
Dynamic Programming

Recall Divide and Conquer vs. Greedy

Big
Problem

Small
Problem

Small
Problem

Smaller
Problem

Smaller
Problem

Smaller
Problem

Smaller
Problem

Big
Problem

Small
Problem

Smaller
Problem

Divide and Conquer vs. Greedy

Dynamic Programming vs. Divide and Conquer

Big
Problem

Small
Problem

Small
Problem

Smaller
Problem

Smaller
Problem

Smaller
Problem

Smaller
Problem

Dynamic Programming

Big
Problem

Small
Problem

Small
Problem

Smaller
Problem

Smaller
Problem

Smaller
Problem

Smaller
Problem

NO! It should
be a DAG!

An Easy Example

▪ Fibonacci

▪ 𝐹𝑖𝑏 𝑛 = 𝐹𝑖𝑏 𝑛 − 1 + 𝐹𝑖𝑏 𝑛 − 2

▪ Solve Recursively

Fibonacci
function 𝑓𝑖𝑏(𝑛)

if n>1
return 𝑓𝑖𝑏(𝑛 − 1) + 𝑓𝑖𝑏(𝑛 − 2)

else
return 1

Recursive Tree

3

1 2

3

1 2

4

2

5 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇(𝑛 − 2）

Improvement

3

1 2

3

1 2

4

2

5

Improvement

3

1 2

4

2

5

Improvement

3

1 2

4

2

5

Improvement

3

1 2

4

5

Improvement

3

1 2

4

5 It becomes a DAG!

Implement: memoization

Fibonacci
function 𝑓𝑖𝑏(𝑛)

Check whether 𝑛 is stored, if yes then directly return.
if n>1

return & store 𝑓𝑖𝑏(𝑛 − 1) + 𝑓𝑖𝑏(𝑛 − 2)
else

return & store 1

Each 𝑖
• Calculate once
• Checked twice
Totally: 𝑂(𝑛)

Improvement

3

1 2

4

5 It becomes a DAG!

Implement: DP

▪ Observation
– If we know 𝑓𝑖𝑏 1 …𝑓𝑖𝑏 𝑖 − 1 .

– 𝑓𝑖𝑏(𝑖) can be calculated in constant time.

▪ DP: calculate all status by a topological order.

Fibonacci
function 𝑓𝑖𝑏(𝑛)

𝑓𝑖𝑏 0 = 𝑓𝑖𝑏 1 = 1
for 𝑖 = 2 to n

𝑓𝑖𝑏 𝑖 = 𝑓𝑖𝑏 𝑖 − 1 + 𝑓𝑖𝑏 𝑖 − 2
return 𝑓𝑖𝑏[𝑛]

𝑂(𝑛)

Guideline for DP design

▪ Design a recursive Algorithm.

▪ Merge the common subproblems.

▪ Check whether we are in a DAG, and find the topological
order of this DAG. (usually, by hand.)

▪ Solve & store the subproblems by the topological order.

Let us use the guideline

Shortest Path in DAGs

▪ Input: A Directed Acyclic Graph (DAG) 𝐺 = (𝑉, 𝐸), a start
vertex 𝑠 ∈ 𝑉, and a weight function 𝑤(𝑒) for all 𝑒 ∈ 𝐸.
(possible non-negative)

▪ Output: the distance from 𝑠 to every 𝑣 ∈ 𝑉.

Important Fact

▪ Not restricted in DAG!

▪ Used in Dijkstra, BFS, Bellman-Ford.

𝑣𝑠 𝑡

𝑑𝑖𝑠𝑡[𝑣]

𝑑𝑖𝑠𝑡 𝑡 = 𝑑𝑖𝑠𝑡 𝑣 + 𝑤(𝑣, 𝑡)

Important Fact

▪ Not restricted in DAG!

▪ Used in Dijkstra, BFS, Bellman-Ford.

𝑣1𝑠 𝑡

𝑑𝑖𝑠𝑡[𝑣1]

𝑣2

𝑣3

𝑑𝑖𝑠𝑡[𝑣2]

𝑑𝑖𝑠𝑡[𝑣3] 𝑑𝑖𝑠𝑡 𝑡 = min൞

𝑑𝑖𝑠𝑡 𝑣1 +𝑤(𝑣1, 𝑡)

𝑑𝑖𝑠𝑡 𝑣2 +𝑤(𝑣2, 𝑡)

𝑑𝑖𝑠𝑡 𝑣3 +𝑤(𝑣3, 𝑡)

A recursive method to solve 𝑑𝑖𝑠𝑡[𝑡].

𝑣1𝑠 𝑡

𝑣2

𝑣3

Solve 𝑡

Solve 𝑣1 Solve 𝑣2 Solve 𝑣3

Solve 𝑣3 Solve 𝑣4

Solve 𝑠 Solve 𝑣2

Merge common subproblems

Solve 𝑡

Solve 𝑣1 Solve 𝑣2 Solve 𝑣3

Solve 𝑣3 Solve 𝑣4

Solve 𝑠 Solve 𝑣2

Merge common subproblems

Solve 𝑡

Solve 𝑣1

Solve 𝑣3 Solve 𝑣4

Solve 𝑠 Solve 𝑣2

We have at most 𝑛
subproblems!

Are we in a DAG?

Solve 𝑡

Solve 𝑣1

Solve 𝑣3 Solve 𝑣4

Solve 𝑠 Solve 𝑣2

We have at most 𝑛
subproblems!

It is exactly a DAG,
because it is 𝐺!

Solve it by topological order!

Solve 𝑡

Solve 𝑣1

Solve 𝑣3 Solve 𝑣4

Solve 𝑠 Solve 𝑣2

We have at most 𝑛
subproblems!

It is exactly a DAG,
because it is 𝐺!

Solve it by topological order!

▪ Plan
– Find a Topological Order of 𝑉.

▪ 𝑂(𝑉 + |𝐸|)

– 𝑑𝑖𝑠𝑡 𝑠 = 0.

– Solve & record 𝑑𝑖𝑠𝑡[𝑢] by the order.

– Solve 𝑑𝑖𝑠𝑡 𝑢 = min{

▪ 𝑑𝑖𝑠𝑡 𝑣1 +𝑤 𝑢, 𝑣1
▪ 𝑑𝑖𝑠𝑡 𝑣2 + 𝑤 𝑢, 𝑣2
▪ 𝑑𝑖𝑠𝑡 𝑣3 + 𝑤(𝑢, 𝑣3)

▪ …}

– 𝑂(𝑉 + 𝐸)

Solve 𝑡

Solve 𝑣1

Solve 𝑣3 Solve 𝑣4

Solve 𝑠 Solve 𝑣2

What about the correctness?

▪ We can easily check the correctness of DP Algorithms by
induction.

▪ Base case:
– Check our initialization: 𝑑𝑖𝑠𝑡 𝑠 = 0.

▪ Induction:
– Assume 𝑑𝑖𝑠𝑡 𝑢𝑖 is correct for all 𝑖 < 𝑘.

– 𝑑𝑖𝑠𝑡 𝑢𝑘 can be solved correctly by the min of
▪ 𝑑𝑖𝑠𝑡 𝑣1 +𝑤 𝑢𝑘 , 𝑣1
▪ 𝑑𝑖𝑠𝑡 𝑣2 + 𝑤 𝑢𝑘 , 𝑣2
▪ 𝑑𝑖𝑠𝑡 𝑣3 + 𝑤(𝑢𝑘 , 𝑣3)

▪ …

The topological order make
a feasible induction order!

A simpler guideline

▪ Find subproblems.

▪ Check whether we are in a DAG and find the topological
order of this DAG. (usually, by hand.)

▪ Solve & store the subproblems by the topological order.

More DP algorithms!

Longest increasing sequence

▪ Input: A sequence 𝑎1, 𝑎2, … , 𝑎𝑛.

▪ Output: the Longest Increasing Subsequence (LIS)
– 𝑎𝑖1 < 𝑎𝑖2 < 𝑎𝑖3 … < 𝑎𝑖𝑘
– 𝑖1 ≤ 𝑖2 ≤ 𝑖3… ≤ 𝑖𝑘

1 5 13 2 6 24 15 23 2 16

Define subproblems

▪ 𝐿𝐼𝑆 𝑘 : the Longest Increasing Subsequence ended by 𝑎𝑘.

1 5 13 2 6 24 15 23 2 16

𝑘=4

𝐿𝐼𝑆 4 = 2

𝑘=3

𝐿𝐼𝑆 3 = 3

Another view of the problem.

1 5 13 2 6 24 15 23 2 16

𝑠

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

𝐿𝐼𝑆[𝑘] can be viewed as the
longest path from 𝑠 to 𝑎𝑘.

Important Fact

▪ 𝑑𝑖𝑠𝑡 𝑣 → longest path from 𝑠 to 𝑣.

𝑣𝑠 𝑡

𝑑𝑖𝑠𝑡[𝑣]

𝑑𝑖𝑠𝑡 𝑡 = 𝑑𝑖𝑠𝑡 𝑣 + 𝑤(𝑣, 𝑡)

Important Fact

▪ 𝑑𝑖𝑠𝑡 𝑣 → longest path from 𝑠 to 𝑣.

𝑣1𝑠 𝑡

𝑑𝑖𝑠𝑡[𝑣1]

𝑣2

𝑣3

𝑑𝑖𝑠𝑡[𝑣2]

𝑑𝑖𝑠𝑡[𝑣3] 𝑑𝑖𝑠𝑡 𝑡 = 𝐦𝐚𝐱൞

𝑑𝑖𝑠𝑡 𝑣1 + 𝑤(𝑣1, 𝑡)

𝑑𝑖𝑠𝑡 𝑣2 + 𝑤(𝑣2, 𝑡)

𝑑𝑖𝑠𝑡 𝑣3 + 𝑤(𝑣3, 𝑡)

Another view of the problem.

𝐿𝐼𝑆[𝑘] can be viewed as the
longest path from 𝑠 to 𝑎𝑘.

1…𝑛 is a topological order!

1 5 13 2 6 24 15 23 2 16

𝑠

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

Another view of the problem.

Longest Increasing Subsequence
function 𝐿𝐼𝑆(𝑛)

li𝑠 0 = 0
for 𝑖 = 1 to n

lis 𝑖 = max
𝑎𝑗<𝑎𝑖,𝑗<𝑖

{𝑙𝑖𝑠 𝑗 + 1}

return max
1≤i≤n

𝑙𝑖𝑠[𝑖]

𝑠 = 𝑎0 = −∞

1 5 13 2 6 24 15 23 2 16

𝑠

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

Another view of the problem.

Longest Increasing Subsequence
function 𝐿𝐼𝑆(𝑛)

li𝑠 0 = 0
for 𝑖 = 1 to n

lis 𝑖 = max
𝑎𝑗<𝑎𝑖,𝑗<𝑖

{𝑙𝑖𝑠 𝑗 + 1}

return max
1≤i≤n

𝑙𝑖𝑠[𝑖]

1 - - - - - - - - -LIS

𝑠

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

1 5 13 2 6 24 15 23 2 16

Another view of the problem.

1 5 13 2 6 24 15 23 2 16

Longest Increasing Subsequence
function 𝐿𝐼𝑆(𝑛)

li𝑠 0 = 0
for 𝑖 = 1 to n

lis 𝑖 = max
𝑎𝑗<𝑎𝑖,𝑗<𝑖

{𝑙𝑖𝑠 𝑗 + 1}

return max
1≤i≤n

𝑙𝑖𝑠[𝑖]

1 2 - - - - - - - -LIS

𝑠

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

Another view of the problem.

1 5 13 2 6 24 15 23 2 16

Longest Increasing Subsequence
function 𝐿𝐼𝑆(𝑛)

li𝑠 0 = 0
for 𝑖 = 1 to n

lis 𝑖 = max
𝑎𝑗<𝑎𝑖,𝑗<𝑖

{𝑙𝑖𝑠 𝑗 + 1}

return max
1≤i≤n

𝑙𝑖𝑠[𝑖]

1 2 3 - - - - - - -LIS

𝑠

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

Another view of the problem.

1 5 13 2 6 24 15 23 2 16

Longest Increasing Subsequence
function 𝐿𝐼𝑆(𝑛)

li𝑠 0 = 0
for 𝑖 = 1 to n

lis 𝑖 = max
𝑎𝑗<𝑎𝑖,𝑗<𝑖

{𝑙𝑖𝑠 𝑗 + 1}

return max
1≤i≤n

𝑙𝑖𝑠[𝑖]

1 2 3 2 - - - - - -

𝑠

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

Another view of the problem.

1 5 13 2 6 24 15 23 2 16

Longest Increasing Subsequence
function 𝐿𝐼𝑆(𝑛)

li𝑠 0 = 0
for 𝑖 = 1 to n

lis 𝑖 = max
𝑎𝑗<𝑎𝑖,𝑗<𝑖

{𝑙𝑖𝑠 𝑗 + 1}

return max
1≤i≤n

𝑙𝑖𝑠[𝑖]

𝑠 = 𝑎0 = −∞

1 2 3 2 3 - - - - -

𝑂(𝑛2)

𝑠

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

Edit Distance

▪ Motivation: How to change from one string to another?

▪ Allowed operations
– Insertion: insert a character to a specific location.

– Deletion: delete a character from a specific location.

– Replacement: rewrite a character at a specific location.

▪ Change SNOWY to SUNNY?
– SNNWY

– SNNY

– SUNNY

Another View

▪ Allowed operations
– Alignment: Insert space with 0 cost.

– Insertion: rewrite a character from a space at a specific location.

– Deletion: rewrite a character to a space at a specific location.

– Replacement: rewrite a character at a specific location.

S N O W Y

S U N N Y

Another View

▪ Allowed operations
– Alignment: Insert space with 0 cost.

– Insertion: rewrite a character from a space at a specific location.

– Deletion: rewrite a character to a space at a specific location.

– Replacement: rewrite a character at a specific location.

S N O W Y

S U N N Y

Another View

▪ Allowed operations
– Alignment: Insert space with 0 cost.

– Insertion: rewrite a character from a space at a specific location.

– Deletion: rewrite a character to a space at a specific location.

– Replacement: rewrite a character at a specific location.

S N O W _ Y

S U N N Y _

Change
alignment

Another View

▪ Allowed operations
– Alignment: Insert space with 0 cost.

– Insertion: rewrite a character from a space at a specific location.

– Deletion: rewrite a character to a space at a specific location.

– Replacement: rewrite a character at a specific location.

S _ N O W Y

S U N N _ Y

The same
as before.

Optimization

▪ What is the minimized cost to change from a string to
another? (it is symmetric)

▪ We call it the Edit Distance of the two string.

▪ Usage
– Quantifying how dissimilar two strings are.

Edit Distance Calculation

▪ Input: two strings
– 𝑋: 𝑥1, 𝑥2, … , 𝑥𝑚
– 𝑌: 𝑦1, 𝑦2, … , 𝑦𝑛

▪ Output: the edit distance between 𝑥 and 𝑦.

▪ Another view
– Find the best alignment!

Find out the subproblems

X ? ? ? ? ?

Y ? ? ? ? ?

Imagine the best
alignment from the tail.

Find out the subproblems

𝑋 ? ? ? ? 𝑥𝑚

𝑌 ? ? ? ? 𝑦𝑛

Case 1

Find out the subproblems

𝑋 ? ? ? ? _

𝑌 ? ? ? ? 𝑦𝑛

Case 2

Find out the subproblems

𝑋 ? ? ? ? 𝑥𝑚

𝑌 ? ? ? ? _

Case 3

Find out the subproblems

𝑋 ? ? ? ? 𝑥𝑚

𝑌 ? ? ? ? 𝑦𝑛

Case 1

The best alignment for
𝑋 1~𝑚 − 1 and
𝑌[1~𝑛 − 1]. Plus one cost if

𝑥𝑚 ≠ 𝑦𝑛

Find out the subproblems

𝑋 ? ? ? ? _

𝑌 ? ? ? ? 𝑦𝑛

Case 2

The best alignment for
𝑋 1~𝑚 and
𝑌[1~𝑛 − 1]. Plus one cost

Find out the subproblems

𝑋 ? ? ? ? 𝑥𝑚

𝑌 ? ? ? ? _

Case 3

The best alignment for
𝑋 1~𝑚 − 1 and

𝑌[1~𝑛]. Plus one cost

Do you find out the
subproblems?

Subproblems

▪ 𝐸𝐷 i, j : The edit distance between 𝑋[1. . 𝑖] and 𝑌[1. . 𝑗].

▪ 𝐸𝐷[𝑛,𝑚]: The edit distance between 𝑋 and 𝑌.

▪ How to solve 𝐸𝐷[𝑖, 𝑗]: min of three cases
– 𝐸𝐷 𝑖 − 1, 𝑗 − 1 + 𝟏𝒙𝒊≠𝒙𝒋
– 𝐸𝐷 𝑖, 𝑗 − 1 + 1

– 𝐸𝐷 𝑖 − 1, 𝑗 + 1

Is it DAG?

𝐸𝐷[𝑖, 𝑗] 𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = ⋯ 𝑗 = 𝑛

𝑖 = 0

𝑖 = 1

𝑖 = 2

𝑖 = 3

𝑖 = ⋯

𝑖 = 𝑚

Is it DAG?

𝐸𝐷[𝑖, 𝑗] 𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = ⋯ 𝑗 = 𝑛

𝑖 = 0

𝑖 = 1

𝑖 = 2

𝑖 = 3

𝑖 = ⋯

𝑖 = 𝑚

Is it DAG?

𝐸𝐷[𝑖, 𝑗] 𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = ⋯ 𝑗 = 𝑛

𝑖 = 0

𝑖 = 1

𝑖 = 2

𝑖 = 3

𝑖 = ⋯

𝑖 = 𝑚

A topological order

𝐸𝐷[𝑖, 𝑗] 𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = ⋯ 𝑗 = 𝑛

𝑖 = 0

𝑖 = 1

𝑖 = 2

𝑖 = 3

𝑖 = ⋯

𝑖 = 𝑚

Start!

𝐸𝐷[𝑖, 𝑗] 𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = ⋯ 𝑗 = 𝑛

𝑖 = 0 0 1 2 3 4 5 6

𝑖 = 1 1

𝑖 = 2 2

𝑖 = 3 3

𝑖 = ⋯ 4

𝑖 = 𝑚 5

Start!

𝐸𝐷[𝑖, 𝑗] 𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = ⋯ 𝑗 = 𝑛

𝑖 = 0 0 1 2 3 4 5 6

𝑖 = 1 1

𝑖 = 2 2

𝑖 = 3 3

𝑖 = ⋯ 4

𝑖 = 𝑚 5

Start!

𝐸𝐷[𝑖, 𝑗] 𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = ⋯ 𝑗 = 𝑛

𝑖 = 0 0 1 2 3 4 5 6

𝑖 = 1 1

𝑖 = 2 2

𝑖 = 3 3

𝑖 = ⋯ 4

𝑖 = 𝑚 5

Start!

𝐸𝐷[𝑖, 𝑗] 𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = ⋯ 𝑗 = 𝑛

𝑖 = 0 0 1 2 3 4 5 6

𝑖 = 1 1

𝑖 = 2 2

𝑖 = 3 3

𝑖 = ⋯ 4

𝑖 = 𝑚 5

Start!

𝐸𝐷[𝑖, 𝑗] 𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = ⋯ 𝑗 = 𝑛

𝑖 = 0 0 1 2 3 4 5 6

𝑖 = 1 1

𝑖 = 2 2

𝑖 = 3 3

𝑖 = ⋯ 4

𝑖 = 𝑚 5

Running Time?

𝐸𝐷[𝑖, 𝑗] 𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = ⋯ 𝑗 = 𝑛

𝑖 = 0 0 1 2 3 4 5 6

𝑖 = 1 1

𝑖 = 2 2

𝑖 = 3 3

𝑖 = ⋯ 4

𝑖 = 𝑚 5

𝑂 𝑛𝑚 ⋅ 𝑂(1)

Knapsack Problems

▪ Input: 𝑛 items with cost 𝑐𝑖 and value 𝑣𝑖, and a capacity 𝑊.

▪ Output: Select a subset of items, with total cost at most
W. The goal is to maximize the total value.

A nice greedy approach.

▪ Select the item with from larger value-cost ratio.

Value Cost

iPhone 8888 8888

Algorithm Book 10000 500

Laptop 8888 8500

Hermès 90000 100000

A nice greedy approach.

▪ Select the item with from larger value-cost ratio.

𝑊 = 10000

Value Cost

iPhone 8888 8888

Algorithm Book 10000 500

Laptop 8888 8500

Hermès 90000 100000

A nice greedy approach.

▪ Select the item with from larger value-cost ratio.

𝑊 = 10000

Value Cost

iPhone 8888 8888

Algorithm Book 10000 500

Laptop 8888 8500

Hermès 90000 100000

It looks quite
intuitive and it is

correct now!

A nice greedy approach.

▪ Select the item with from larger value-cost ratio.

𝑊 = 100000

Value Cost

iPhone 8888 8888

Algorithm Book 10000 500

Laptop 8888 8500

Hermès 90000 100000

But when we
become rich…

Problem: items are
not divisible!

A nice greedy approach.

▪ Select the item with from larger value-cost ratio.

𝑊 = 100000

Value Cost

iPhone 8888 8888

Algorithm Book 10000 500

Laptop 8888 8500

Qie Gao 90000 100000

But when we
become rich…

Problem: items are
not indivisible!

Buy 0.82112 portion of
the “Qie Gao”

What if items are really indivisible?

▪ The Knapsack Problem is NP-Hard!

▪ Are we going to talk about approximation algorithms?

▪ No!

▪ Let’s make a DP algorithm with reasonable running time!

Find out subproblems!

▪ What we always do before:

▪ 𝑓 𝑖 : the maximum value we can get by using the first 𝑖
items.

𝑓[𝑖] 5 10 13 16 21 30 ?

Find out subproblems!

▪ What we always do before:

▪ 𝑓 𝑖 : the maximum value we can get by using the first 𝑖
items.

𝑓[𝑖] 5 10 13 16 21 30 ?

How to solve
𝑓 𝑖 by 𝑓 𝑗 < 𝑖 ?

Find out subproblems!

▪ What we always do before:

▪ 𝑓 𝑖 : the maximum value we can get by using the first 𝑖
items.

𝑓[𝑖] 5 10 13 16 21 30 ?

How to solve
𝑓 𝑖 by 𝑓 𝑗 < 𝑖 ?

We know 𝑓[𝑗] but
we do not know

how much
budget it uses!

Find out subproblems!

▪ What we always do before:

▪ 𝑓 𝑖 : the maximum value we can get by using the first 𝑖
items.

▪ Use 𝑔[𝑖] to store how much budge 𝑓[𝑖] uses.

𝑓[𝑖] 5 10 13 16 21 30 ?

How to solve
𝑓 𝑖 by 𝑓 𝑗 < 𝑖 ?

We know 𝑓[𝑗] but
we do not know

how much
budget it uses!

Find out subproblems!

▪ What we always do before:

▪ 𝑓 𝑖 : the maximum value we can get by using the first 𝑖
items.

▪ Use 𝑔[𝑖] to store how much budge 𝑓[𝑖] uses.

𝑓[𝑖] 5 10 13 16 21 30 ?

How to solve
𝑓 𝑖 by 𝑓 𝑗 < 𝑖 ?

We know 𝑓[𝑗] but
we do not know

how much
budget it uses!

It is greedy, and it
is not optimal!

Find out subproblems!

▪ What we always do before:

▪ 𝑓 𝑖 : the maximum value we can get by using the first 𝑖
items.

▪ Use 𝑔[𝑖] to store how much budge 𝑓[𝑖] uses.

𝑓[𝑖] 5 10 13 16 21 30 ?

How to solve
𝑓 𝑖 by 𝑓 𝑗 < 𝑖 ?

We know 𝑓[𝑗] but
we do not know

how much
budget it uses!

It is greedy, and it
is not optimal!

Find out subproblems!

▪ What we always do before:

▪ 𝑓 𝑖,𝒘 : the maximum value we can get by using the first 𝑖
items, and with 𝒘 budget.

▪ Use 𝑔[𝑖] to store how much budge 𝑓[𝑖] uses.

𝑓[𝑖] 5 10 13 16 21 30 ?

How to solve
𝑓 𝑖 by 𝑓 𝑗 < 𝑖 ?

We know 𝑓[𝑗] but
we do not know

how much
budget it uses!

Find out subproblems!

▪ What we always do before:

▪ 𝑓 𝑖,𝒘 : the maximum value we can get by using the first 𝑖
items, and with 𝒘 budget.

𝑓[𝑖, 𝑤] 0 1 2 3 4 5 6 … 𝑊

0

1

2

3 𝑓[𝑖, 𝑤]

…

𝑛 𝑓[𝑛,𝑊]

How to solve
𝑓 𝑖, 𝑤 .

Solve 𝑓 𝑖, 𝑤

▪ What we always do before:

▪ 𝑓 𝑖,𝒘 : the maximum value we can get by using the first 𝑖
items, and with 𝒘 budget.

▪ Two options for item 𝑖
– Buy it: We can at most use 𝑤 − 𝑐𝑖 budget before 𝑖.

– Not Buy it: We can at most use 𝑤 budget before 𝑖.

– Solve 𝑓 𝑖, 𝑤 = max{𝑓 𝑖 − 1,𝑤 , 𝑓 𝑖 − 1, 𝑤 − 𝑐𝑖 + 𝑣𝑖}.

Check the topological order

▪ 𝑓 𝑖,𝒘 : the maximum value we can get by using the first 𝑖
items, and with 𝒘 budget.

▪ 𝑓 𝑖, 𝑤 = max{𝑓 𝑖 − 1,𝑤 , 𝑓 𝑖 − 1,𝑤 − 𝑐𝑖 + 𝑣𝑖}

𝑓[𝑖, 𝑤] 0 1 2 3 4 5 6 … 𝑊

0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0 𝑓[𝑖, 𝑤]

… 0

𝑛 0 𝑓[𝑛,𝑊]

𝑐𝑖 𝑶 𝒏𝑾 ⋅ 𝑶(𝟏)

Knapsack has many
variants!

Surplus Supply

▪ Input: 𝑛 items with cost 𝑐𝑖 and value 𝑣𝑖, and a capacity 𝑊.

▪ Output: Select some items (each items can be selected
more than once), with total cost at most W. The goal is to
maximize the total value.

Value Cost

iPhone 8888 8888

Algorithm Book 10000 500

Laptop 8888 8500

Hermès 90000 100000

How to transfer subproblems now?

▪ Two options for item 𝑖
– Buy it: We can at most use 𝑤 − 𝑐𝑖 budget before 𝑖.

– Not Buy it: We can at most use 𝑤 budget before 𝑖.

– Solve 𝑓 𝑖, 𝑤 = max{𝑓 𝑖 − 1,𝑤 , 𝑓 𝑖 − 1, 𝑤 − 𝑐𝑖 + 𝑣𝑖}.

▪ Problem!
– We can buy multiple times!

A new subproblem transfer!

▪ Problem!
– We can buy multiple times!

▪ New transfer
– Buy it first time: We can at most use 𝑤 − 𝑐𝑖 budget before 𝑖.

– Not Buy it: We can at most use 𝑤 budget before 𝑖.

– Buy it again: We can at most use 𝑤 − 𝑐𝑖 budget before 𝑖.

– Solve 𝑓 𝑖, 𝑤 = max{𝑓 𝑖 − 1,𝑤 , 𝑓 𝑖 − 1, 𝑤 − 𝑐𝑖 + 𝑣𝑖 , 𝒇 𝒊,𝒘 − 𝒄𝒊 + 𝑣𝑖}.

Check the topological order

▪ 𝑓 𝑖,𝒘 : the maximum value we can get by using the first 𝑖
items, and with 𝒘 budget.

▪ 𝑓 𝑖, 𝑤 = max{𝑓 𝑖 − 1,𝑤 , 𝑓 𝑖 − 1,𝑤 − 𝑐𝑖 + 𝑣𝑖 , 𝑓 𝑖, 𝑤 − 𝑐𝑖 + 𝑣𝑖}

𝑓[𝑖, 𝑤] 0 1 2 3 4 5 6 … 𝑊

0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0 𝑓[𝑖, 𝑤]

… 0

𝑛 0 𝑓[𝑛,𝑊]

𝑐𝑖

Let us program it!

Knapsack with Surplus Supply
function 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑛)

𝑓 0,0 = 𝑓 0,1 = 𝑓 0,2 = ⋯ = 𝑓 0,𝑊 = 0
𝑓 0,0 = 𝑓 1,0 = 𝑓 2,0 = ⋯ = 𝑓 𝑛, 0 = 0
for 𝑤 = 0 to 𝑊

for 𝑖 = 1 to 𝑛
𝑓 𝑖, 𝑤 =max{𝑓 𝑖 − 1,𝑤 , 𝑓[𝑖, 𝑤 − 𝑐𝑖]}

return 𝑓[𝑛,𝑊]

▪ 𝑓 𝑖,𝒘 : the maximum value we can get by using the first 𝑖
items, and with 𝒘 budget.

▪ 𝑓 𝑖, 𝑤 = max{𝑓 𝑖 − 1,𝑤 , 𝑓 𝑖 − 1,𝑤 − 𝑐𝑖 + 𝑣𝑖 , 𝑓 𝑖, 𝑤 − 𝑐𝑖 + 𝑣𝑖}

▪ → 𝑓 𝑖, 𝑤 = max{𝑓 𝑖 − 1,𝑤 , 𝑓 𝑖, 𝑤 − 𝑐𝑖 + 𝑣𝑖}

𝑂(𝑛𝑊)

We can make it simple

▪ 𝑓 𝒘 : the maximum value we can with 𝒘 budget.

▪ 𝑓 𝑤 = max
𝑖=1~𝑛

{𝑓 𝑤 , 𝑓 𝑤 − 𝑐𝑖 + 𝑣𝑖}

Knapsack with Surplus Supply
function 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘(𝑛)

𝑓 0 = 𝑓 1 = ⋯𝑓[𝑛] = 0
for 𝑤 = 0 to 𝑊

for 𝑖 = 1 to 𝑛
𝑓 𝑤 =max{𝑓 𝑤 , 𝑓 𝑤 − 𝑐𝑖 + 𝑣𝑖}

return 𝑓[𝑛,𝑊]

𝑂(𝑛𝑊) but with less space.

They are not polynomial
on the input size!

𝑂 𝑛𝑊 is not polynomial!

▪ Input: 𝑛 items with cost 𝑐𝑖 and value 𝑣𝑖, and a capacity 𝑊.

▪ Input size: the unit of bits to represent the input.

▪ 𝑊 = 2𝑁 by using 𝑁 bits
– time complexity becomes 𝑂 2𝑁 .

Input of The Knapsack Problem

▪ Input of Knapsack
– 𝑛,W

– 𝑛 values 𝑣𝑖 and 𝑛 costs 𝑐𝑖.

▪ Assume we have 𝑂(𝑁) bits, (input size = 𝑁)

▪ To present 𝑛 values and costs, we need to use at least 𝑂(𝑛)
bits. Hence, we at most present 𝑛 = 𝑂(𝑁) with 𝑂 𝑁 bits.

▪ 𝑊 can be O(2𝑁)

▪ So, the running time 𝑂 𝑛𝑊 can become 𝑂 𝑁2𝑁 , which is
not polynomial!.

Today’s goal

▪ Learn what is DP.

▪ Learn how to prove DP’s correctness.

▪ Learn the general guideline for designing DP Algorithms.

▪ Learn to apply the guideline on:
– Fibonacci

– Shortest Path on DAGs

– Edit Distance

– Knapsack

