Greedy | ‘

What is Greedy? i

Follows the “looks good” strategy.

Recap the Graph Algorithm

e —————

= DFS (walking in a maze)
- If we can explore, then explore.
- If we can not explore, backtrack.
- Do not re-visit a vertex.
- Applications
= Cycle
= Topological
= SCC

Recap the Graph Algorithm

E——

F BFS (waterfront)

- - 1stepfromr
- 2 steps from r
- Application
= Shortest Path

Recap the Graph Algorithm

E——

Dijkstra (a generalized BFS)

- Explore s.

- - Explore the closet vertex from s.

- Explore the second closest vertex from s.

- We can use Fibonacci heap to improve it.

Bellman-Ford

Are they Greedy? ‘

Do we have any other W
Greedy7

Examples

= Finding Shortest Path
- - Dijkstra. '
= Finishing homework
- Keep finishing the one with the closest deadline.

Is that optimal? ‘

Formalize the problem

= - = ' —

= Input: n homework, each homework j has a size s;, and a
~ deadline q;. |

- Output: output a time schedule of doing homework! '

Algorithm

Greedy |
- Keep finishing the homework with the closest deadline.

Prove it is optimal.

What is optimal?

Claim: If we can not finish all the homework by the greedy
order, then no one can finish all the homework on time.

Discussion

Proof

— - : ——— : e D T s T

_« Claim: If we can not finish all the homework by the greedy
~ order, then no one can finish all the homework on time.

 Proof:
- If there exist i, finished later than d;, what do we have?

1 1 1 2 2 2 i i i

A possible schedule d

Proof

EE———

— 2 p—

= Claim: If we can nof finish all the homework by the greedy
- order, then no one can finish all the homework on time.

= Proof:

- If there exist i, finished later than d;, what do we have?

S
v

Z Si = di
j<i »

N —

No one can.not finish all the
homework (1~i) before d;.

s

1 1

p p p

|

rGreedy:Vj <idj <d;

A possible schedule

Whatever order, the last homework
(1~i) can not be on time

Minimum Spanning Tree

Prime & Kruskal

e:1slallale Tree

e— - ' —_— . e e e T s %

Input: Given a cohnected undirected graph G = (V,E)

Output: A spanning tree of G is, i.e, a subset of edges
that forms a tree and contains all the vertices in G.

Applications

- Building a network, connecting all hubs via minimum number of
cables. '

Solutions
- BFS, DFS.

Minimum Spanning Tree

S — < - - ———

Input G|ven a connected undirected graph ¢ = (V,E), and
~ a weight function w(e) for eache € E..

0utput A spanning tree of G is, i.e., a subset of edges
with minimized total weight.

- Applications
- Building a network, connecting all hubs via minimum number of
cables.

Minimum Spanning Tree

S — < - - ———

Input G|ven a connected undirected graph ¢ = (V,E), and
~ a weight function w(e) for eache € E..

0utput A spanning tree of G is, i.e., a subset of edges
with minimized total weight.

- Applications
- Building a network, connecting all hubs via minimum number of
cables.

Dijkstra's growing idea

S — = S

? Given a small SPT, |

= choose a prop_e'r vertex v to find a
larger SPT."

 New Plan for MST: "

= Given a small MST,

- choose a proper vertex v to find a
larger MST.

Prim’s growing Idea

= Given a small MST,

= choose a proper vertex v to find a
larger MST.

* Which v is good?

- Dijkstra: v with smallest T-distance
to s. - '

=« Now: v with smallest cost!

Prim’s growing Idea

— - S - = s —_— - —— e e s S gt

£ Given a small MST,'-' |

= choose a proper vertex v to find a
larger MST.

= Grow v with smaIIeSt cost!

= |s it correct?

= Challenge: e
- - How to define small MST

How to define small MST?

— = s = - ==

» T =(V',E") Isasmall MST if it is an
= MSTHor V.= - |
 Problem -

- are those edges in T still ok?

A better choice:

« T is a P-MST (Partial MST) if it is a
part of a complete MST for G. |

Correctness of Prim’s Growing idea

= Let's say T* is the complete MST that + Given: a small P-MST T.
~ contains T, and_suppose (av)eT*. . Want: a larger P-MST.

- Can we explore v
(smallest cost) into T?

-
-
-
-
: -
—’
__
—
-

Correctness of Prim’s Growing idea

S — - S

=

— e

. Let'ssay T* is the cbmplete MST that
- contains T, and suppose (a,v) & T".

= Given: a small P-MST T.
- Want: a larger P-MST.

- Can we explore v

(smallest cost) into T?

Correctness of Prim’s Growing idea

S _ S

= 3 —

— e

. Let'ssay T* is the cbmplete MST that
- contains T, and suppose (a,v) & T".

= Given: a small P-MST T.
- Want: a larger P-MST.

- Can we explore v

(smallest cost) into T?

Correctness of Prim’s Growing idea

S — - S

=

— e

. Let'ssay T* is the cbmplete MST that
- contains T, and suppose (a,v) & T".

= Given: a small P-MST T.
- Want: a larger P-MST.

- Can we explore v

(smallest cost) into T?

Correctness of Prim’s Growing idea

— = eSS = - = - - - s et 3

= — ==

. Let's say T* is the complete MST that * Given: a small P-MST T.
~ contains T, and_suppose (av)eT*. . Want: a larger P-MST.

- Can we explore v
(smallest cost) into T?

Correctness of Prim’s Growing idea

S _ S

— 3 — i

. Let's say T* is the cbmplete MST that
- contains T, and suppose (a,v) & T".

= Given: a small P-MST T.
- Want: a larger P-MST.

- Can we explore v

(smallest cost) into T?

Prim Algorithm [jarnik '30, Prim ‘57, Dijkstra '59]

S — < - - ———

= PAmM(C = 7))

1. Initialize |
-~ T «{},S « {s}; #sisanarbitrary vertex.
— cost|[s] = 0, cost[v] « oo for all v other than s.
- cost[v] « w(s,v),pre[v] = s for all (s,v) € E.

2. Explore
- Find v ¢ S with smallest cost[v].
- S« S+{vh T «T+{(pre[v],v)}

3. Update cost[u] |
- cost[u] = min{cost[u], w(v,u)} for all (v,u) € E
- If cost[u] is updated, then pref[u] = v.

Sample Run |

Sample Run |

Sample Run |

Sample Run |

Sample Run |

Running Time _

= | believe you know 'how to analyze it:
= We cando itin O(|E| + |V]|log|V]).

Kruskal Algorithm [Kruskal 1956] |

EE———

e Another Greedy!

_ Kruskal(G = (V,E))
= Sort the edge set E to descending order.

= For each e € E In descending order

\ _ If e do not create a cycle, then choose it.

Kruskal Algorithm

S — - S

_ 'KruskaI(G = (V,E))
. Sort the edge set E to ascending order.

= For each e € E in ascending order
e If e do not create a cycle, then choose it.

10

15

Kruskal Algorithm

S — - S

_ 'KruskaI(G = (V,E))
. Sort the edge set E to ascending order.

= For each e € E in ascending order
e If e do not create a cycle, then choose it.

10

15

Kruskal Algorithm

S — - S

_ 'KruskaI(G = (V,E))
. Sort the edge set E to ascending order.

= For each e € E in ascending order
e If e do not create a cycle, then choose it.

10

15

Kruskal Algorithm

S — - S

_ 'KruskaI(G = (V,E))
. Sort the edge set E to ascending order.

= For each e € E in ascending order
e If e do not create a cycle, then choose it.

10

15

Kruskal Algorithm

S — - S

_ 'KruskaI(G = (V,E))
. Sort the edge set E to ascending order.

= For each e € E in ascending order
e If e do not create a cycle, then choose it.

10

15

Kruskal Algorithm

S — - S

_ 'KruskaI(G = (V,E))
. Sort the edge set E to ascending order.

= For each e € E in ascending order
e If e do not create a cycle, then choose it.

10

15

Kruskal Algorithm

S — - S

_ 'KruskaI(G = (V,E))
. Sort the edge set E to ascending order.

= For each e € E in ascending order
e If e do not create a cycle, then choose it.

10

15

Correctness of Prim’s Growing idea

= Let's say T* is the complete MST that + Given: a small P-MST T.
~ contains T, and_suppose (av)eT*. . Want: a larger P-MST.

- Can we explore v
(smallest cost) into T?

-
-
-
-
: -
—’
__
—
-

Correctness of Kruskal's Growing Idea

—— = =S = - —— e —_— - = =TS e

= Let's say T* is the complete MST that » Given: a small P-MSTT.
~ contains T, and_suppose (av)eT*. . Want: a larger P-MST.

Correctness of Kruskal's Growing Idea

— = e = - —_—— - — = A T e

= Let's say T* is the complete MST that » Given: a small P-MST T.
~ contains T, and_suppose (av)eT*. . Want: a larger P-MST.

- Add the smallest red
edge get a larger P-MST.

Correctness of Kruskal's Growing Idea

—— = =S = - —_—— - _— = A T e

= Let's say T* is the complete MST that » Given: a small P-MST T.
~ contains T, and_suppose (av)eT*. . Want: a larger P-MST.

- Add the smallest red

edge get a larger P-MST§£ :

Running Time _

EE———

| KruskaI(G = (V,E))
. Sort the edge set E to ascending order.

= For each e € E in ascending order
B If e do not create a cycle, then choose it.

- O(|E|log|E|) for sorting.

= |E| round: check cyclel

Recall DFS |

— - = = . =

= ‘When an edge is a'.b'ack edge (to marked vertices),

= It forms a cyc'l_e.'

During Kruskal

S _ ——

e ‘When an edge- con.n‘ect the same group vertices,

= It forms a cycle.

Kruskal (refine)

EE———

| KruskaI(G =4 E))
Sort the edge set E to ascending order.

. For each (u,v) € E In ascending order

- If group(u)! = group(v)
= Choose (u,v).

= union(group(u), group(v))

Running Time: Kruskal (refine) |

EE———

KruskaI(G =4 E))
» Sort the edge set E to ascending order.

= For each (u,v) € E in ascending order

- If group(u)! = group(v)
= Choose (u,v).

| = union(group(u), group(v))

- O(|E|log|E|) for sorting.
= 2|E| round: check group

- |V| round: union group

Union-Find Set

- Recall Union-Find Set
- - Find:0(logn) - |
- - Union: 0(1)

= Kruskal
- O(|E|logl|E]) for sorting.
- 2|E| round: check group
- |V] round: union group
- O(|E|logl|E]) = O(|E|1og|V])

"z ReviewUnionFFind Set

e —— - . S - = = = -

Review Union-Find Set

FIND

Review Union-Find Set

— = . = : - - ———

UNIOIN

Review Union-Find Set

— = . = : - - ———

UNIOIN

Time CompIeXity

e Find
- O(max({Tree height})
 Union
- o)

A bad Case

A bad Case

00000

A bad Case

S s c -
e~ L s N !\ V £
- e ~ - ~ e !

—— —— -_— -

A bad Case "

O(n) tree height_ ‘

How to impro‘ve

? Find
- = O(max{Tree height))
- 0(m)! (
= Union
- 0(1)

= To Do |
- Reduce Tree Height

Intuition

~BAD

Intuition

R clo]e]p

We should merge to a same root!
We should merge short tree to high tree!

Implement

Record Tree’s_ height (rank).

rank[v]: the rank of tree rooted at v.

Union: u and v.

- Rooted at u: if rank[u] = rank[v]

- Rooted at v: if rank[u] < rank[v]

- Update rank[u]++: if rank[u] = rank[v]

We make it hard to build a large rank tree!

~ How to build a rank k tree?

S = S ——————

How to build a rank k tree? =

—— _ ==

How to build a rank k tree? - :

We should at least use 2 nodes!

Max tree heig'ht

N . — - ——

= Build a rank k tree: We should at least use 2* nodes!
= What is the max tree height (rank)?
" O(log n)

= Find
— O(max{Tree height})
- 0(logn)! '

= Union (rank based)
- 0(1)

Union-Find Set

- Recall Union-Find Set
- - Find:0(logn) - |
- - Union: 0(1)

= Kruskal
- O(|E|logl|E]) for sorting.
- 2|E| round: check group
- |V] round: union group
- O(|E|logl|E]) = O(|E|1og|V])

Can we do better?

' = Karger-Klein Tarjanx(1995)
- O(m) randomlzed algorithm.
ChazeHe(ZOOO) |

- O(m - a(n)) deterministic algorithm.
- a(n) Is the inverse Ackermann functlon a(9876') < 5.

- Ackermann functlon A(4,4) = 222 %

= Pettie-Ramachandran (2002)

- O(optimal #comparison to determine solution)
- We know #comparison = Q(n) = O(m - a(n))

Can we do better for Union-Find Set?

—_—= < - - ———

= ‘Have you heard Path Compression?

Path .Compres'sion

— - = S ———

~FIND
We put every red vertices
“to the first level.

Path .Compres'sion

~FIND
We put every red vertices
“to the first level.

Path .Compres'sion

— - = S ———

~FIND
We put every red vertices
“to the first level.

Good for next FIND!

You know What the next
stepI

Amortized Analysis

Time CompIeXity

= Find (Path Compression)
- 0(log*n) [Hopcroft & Ullman 1973]
= log*(Z222) = log*(265536) = &
- O(a(n)) [Tarjan 1975]
- a(n) is the inverse Ackermann function «(9876!) = 5.

. Union (rank based)
- 0(1) '

Rank Based Union + Find with Path
Compression

= |t is still an amortized analysis

= We prove: A
- m find operation, totally cost 0(mlog* n).

Analysis

~FIND

Cost=number
. -of red edges.

Key Idea: Charge Cost to Vertices

~ FIND

Cost=number
. -of red edges.

| Red edge charge cost
to child vertex.-

Total Cost of m FIND
e O(m)(to root)
* Total Charging

How much each vertex will
be charge7 '

What is rank Now?

* No path compression
- rank[v]: the max height of the subtree rooted at v.

Wlth path compression
- The max height of the subtree rooted at v can be changed.
- But we still have a rank for each v. So, we caII it rank but not height :)

. Recall rank[v]

- Originally rank[v] =

- When u is merged to v, and rank[v] > rank[u], nothing changed.

- When u is merged to v, and rank[v] = rank[u], rank[v] + +

- When v i1s merged to any other vertices, rank[v] will not be changed.

Property of rank

et = - ——

= Parent’s rank is strictly larger than the child.

= Because
- We only merge small rank to large rank,
- If we merge two same root, the new root’s rank will +1.

- Even if we do path compression, v's parent become stronger (rank
larger).

Key Fact in FIND

~ FIND
- rank=10

larger @ .
rank=8

kwg!!iib

rank=g

Iaqﬁ5‘.>

rank=4

Iargg!ii»

rank=2

Group Vertices

= Group vertices by rank
- - Group 1:k; =0 |
- Group 2: k, =1

- Group i: k; = 2ki-1

+ Property: group [k +1 ,2¥] at most have n/2" vertices.

« Recall: build rank k need 2* vertices. (Think why it is still
right when we use Path Compression.)

1...1 2l = S) 17...65536 | k+1...2k

\ ' =4
~

log*n

Different Type Charging

= Two kind of charging
~ - Same Group Charging (SGC)
- Across Group Charing (AGC)

= AGC for all vertices: m - log* n
- m FIND .
-~ Each FIND at most log* n AGC

Cost of AcrosSGroup' Charing (A'GC)

=— ——— 2 g = e S ~—— =

~FIND

'i'gr.o‘up= 3
~ rank=10 ‘

~ ‘
N
\ .

group=3

5 larger @ .
rank=8

kwg!!iib

rank=g

Iaqﬁﬂiib

rank=4

IargJ!ii»

rank=2

group= 2

Bound Same GroupCHaring(SGC)

“sGCfory = ranko
- After m FIND

- v can be SGC many times

- Uy, Uy, ... IS €ach SGC's parent (in the
same group).

- Path Compression: rank[us] >
ranklu,]| > ranklu,] > rank[v].

- At most 2K — (k+ 1) < 2K SGC for v.

rank=8

' SGC for v = | rank=10
= After m FIND

- v can be SGC many times rank=8
- At most 2K — (k+ 1) < 2k SGC for v.

- Ina group [k + 1...2%]
= n/2¥ vertices
= Each 2% SGC
= Totally n SGC
- Totally: log* n groups, n log*n SGC

1...1 p I 3...4 5..16 | 17...65536 -

Bound Total cost

S

= Total Cost of m FIND
T 0(m)(to root)
~« Total AGC

~* m-log'n

« Total SGC

¢ n-log'n

« Total : mlog*n

Today’s goal |

; Learn what is Greedy!

= Learn to use Greedy to finish homework!

. Learn Prim and Kruskal!
= Again, how to use Data Structure to improve Algorithms.
: Review Union-Find Set!

= Learn another Amortized Analysis!

