Dynamic Programming
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An Easy Exam'ple

e Fibonacci |
= Fib(n) = Fib(n— 1) + Fib(n — 2)

= Solve Recursively

, Fibonacci
function fib(n)
if n>1 -
return fib(n — 1) + fib(n — 2).
else |
\ return 1




Recursive Tree

Tm)=Tn—-1)+T(n—-2)




Improvement
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Improvement

It becomes a DAG! B
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Implement: memoization
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Fibonacci
function- fib(n)
Check whether n is stored, if yes then directly return.
if n>1 :
return & store fib(n— 1) + fib(n — 2)
else '
/ return & store 1 | 3]

Each i
e (Calculate once

* (Checked twice
Totally: O(n)




Improvement

It becomes a DAG! B
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ImpIement:DP

= Observation |
- Ifwe know fib(1) ... fib(i — 1).
- fib(i) can be calculated in constant time.

* DP: calculate all status by a topological order.

Fibonacci

function fib(n)
fib[0] = fib[1] = 1
fori=2ton

fibli] = fibli — 1] + fibli — 2]
/ return fib[n]




Guideline for DP design

= Design a recursive 'Algorithm
- Merge the common subproblems.

. Check whether we are in a DAG, and find the topologlcal
order of this DAG. (usually, by hand. ) |

= Solve & store the subproblems by the topological order.



Let us use the guideline




Shortest Path in DAGs
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» [nput: A Directed Acyclic Graph (DAG) G = (V,E), a start
~ vertex s € V, and a weight function w(e) for all e € E. |
~ (possible non-negative)

= Output: the distance from s to every v e V.



Important Fact

— - S = s —_— - —— e e S

e Not restricted in DAG!
= Used in Dijkstra, BFS, Bellman-Ford.

dist[t] = dist[v] + w(v, t)



Important Fact

e Not restricted in DAG!

L Used In Dijkstra, BF@ﬁan—Ford.

dist[v,] + w(vy, t)
dist[t] = min< dist[v,] + w(v,, t)

diSt[Ug] + W(U3, t)




A recursive method to ‘solvedis't[t].
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Solve t

Solve v,

Solve v4 Solve v,

Solve v,



Merge common subproblems

S — = S

Solve t

Solve v,



Merge common subproblems
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We have at mostn
subproblems!

o ' - Solve t
' Solve v,

Solve v, Solve v,

Solve s



Are we In a DAG?

Solve s

Solve v4

Solve v,

Solve v,

Solve t

We have at mostn
subproblems!

It is exactly a DAG,

because itis G!



Solve it by'topological"order!.

e — - - ‘ — : AT

We have at mostn

subproblems!

: - Solve t

Solve v,

It is exactly a DAG,

because itis G!

Solve v, Solve v,

Solve s



Solve it by'topological'order!.

— - — x = — = p— e — S e e 3

'?_Plan

~ - Finda Topologlcal Order of V. SOlve
= o(lVI+|ED
- dist[s] = 0. |

- Solve & record dist[u ] by the order. Solve v,
- Solve dist[u] = min{
= dist[vy] + w(u,v,) : .
= dist[vy,] + w(u,vy) | Solve v; Solve v,
= dist[vs] + w(u, v3) =

)
- o(IvI +E) oNe s



What about the correctness?

e —————

= We can easily check the correctness of DP Algorithms by
- induction. |

» Base case:
— Check our initialization: dist[s] = 0.

» |nduction:

- Assume dist[u;] is correct for all i < k.

- dist[u;] can be solved correctly by the min -of
= dist[v,] + w(uy, v,)
= dist[v,] + w(ug, vs) The topological order make
- dist[vs] + w(uy, vs) a feasible induction order!




A simpler guideline

. Find subproblems.

= Check whether we are in a DAG and find the topological
order of this DAG. (usually, by hand.)

- Solve & store the subproblems by the topological order.



More DP algorithms!



Longest increasing sequence

S
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= Input: A sequence a;, ay, ..., a,.

- Output: t_h'e‘ Longest Increasing Subsequence (LIS)

- a4 < ai, < Aj, - < aj,
—i1Si2Si3...Sik |

= I -

16




Define subproblems

e - = - —

£ LIS[k]: the Lovngest"lncreasing Subsequence ended by a,.

16




Another view of the problem.

24

15

23

16

LIS[k] can be viewed as the
longest path from s to ay.




Important Fact
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. dist[v] - Iongést péth from s to v.

dist[t] = dist[v] + w(v, t)



Important Fact
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= dist[v] - Iongest path from s to v.

@

diSt[vl] + W(Ul, t)

diSt[vz] + W(Uz, t)
diSt[vg] + W(Ug, t)




Another view of the problem.

S — < = - ———

LIS[k] can be viewed as the
longest path from s to ay.

1...nis atopological order!




Another view of the problem.

24 15 23

Longest Increasing Subsequence
function LIS(n) - ’
lis[0] = 0

fori=1ton
lis[i] = max {lis|j] +1}

aj<a;jj<i
} return max lis[i]

1<i<n




Another view of the problem.

LIS

15

23

16

24

function LIS(n)
lis[0] = 0
fori=1ton

aj<a;j<i

return max lis[i]
1<1<n

lis[i] = max {lis[j] +1}

Longest Increasing Subsequence




Another view of the problem.

24 15 23

Longest Increasing Subsequence
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Another view of the problem.

24 15 23

Longest Increasing Subsequence
function LIS(n) ‘
lis[0] = 0
fori=1ton
lis[i] = max {lis[j] + 1}
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} return max lis[i]
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Another view of the problem.

15

23

16

24

function LIS(n)
lis[0] = 0
fori=1ton
lis[i] = max {lis[j] + 1}

aj<a;j<i

/ return max lis[i]
1<1<n

Longest Increasing Subsequence W’ |




Edit Distance '

et = - —

. Motivation: How to change from one string to another?

= Allowed operations
- Insertion: insert a character to a specific location.
- Deletion: delete a character from a specific location.
- Replacement rewrite a character at a speC|f|c location..

= Change SNOWY to SUNNY?
- SNNWY

- SNNY

- SUNNY



Another View

= Allowed operations

- Alignment: Insert space with 0 cost.
- Insertion: rewrite a character from a space at a specific location. -
- Deletion: rewrite a character to a space at a specific location.
- Replacement: rewrite a character at a specific location.

S N O W Y




Another View _

= Allowed operations

- Alignment: Insert space with 0 cost.
- Insertion: rewrite a character from a space at a specific location. -
- Deletion: rewrite a character to a space at a specific location.
- Replacement: rewrite a character at a specific location.

=

Y

Y




Another View _

= Allowed operations

- Alignment: Insert space with 0 cost.
- Insertion: rewrite a character from a space at a specific location. -
- Deletion: rewrite a character to a space at a specific location.
- Replacement: rewrite a character at a specific location.

Change
_ alignment

=

Y




Another View _

= Allowed operations
- Alignment: Insert space with 0 cost.

- Insertion: rewrite a character from a space at a specific location. -
- Deletion: rewrite a character to a space at a specific location.

- Replacement: rewrite a character at a specific location.
: : as before.

S N Y

] o [ w |
s N~ I



Optimization '

= - = ' —

_+ What is the minimized cost to change from a string to
~ another? (it is symmetric)

. We call it the Edit Distance of the two string.
= Usage

- Quantifying how dissimilar two strings are..



Edit Distance Calculation

E——

= Input: two strings
Sl X:xl,xz, ,xm :
= Y:-y1, Y2, JYn

= Output: the edit distance between x and y.

» Another view
- Find the best alignment!



Find out the subproblems

S — < = - ———

Imagine the best
alignment from the tail.




Find out the subproblems

Case1




Find out the subproblems

Case 2




Find out the subproblems

‘




Find out the subproblems

- - = - — - ———— e s e A

The best alignment for

: - X[1~m — 1] and V -
- Y[1~n—1]. Plus one costif §
= Xom # Y




Find out the subproblems

Case 2

E————

The best alignment for

: X[1~m] and

: (- Y[l"’?’l — 1]

X ? ? ?
Y ? ? ?

Plusone cost 8



Find out the subproblems

- - = - — - ———— e s e A

The best alignment for

: - X[1~m — 1] and ' '
| Rl "




Do you find out the

subproblems?



Subproblems'

E——

= ED[i,j]: The edit distance between X[1..i] and Y[1../].
= ED[n,m]: The edit distance between X and Y.

= How to solve EDJi,j]: min of three cases
S EDi - U
- ED[i,j —1]+1
- ED[i —1,j]1+1




s it DAG?

| ED[i,j]

j=0

=0




s it DAG?

| ED[i,j]

j=0

= 0




s it DAG?

| ED[ij]

j=0

= 0




A topological order
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Running Time?

O(nm) - 0(1)

B =l e e e e oy
i =0 0 1 2 3 4 5 6

(=1 S e I =

) p) e Se— —_— =

ix= 3 3 SEPELL il [ S

b= A

i=m 5




Knapsack Problems

= Input: n items with cost ¢; and value v;, and a capacity .

= Output: Select a subset of items, with total cost at most
W. The goal is to maximize the total value.



A nice greedy approach.

= Select the item withfrom larger value-cost ratio.

E——

Value Cost
iPhone 8888 8888
Algorithm Book 10000 500
Laptop | 8888 8500
Hermes 90000 100000




A nice greedy approach.

= Select the item withfrom larger value-cost ratio.

{ W =10000

e —————

Value Cost
iPhone 8888 8888
Algorithm Book 10000 500
Laptop 8888 8500
Hermeés 90000 100000 |




A nice greedy approach.

= Select the item withfrom larger value-cost ratio.

{ W =10000

Value Cost _
_ It looks quite
iPhone 8888 8888 intuitive and it is
Algorithm Book 10000 500 ' correct now!
Laptop 8888 8500
Hermes 90000 100000 |
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A nice greedy approach.

= Select the item with from larger value-cost ratio.

i W =100000

Value Cost
iPhone 8888 8888 But when we
: become rich...
Algorithm Book 10000 500
Laptop 8888 8500
: : Problem: items are
Hermes 90000 100000 not divisiblel

T = - 5 - - ———— = — = S



A nice greedy approach.

— = - — . e

= Select the item with from larger value-cost ratio.

i W =100000

Value Cost
iPhone 8888 8888 But when we
: become rich...
Algorithm Book 10000 500
Laptop 8888 8500
_ Problem: items are
Qie Gao 90000 100000 not indivisible!

Buy 0.82112 portion of
d the "Qie Gao”



What if items are really indivisible?

E——

= The Knapsack Problem is NP-Hard!

= Are we going to talk about approximation algorithms?
+ No!

= Let's make a DP algorithm with reasonable running time!



Find out subproblems!

= - : —

~« What we always do before:

= f[i]: the maximum value we can get by using the first i
items. ‘ |




Find out subproblems!

= ‘What we always do before:

= f[i]: the maximum value we can get by using the first i
items. ' |

How to solve

1l by f1j < iJ?

fli] 5 10 13 16 21 30 -

- - e = = - —— e — — e



Find out subproblems!
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- ‘What we always do before:
= f[i]: the maximum value we can get by using the first i
items. ' |

How to solve

flilby flj <il?

fil | s | e | a3 | a6 | 2 | 30 [N RS

we do not know

how much
budget it uses!




Find out subproblems!
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= ‘What we always do before:

= f[i]: the maximum value we can get by using the first i
items. ' |

. | : How to solve
= Use g[i] to store how much budge f[i] uses. flilby £l < i]?

fIi] 5 10 e 16 o 30 - We know f[j] but

we do not know
how much

budget it uses!



Find out subproblems!

e ——— = ' ——— ' Y TR R j

- ‘What we always do before:
= f[i]: the maximum value we can get by using the first i
items. ' |

. | : How to solve
= Use g[i] to store how much budge f[i] uses. flilby £l < i]?

13 16 21 30 - We know f[j] but

we do not know

It is greedy, and it

how much
budget it uses!

is not optimal!




Find out subproblems!
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= ‘What we always do before:

= f[i]: the maximum value we can get by using the first i
items. ' |

: ' . How to solve
—Use-gli}-to-stere-how-much-budge fli}-uses: Flilby flj < i]?
13 16 21 30 - We know f[j] but

we do not know

It is greedy, and it
how much
budget it uses!

is not optimal!




Find out subproblems!

? ‘What we always doﬂ before:

= f[i,w]: the maximum value we can get by using the first i '
items, and with w budget.

: How to solve
—Use—guﬁl—}—te—stere—hew—mﬂeh—budge—ﬂl}ﬂse& Flilby I < iI? |
fIi] 5 10 e 16 o 30 - We know f[j] but

we do not know
how much

budget it uses!



Find out subproblems!

? ‘What we always do before:

= f[i,w]: the maximum value we can get by using the first i V
items, and with w budget

fli, w] 0o 1 p) 3 4 5 6 g TR 2

o)
1 How to solve

- fliwl.

3 fli,w]

n fln, W]




Solve f[i,w] '

. What we always do before:

= f[i,w]: the maximum value we can get by using the first i
items, and with w budget.

= Two options for item i |
- Buy it: We can at most use w — ¢; budget before i.
- Not Buy it: We can at most use w budget before i.
- Solve f[i,w] = max{f[i — 1,w], fli — 1,w — ¢;] + v;}.



Check the topological order

—_— = ' — . T AR R T 3

> fli,w]: the maximum value we can get by using the first i
- items, and with w budget. |

. fli,w] = max{fli = 1, w], fli = L,w — c] +v,)

= | orm) o)

fliw] | o 1 5 3 T i S SR
(0] o) (0] (0] 0] (0] (0] (0] (0] (0]
1 (o) :
2 0 e e |
e T — Y
3 0 fli,w]
0] ,
n 0 fln W]




Knapsack has many
varlants'

—_—



Surplus Supply

T = - 5 - — ———— = — = S 5

= Input: n items with cost ¢; and value v;, and a capacity .

= Output: Select some items (each items can be selected
more than once), with total cost at most W. The goal is to
maximize the total value.

Value : Cost
iPhone 8888 8888
Algorithm Book 10000 500
Laptop 8888 . 8500
Hermes 90000 100000




How to transfer subproblems now?

—

= Two options for item i
- - Buy it: We can at most use w — ¢; budget before i.
- - Not Buy it: We can at most use w budget before i.
- Solve f[i,w] = max{f[i — 1,w], f[i — 1,w — ¢;] + v;}.
» Problem!
- We can buy multiple times!



A new subproblem transfer!

———— - = - —

= Problem! |
- We can buy multiple times!

= New transfer
- Buy it first time: We can at most use w — ¢; budget before i.
- Not Buy it: We can at most use w budget before i.
- Buy it again: We can at most use w — ¢; budget before i.
- Solve f[i,w] = max{f[i — 1L,w], fli — 1L, w—c;] + v, fli,w — ¢;| + v;}.



Check the topological order

E————

= fli,w]: the maximum value we can get by using the first i

~ items, and with w budget.

+ Ul'}

. fli,w] = max{f[i — 1,w], fli = Lw — ¢;] + v;, fli,w — ¢;]
: C.
— |

flwl | o = \5 E

(0] 0] 0] 0) (0)

1 (0]

2 0] \\\‘ l

3 0 TflLw]

0o :

7 ; fln W]




Let us program it!

EE———

= f[i,w]: the maximum value we can get by using the first i

- Items, and with w budget.

- = fli,w] = max{f[i — L,w], fli — 1,w —c¢;] +v;, fli,w — ¢;] + v;}

* o fli,w] = max{f[i — 1,w], fli,w — ¢;] + v;}

—

‘Knapsack with Surplus Supply
function knapsack(n) _
forw=0to W

fori =1ton

[0,W] =0
[n,0] =0

f
f

f[l, W] = max{f[L S5 1: W], f[l' w = Ci]}
/ return f[n, W] |




We can make it simple

* flw]: the maximum value we can with w budget.

- flwl = max (fIwl, flw = ci] + v}

i=1~n

flo] = fl1] =
forw=0toW
fori=1ton

/ return f[n, W]

function knapsack(n)

Knapsack with Surplus Supply

f[n] —~0 - O (nW) but with less space.

flwl = max{f[w], flw — ¢;] + v;}




They are not polynomial
on the mput S|ze'




O(nW) 1s not polynomi‘aI!

et = - —

= Input: n items with cost ¢; and value v;, and a capacity W.
= Input size: the unit of bits to represent the input.

= W = 2N by using N bits
- time complexity becomes 0(2V).



Input of The Knapsack Problem

et = - ——

Input of Knapsack
- - nW e
- n values v; and n costs ;.

Assume we have 0(N) bits, (input size = N)

To present n values and costs, we need to use at least 0(n)
bits. Hence, we at most present n = O(N) with 0(N) bits.

W can be 0(2M)

So, the running time 0(nW) can become 0(N2"), which is .
not polynomial!.



Today’s goal |

- Learn what is DP.

= Learn how to prove DP’s correctness.

« Learn the general guideline for designing DP Algorithms.

» Learn to apply the guideline on:
— Fibonacci

— Shortest Path on DAGs

- Edit Distance '

- Knapsack



