path Compression

FIND

We put every red vertices
to the first level.

Path Compression

FIND

We put every red vertices
to the first level.

Good for next FIND!

You know what the next
step!

Amortized Analysis

Time Complexity

▪ Find (Path Compression)
– 𝑂 log∗ 𝑛 [Hopcroft & Ullman 1973]

– log∗(22
22

2

) = log∗(265536) = 5

– 𝑂(𝛼(𝑛)) [Tarjan 1975]

– 𝛼 𝑛 is the inverse Ackermann function 𝛼 9876! = 5.

▪ Union (rank based)
– 𝑂(1)

Rank Based Union + Find with Path
Compression

▪ It is still an amortized analysis

▪ We prove:
– 𝑚 find operation, totally cost 𝑂 𝑚 log∗ 𝑛 .

Analysis

FIND

Cost=number
of red edges.

Key Idea: Charge Cost to Vertices

𝑟

+1

+1

+1

FIND

Cost=number
of red edges.

Red edge charge cost
to child vertex.

Total Cost of 𝑚 FIND
• 𝑂 𝑚 𝑡𝑜 𝑟𝑜𝑜𝑡
• Total Charging

How much each vertex will
be charge?

What is rank now?

▪ No path compression
– 𝑟𝑎𝑛𝑘[𝑣]: the max height of the subtree rooted at 𝑣.

▪ With path compression
– The max height of the subtree rooted at 𝑣 can be changed.

– But we still have a rank for each 𝑣. So, we call it rank but not height :)

▪ Recall 𝑟𝑎𝑛𝑘[𝑣]
– Originally 𝑟𝑎𝑛𝑘 𝑣 = 1.

– When 𝑢 is merged to 𝑣, and 𝑟𝑎𝑛𝑘 𝑣 > 𝑟𝑎𝑛𝑘[𝑢], nothing changed.

– When 𝑢 is merged to 𝑣, and 𝑟𝑎𝑛𝑘 𝑣 = 𝑟𝑎𝑛𝑘[𝑢], 𝑟𝑎𝑛𝑘 𝑣 + +

– When 𝑣 is merged to any other vertices, 𝑟𝑎𝑛𝑘[𝑣] will not be changed.

Property of rank

▪ Parent’s rank is strictly larger than the child.

▪ Because
– We only merge small rank to large rank。

– If we merge two same root, the new root’s rank will +1.

– Even if we do path compression, 𝑣’s parent become stronger (rank
larger).

Key Fact in FIND

𝑟

+1

+1

+1

FIND

rank=10

rank=8

rank=5

rank=4

rank=2

larger

larger

larger

larger

Group Vertices

▪ Group vertices by rank
– Group 1: 𝑘1 = 0

– Group 2: 𝑘2 = 1

– Group 𝑖: 𝑘𝑖 = 2𝑘𝑖−1

▪ Property: group [𝑘 + 1,2𝑘] at most have 𝑛/2𝑘 vertices.

▪ Recall: build rank 𝑘 need 2𝑘 vertices. (Think why it is still
right when we use Path Compression.)

1...1 2…2 3…4 5…16 17…65536 𝑘+1…2𝑘

log∗ 𝑛

Different Type Charging

▪ Two kind of charging
– Same Group Charging (SGC)

– Across Group Charing (AGC)

▪ AGC for all vertices: 𝑚 ⋅ log∗ 𝑛
– 𝑚 FIND

– Each FIND at most log∗ 𝑛 AGC

𝑟

+1

+1

+1

1...1 2…2 3…4 5…16 17…65536 𝑘+1…2𝑘

log∗ 𝑛

Cost of Across Group Charing (AGC)

𝑟

+1

+1

+1

FIND

rank=10

rank=8

rank=5

rank=4

rank=2

larger

larger

larger

larger

If there is an AGC,
then, group++

group= 3

group= 3

group= 2

group=1

group=1

AGC

AGC

SGC

𝐥𝐨𝐠∗ 𝒏 groups:
at most 𝒍𝒐𝒈∗ 𝒏

AGC in one FIND

Bound Same Group Charing (SGC)

▪ SGC for 𝑣

▪ After 𝑚 FIND
– 𝑣 can be SGC many times

– 𝑢1, 𝑢2, … is each SGC’s parent (in the
same group).

– Path Compression: 𝑟𝑎𝑛𝑘 𝑢3 >
𝑟𝑎𝑛𝑘 𝑢2 > 𝑟𝑎𝑛𝑘 𝑢1 > 𝑟𝑎𝑛𝑘 𝑣 .

– At most 2k − k + 1 < 2k SGC for 𝑣.

1...1 2…2 3…4 5…16 17…65536 𝑘+1…2𝑘

𝑟

+1

+1

+1

log∗ 𝑛

rank=10

rank=8

rank=5

rank=4

rank=2

If it is an
SGC.

After the FIND,
we will do Path
Compression.

Parent of it
become

larger than 5

Bound Same Group Charing (SGC)

▪ SGC for 𝑣

▪ After 𝑚 FIND
– 𝑣 can be SGC many times
– At most 2k − k + 1 < 2k SGC for 𝑣.
– In a group 𝑘 + 1…2𝑘

▪ 𝑛/2𝑘 vertices
▪ Each 2𝑘 SGC
▪ Totally 𝑛 SGC

– Totally: log∗ 𝑛 groups, 𝑛 log∗ 𝑛 SGC

1...1 2…2 3…4 5…16 17…65536 𝑘+1…2𝑘

𝑟

+1

+1

+1

log∗ 𝑛

rank=10

rank=8

rank=5

rank=4

rank=2

If it is an
SGC.

After the FIND,
we will do Path
Compression.

Parent of it
become

larger than 5

Bound Total cost

▪ Total Cost of 𝑚 FIND
• 𝑂 𝑚 𝑡𝑜 𝑟𝑜𝑜𝑡

• Total AGC
• 𝑚 ⋅ log∗ 𝑛

• Total SGC
• 𝑛 ⋅ log∗ 𝑛

• Total : 𝑚 log∗ 𝑛

1...1 2…2 3…4 5…16 17…65536 𝑘+1…2𝑘

𝑟

+1

+1

+1

log∗ 𝑛

Today’s goal

▪ Learn what is Greedy!

▪ Learn to use Greedy to finish homework!

▪ Learn Prim and Kruskal!

▪ Again, how to use Data Structure to improve Algorithms.

▪ Review Union-Find Set!

▪ Learn another Amortized Analysis!

