
More Greedy Algorithms

Greedy Homework Scheduling

▪ Input: 𝑛 homework, each homework 𝑗 has a size 𝑠𝑗 , and a
deadline 𝑑𝑗 .

▪ Output: output a time schedule of doing homework!

▪ Greedy Approach
– Keep finishing the homework with the closest deadline

▪ We have prove it is optimal!

Let generalize the problem!

One Day

Sleep

Algorithm

LunchBreakfast Dinner

Basketball LOL

PianoLogic

Talk to a Girl/Boy

Let generalize the problem!

One Day

Each Activity has a
fixed time schedule

Each Activity has a
fixed time schedule

How to do more activities a day?

Sleep

Algorithm

LunchBreakfast Dinner

Basketball LOL

PianoLogic

Talk to a Girl/Boy

Three Greedy Ideas

One Day

Sleep

Algorithm

LunchBreakfast Dinner

Basketball LOL

PianoLogic

Talk to a Girl/Boy

A: Start Time First B: Shortest Length First C: Finish Time First

Which one is correct?

Three Greedy Ideas

One Day

Sleep

Algorithm

LunchBreakfast Dinner

Basketball LOL

PianoLogic

Talk to a Girl/Boy

A: Start Time First B: Shortest Length First C: Finish Time First

Six!

Three Greedy Ideas

One Day

Sleep

Algorithm

LunchBreakfast Dinner

Basketball LOL

PianoLogic

Talk to a Girl/Boy

A: Start Time First B: Shortest Length First C: Finish Time First

Six!

Three Greedy Ideas

One Day

Sleep

Algorithm

LunchBreakfast Dinner

Basketball LOL

PianoLogic

Talk to a Girl/Boy

A: Start Time First B: Shortest Length First C: Finish Time First

Seven!

Three Greedy Ideas

▪ Finish Time First is the only possible one!

▪ Is it correct?

▪ Intuition
– Finish fast → Best for future

– How to make a proof?

Recall

▪ Dijkstra
– Grow from small SPT to larger SPT

▪ Prime & Kruskal
– Grow from small P-MST to larger P-MST

▪ We are correct if we never ruin out OPT!

▪ Or say: we are still in an Optimal Tunnel!

The Big Idea

The local greedy choice do not ruin out OPT

Induction

▪ Base step: ∅ is in an OPT.

▪ Assumptions: the selected 𝑘 − 1 activities are in an OPT.

▪ Induction: After adding the 𝑘-th activity, we are still in an
OPT.

▪ Conclusion: After adding the last activity, it is in an OPT.
Nothing can be added, so it is OPT.

Proof of the Induction

▪ Assumptions: the selected 𝑘 − 1 activities are in an OPT.

▪ Induction: After adding the 𝑘-th activity, we are still in an
OPT.

▪ Can you prove it?

▪ Discussion!

Summarize

Divide and Conquer vs. Greedy

Big
Problem

Small
Problem

Small
Problem

Smaller
Problem

Smaller
Problem

Smaller
Problem

Smaller
Problem

Big
Problem

Small
Problem

Smaller
Problem

One more interesting
Greedy!

General Question

▪ How to encode a book?

▪ Two steps:
– Give alphabet encoding policy

– Encode all sentences in the book

i am good at algorithms

Alphabet: Naïve Approach

a 0000

d 0001

g 0010

h 0011

i 0100

l 0101

m 0110

o 0111

r 1000

s 1001

t 1010

space 1011

▪ i am good at algorithms

▪ Cost Analysis
– Each character & space: 4 digit

– Totally: 23 × 4 = 92

Improvement: Why not shorter?

a 0

d 1

g 10

h 11

i 100

l 101

m 110

o 111

r 1000

s 1001

t 1010

space 1011

▪ i am good at algorithms

▪ Cost Analysis
– Each character & space < 4 digit

– Totally: < 23 × 4 = 92

▪ Problem:

▪ When we decode
– 10: is it ‘g’ or ‘da’ ?

Solving the problem!

a 0

d 1

g 10

h 11

i 100

l 101

m 110

o 111

r 1000

s 1001

t 1010

space 1011

▪ i am good at algorithms

▪ Problem:

▪ When we decode
– 10: is it ‘g’ or ‘da’ ?

▪ A prefix-free code
– No one’s code is the prefix of another

one’s code.

– Example: ‘d’: 1 is the prefix of ‘g’: 10.

– Think why it is good?

– How to decode?

A prefix-free code is a tree!

a d

g h

i l m o

0 1

10 0 1

10 0 1

10 0 1

Cost of A prefix-free code is a tree!

a
3

d
10

g
15

h
11

i
3

l
20

m
8

o
12

0 1

10 0 1

10 0 1

10 0 1
Cost: sum of weighted length.

Minimize the cost?

a
3

d
10

g
15

h
11

i
3

l
20

m
8

o
12

0 1

10 0 1

10 0 1

10 0 1

What is the greedy approach now?

▪ Build a tree from bottom.

▪ Put small cost character to bottom.

A bottom-up building

a
3

d
10

g
15

i
3

l
20

m
8

o
12

A bottom-up building

a
3

d
10

g
15

i
3

l
20

m
8

o
12

a
3

i
3

Merge two
smallest element

A bottom-up building

a
3

d
10

g
15

i
3

l
20

m
8

o
12

a
3

i
3

Merge two
smallest element A new subtree:

not complete!

A bottom-up building

a
3

d
10

g
15

i
3

l
20

m
8

o
12

a
3

i
3

6

Merge two
smallest element A new subtree:

not complete!

Think it as a large
element!

A bottom-up building

d
10

g
15

l
20

m
8

o
12

a
3

i
3

6

A new subtree:
not complete!

Think it as a large
element!

A bottom-up building

d
10

g
15

l
20

m
8

o
12

a
3

i
3

6
m
8

14

A bottom-up building

d
10

g
15

l
20

o
12

a
3

i
3

6
m
8

14

A bottom-up building

d
10

g
15

l
20

o
12

a
3

i
3

6
m
8

14

d
10

o
12

22

A bottom-up building

g
15

l
20

a
3

i
3

6
m
8

14

d
10

o
12

22

A bottom-up building

g
15

l
20

a
3

i
3

6
m
8

14

d
10

o
12

22
g
15

29

A bottom-up building

l
20

a
3

i
3

6
m
8

14

d
10

o
12

22
g
15

29

A bottom-up building

l
20

a
3

i
3

6
m
8

14

d
10

o
12

22
g
15

29

l
20

42

A bottom-up building

a
3

i
3

6
m
8

14

d
10

o
12

22
g
15

29

l
20

42

71

A bottom-up building

a
3

i
3

6
m
8

14

d
10

o
12

22
g
15

29

l
20

42

71

A bottom-up building

a
3

i
3

6
m
8

14

d
10

o
12

22
g
15

29

l
20

42

71

Cost
• Sum of weighted length
• Sum of non-leaf nodes
• An augmenting view

0 1

1

1

1

1

1 0

0

0

0

0

Is the cost minimized?

d
10

g
15

l
20

m
8

o
12

a
3

i
3

6
m
8

14

We create a
new non-leaf
node with the

min cost.

Two elements
must cost 1

now, choose

the smallest!

But these are intuitions,
how to prove?

Proof of The Correctness

▪ The Big Idea
– The local greedy choice do not ruin out OPT.

▪ Assume we are still in a partial-OPT,

▪ after Merging two smallest elements, are we still in?

Induction

g
15

l
20

a
3

i
3

6
m
8

14

d
10

o
12

22…

Assume we are in 𝑇∗.

…

Cost
1. Inside cost in subtrees.
2. Sum of l𝑒𝑣 𝑣 ⋅ 𝑤[𝑣].

Induction

g
15

l
20

a
3

i
3

6
m
8

14

d
10

o
12

22

Assume we are in 𝑇∗.

29

……

We choose 14 and 15.

Induction

g
15

l
20

a
3

i
3

6
m
8

14

d
10

o
12

22

Assume we are in 𝑇∗.

We choose 14 and 15.

29 What if we are in trouble?

……

Induction

g
15

l
20

a
3

i
3

6
m
8

14

d
10

o
12

22

Assume we are in 𝑇∗.

We choose 14 and 15.

29 What if we are in trouble?

14 and 15 are
not sibling in 𝑇∗

……

Induction

g
15

l
20

a
3

i
3

6
m
8

14

d
10

o
12

22

Assume we are in 𝑇∗.

We choose 14 and 15.

29 What if we are in trouble?

14 and 15 are
not sibling in 𝑇∗

……

Induction

g
15

l
20

a
3

i
3

6
m
8

14

d
10

o
12

22
…

Assume we are in 𝑇∗.

We choose 14 and 15.

What if we are in trouble?

14 and 15 are
not sibling in 𝑇∗

…

…

What if swap
14 or 15 in?

Check two lowest
(largest lev) Siblings.

Induction

g
15

l
20

a
3

i
3

6
m
8

14

d
10

o
12

22
…

Assume we are in 𝑇∗.

We choose 14 and 15.

What if we are in trouble?

14 and 15 are
not sibling in 𝑇∗

…

…

Check two lowest
(largest lev) Siblings.

What if swap
14 or 15 in?

Cost
1. Inside cost in subtrees.
2. Sum of l𝑒𝑣 𝑣 ⋅ 𝑤[𝑣].

Time Complexity

▪ Sort the characters by their appearance.
– 𝑂 𝑛 log 𝑛

▪ Repeat 𝑛 rounds
– Find two minimized appearance elements.

– Delete two minimized element.

– Insert a super node into the list.

Time Complexity

▪ Sort the characters by their appearance.
– 𝑂 𝑛 log 𝑛

▪ Repeat 𝑛 rounds
– Find two minimized appearance elements.

– Delete two minimized element.

– Insert a super node into the list.

▪ Use a Heap?
– Each round: 𝑶 𝟏 + 𝑶 𝐥𝐨𝐠𝒏 + 𝑶(𝐥𝐨𝐠𝒏).

▪ Totally: 𝑂(𝑛 log 𝑛) even if the characters are sorted.

Can we Improve?

▪ Given a sorted list.

▪ Repeat 𝑛 rounds
– Find two minimized appearance elements.

– Delete two minimized element.

– Insert a super node into the list.

▪ Observation: Go back to the construction.

Can we Improve?

▪ Given a sorted list.

▪ Repeat 𝑛 rounds
– Find two minimized appearance elements.

– Delete two minimized element.

– Insert a super node into the list.

▪ Observation:

– Inserted super nodes become larger and larger.

What if using only a sorted linked list?

4 5 8 15 20 32

9 Next Time

• You can recall Merge Sort →Totally 𝑜(𝑛) in 𝑛 rounds.
• You can also use two priority queue to implement.

Super Fun Story!!!

The story of the invention of Huffman codes is a great story that
demonstrates that students can do better than professors. David
Huffman (1925-1999) was a student in an electrical engineering course in
1951. His professor, Robert Fano, offered students a choice of taking a
final exam or writing a term paper. Huffman did not want to take the final
so he started working on the term paper. The topic of the paper was to
find the most efficient (optimal) code. What Professor Fano did not tell
his students was the fact that it was an open problem and that he was
working on the problem himself. Huffman spent a lot of time on the
problem and was ready to give up when the solution suddenly came to
him. The code he discovered was optimal, that is, it had the lowest
possible average message length. The method that Fano had developed
for this problem did not always produce an optimal code. Therefore,
Huffman did better than his professor. Later Huffman said that likely he
would not have even attempted the problem if he had known that his
professor was struggling with it.

From:

https://www.maa.org/press/periodicals/convergence/discovery-of-
huffman-codes

Even more Greedy!

Makespan Minimization

▪ Input: 𝑚 identical machines, 𝑛 jobs with size 𝑝𝑖.

▪ Output: the minimized max completion time (Makespan)
of all these jobs on 𝑚 machines

Greedy Attempt

▪ Schedule jobs to the earliest finished machine.

▪ In local view, it is optimal!

Is it optimal globally?

▪ No!

▪ Problem: the insertion order matters!

Insert
Longest
Job First!

Greedy Attempt 2

▪ LPT Algorithm
– Longest Processing Time First.

– Insert jobs into the earliest finished machine.

Proof of the correctness

▪ Assume we are still in OPT.

▪ We put the longest left job onto the earliest finished
machine.

▪ Discussion! Are we still in an OPT?

Proof of the correctness

▪ Discussion! Are we still in an OPT?

▪ Suppose not.

▪ We can swap red and green!

Proof of the correctness

▪ Discussion! Are we still in an OPT?

▪ Suppose not.

▪ But what if we have two green jobs?

Thinking: is it really bad?

21

17

15

9 9

21

17 15

10 10

Proof is a way for us find
problems!

How to find a correct
greedy algorithm?

Makespan Minimization

▪ Makespan Minimization is a NP-hard problem.

▪ Find a poly time algorithm for it means 𝑃 = 𝑁𝑃.

▪ Is Simple Greedy or LPT very bad?

▪ At least, they are better than arbitrary scheduling.

Connect Greedy Solution to OPT

▪ Schedule jobs to the earliest finished machine.

▪ Consider the last finished job.
𝑡 Greedy is busy

before 𝑡.WLOG, it is the
last scheduled job.

Connect Greedy Solution to OPT

▪ Schedule jobs to the earliest finished machine.

▪ Consider the last finished job.
𝑡 Greedy is busy

before 𝑡.

Workload
≥ 𝑡𝑚

Connect Greedy Solution to OPT

▪ Schedule jobs to the earliest finished machine.

▪ Consider the last finished job.

𝑝𝑛

𝑡 Greedy is busy
before 𝑡.

Workload
≥ 𝑡𝑚

OPT≥ 𝑡

ALG= 𝑡 + 𝑝𝑛
≤ 2 ⋅OPT

Connect Greedy Solution to OPT

▪ Greedy is at most 2 times of OPT!

▪ We call Greedy is an Approximation Algorithm
– Approximation Ratio is 2.

– 2-approximate Algorithm.

▪ It seems not tight, can we reduce the ratio?

Counter-Example

1

1

1

1 1

𝑚

1

1

1

𝑚

𝑚 − 1

1

1 1 1

𝑚

Greedy get 2𝑚 − 1, OPT get 𝑚.
Ratio → 2 when 𝑚 is large enough.

Can we improve the
approximation ratio by
LPT?

Connect LPT Solution to OPT

▪ Schedule jobs to the earliest finished machine.

▪ Consider the last finished job.

𝑝𝑛

𝑡 Greedy is busy
before 𝑡.

Workload
≥ 𝑡𝑚

OPT≥ 𝑡

ALG= 𝑡 + 𝑝𝑛
≤ 2 ⋅OPT

𝑝𝑛 is the
shortest

WLOG, it is the
last scheduled job.

Connect LPT Solution to OPT

▪ Schedule jobs to the earliest finished machine.

▪ Consider the last finished job.

𝑝1

𝑝2

𝑝3

𝑝𝑛

𝑡 Greedy is busy
before 𝑡.

Workload
≥ 𝑡𝑚

OPT≥ 𝑡

ALG= 𝑡 + 𝑝𝑛
≤ 2 ⋅OPT

𝑝𝑛 is the
shortest

We have 𝑚 jobs
larger than 𝑝𝑛.

Connect LPT Solution to OPT

▪ Schedule jobs to the earliest finished machine.

▪ Consider the last finished job.

𝑝1

𝑝2

𝑝3

𝑝𝑛

𝑡 Greedy is busy
before 𝑡.

Workload
≥ 𝑡𝑚

OPT≥ 𝑡

ALG= 𝑡 + 𝑝𝑛
≤ 2 ⋅OPT

𝑝𝑛 is the
shortest

We have 𝑚 jobs
larger than 𝑝𝑛.

OPT≥ 2𝑝𝑛

▪ Schedule jobs to the earliest finished machine.

▪ Consider the last finished job.

𝑝1

𝑝2

𝑝3

𝑝𝑛

𝑡 Greedy is busy
before 𝑡.

Workload
≥ 𝑡𝑚

OPT≥ 𝑡

ALG= 𝑡 + 𝒑𝒏

≤
𝟑

𝟐
⋅OPT

𝑝𝑛 is the
shortest

We have 𝑚 jobs
larger than 𝑝𝑛.

OPT≥ 2𝑝𝑛

Connect LPT Solution to OPT

Are we done?

Is it finished?

▪ Not enough larger than 𝑝𝑛 jobs?

𝑝𝑛

𝑡

A counter example for LPT

▪ 2 jobs with size m+1~2𝑚 − 1, 1 job with 𝑚.

2m-1

2m-1

2m-2

2m-2

2m-3 m+2

m+1

m+1

m

m 𝑚

4𝑚-1

2m-1

2m-1

2m-2

2m-2 2m-3

m+2

m+1

m+1

mm 𝑚

3𝑚

A counter example for LPT

▪ 2 jobs with size m+1~2𝑚 − 1, 1 job with 𝑚.

2m-1

2m-1

2m-2

2m-2

2m-3 m+2

m+1

m+1

m

m 𝑚

4𝑚-1

2m-1

2m-1

2m-2

2m-2 2m-3

m+2

m+1

m+1

mm 𝑚

3𝑚

A counter example for LPT

▪ 2 jobs with size m+1~2𝑚 − 1, 1 job with 𝑚.

2m-1

2m-1

2m-2

2m-2

2m-3 m+2

m+1

m+1

m

m 𝑚

4𝑚-1

2m-1

2m-1

2m-2

2m-2 2m-3

m+2

m+1

m+1

mm 𝑚

3𝑚

4𝑚 − 1

3𝑚
→ 4/3

Can we improve the ratio
to 4/3?

Connect LPT Solution to OPT

▪ Schedule jobs to the earliest finished machine.

▪ Consider the last finished job.

𝑝𝑛

𝑡 Greedy is busy
before 𝑡.

Workload
≥ 𝑡𝑚

OPT≥ 𝑡

ALG= 𝑡 + 𝑝𝑛
≤ 2 ⋅OPT

LPT order?

Problem：

𝑝𝑛 >
OPT

3

WLOG, it is the
last scheduled job.

Tips!

▪ Fact: we have 𝑛 jobs larger than OPT/3

▪ Fact: OPT can have at most 2 jobs on one machine.

▪ Thinking: How to prove LPT = OPT with the Facts.

▪ More Questions

– How to make the 2-analysis of Greedy to 2 −
1

𝑚
?

– How to make the
4

3
−analysis of LPT to

4

3
−

1

𝑚
？

– Tips: they use the same technique.

Today’s goal

▪ Learn what is Greedy!

▪ Recap the difference of Greedy and Divide and Conquer.

▪ Learn to find the problems in a Greedy attempt.

▪ Learn to analyze Greedy Algorithm when it is not optimal.

