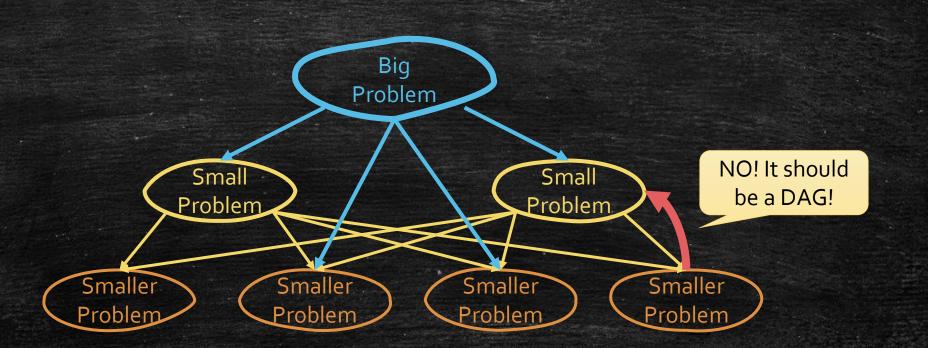
Dynamic Programming

Smarter Subproblem Definitions

Dynamic Programming



A simpler guideline

- Find subproblems.
- Check whether we are in a DAG and find the topological order of this DAG. (Usually, by hand.)
- Solve & store the subproblems by the topological order.

Recap the three examples

Longest Increasing Sequence

- Subproblem LIS[i]: the longest increasing sequence ended by a_i .
- Edit Distance
 - Subproblem ED[i, j]: the edit distance for A[1..i] and B[1..j].
- Knapsack
 - Subproblem *f*[*i*, *w*]: the maximum value we can get by using first *i* items and *w* budget.

How to find these subproblems

- Think from a recursive method
- LIS:
 - We want to find the LIS.
 - It may be ended by every a_i .
 - Solve LIS ended by a_i need to know all LIS ended by $a_{j < i}$.

How to find these subproblems

- Think from a recursive method
- Edit Distance
 - We want to know the Edit Distance.
 - We think how we align the last two character.
 - Different case make us go into different subproblems.
 - We these subproblems can be merged to ED[i, j].

How to find these subproblems

- Think from a recursive method
- Knapsack
 - We want to know the maximum value.
 - We know that for each item, we have two choice: buy it or not.
 - Buy: we have $W c_i$ budget for other items.
 - Not Buy: we have W budget for other items.
 - Consider we recursive from a_n .
 - Subproblems can be merged to f[i, w].

Understand Bellman-Ford as A DP

Bellman-Ford

Function bellman_ford(G, s) $dist[s] = 0, dist[x] = \infty$ for other $x \in V$ while $\exists dist[x]$ is updated for each $(u, v) \in E$ $dist[v] = \min\{dist[v], dist[u] + d(u, v)\}$

Lemma 1

After k rounds, dist(v) is the shortest distance of all k-edge-path (path with at most k edges).

Define subproblems

 dist[k, v]: the shortest distance from s to v among all k-edgepath (path with at most k edges).

Observation 2

The shortest distance of all |V|edge-path can not be shorter than the shortest distance of all (|V| - 1) –edge-path unless there is a Negative Cycle.

Bellman-Ford

function bellman_ford(G, s) $dist[0,s] = 0, dist[0,x] = \infty$ for other $x \in V$ for k = 1 to |V|for each $(u,v) \in E$ $dist[k,v] = min\{dist[k-1,v], dist[k-1,u] + d(u,v)\}$

Solving Subproblems

• $dist[k,v] = min\{dist[k-1,v], dist[k-1,u] + d(u,v)\}$

f[k, v]	S	<i>v</i> ₂	<i>v</i> ₃	v_4	v_5	v_6	v_7		$v_{ V }$
0	0	8	∞	∞	∞	∞	00	00	∞
1									
2						Ļ			
3						f[k, v]			
V									

All Pair Shortest Path

• Input: A directed graph G(V,E), and a weighted function d(u,v) for all $(u,v) \in E$.

• **Output:** Distance d(u, v), for all vertex pair u, v.

What can we do?

Naïve Plan:

- Run |V| times Bellman-Ford
- $O(|V|^2|E|)$
- Improve it by an integrated DP!
 - Floyd-Warshall Algorithm!
 - $O(|V|^3)$
 - History from Wikipedia:

History and naming [edit]

The Floyd–Warshall algorithm is an example of dynamic programming, and was published in its currently recognized form by Robert Floyd in 1962.^[3] However, it is essentially the same as algorithms previously published by Bernard Roy in $1959^{[4]}$ and also by Stephen Warshall in $1962^{[5]}$ for finding the transitive closure of a graph,^[6] and is closely related to Kleene's algorithm (published in 1956) for converting a deterministic finite automaton into a regular expression.^[7] The modern formulation of the algorithm as three nested for-loops was first described by Peter Ingerman, also in $1962^{[8]}$

Define subproblems

 Bellman-Ford: dist[k, v]: the shortest distance from s to v among all k-edge-path (path with at most k edges).

- A very natural generalization!
- Natural Generalization: dist[k, u, v]: the shortest distance from u to v among all k-edge-path (path with at most k edges).

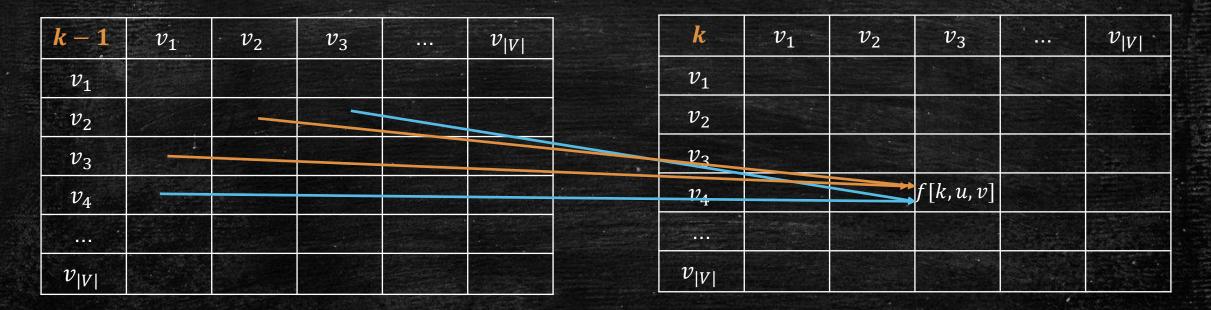
Natural Generalization

- Natural Generalization: dist[k, u, v]: the shortest distance from u to v among all k-edge-path (path with at most k edges).
- Transfer:
 - $dist[k, u, v] = \min_{(s,v) \in E} \{ dist[k-1, u, s] + d(s, v) \}$
- Time:
 - -|V| rounds
 - In one round, an edge can be used to update |V| distance.
 - Totally $O(|V|^2|E|)!$

No improvement!

Solving Subproblems

• $dist[k, u, v] = \min_{(s,v) \in E} \{ dist[k-1, u, s] + d(s, v) \}$



Floyd-Warshall: Subproblems

- Natural Generalization: dist[k, u, v]: the shortest distance from u to v among all k-edge-path (path with at most k edges).
- Floyd-Warshall: dist[k, u, v]: the shortest distance from u to v that only across inter-vertices in {v₁ ... v_k}.
- Remark:
 - We can label vertices from 1 to |V|.
 - dist[0, u, v] is exactly d(u, v) or ∞ . (allow 0 inter-vertex)
 - *dist*[|*V*|, *u*, *v*] is exactly what we want!

Floyd-Warshall: Solving Subproblems

- dist[k, u, v]: the shortest distance from u to v that only across inter-vertices in {v₁ ... v_k}.
- Solve dist[k, u, v] (give addition power k to all pairs)
 - Case 1: the shortest path do not go across k.
 - Case 2: the shortest path go across k.

 $\{v_1 \dots v_{k-1}\}$

 $- dist[k, u, v] = \min\{dist[k - 1, u, v], dist[k - 1, u, k] + dist[k - 1, k, v]\}$

k $(v_1 ... v_{k-1})$

Solving Subproblems

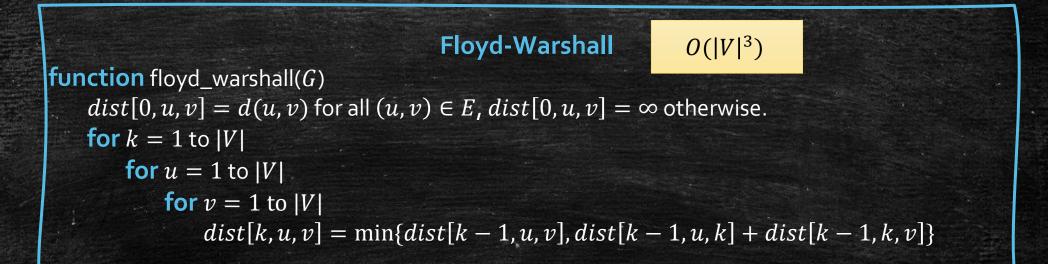
• $dist[k, u, v] = min\{dist[k - 1, u, v], dist[k - 1, u, k] + dist[k - 1, k, v]\}$

<i>k</i> – 1	v_1	v ₂	<i>v</i> ₃	$v_{ V }$	k	v_1	v_2	<i>v</i> ₃	$v_{ V }$
v_1					<i>v</i> ₁				
v_2					v_2				
v_3					V2				
v_4					174			f[k, u, v]	
$v_{ V }$					$v_{ V }$				

DAG and Topological

- dist[k, u, v] only depends
 - dist[k 1, u, v]
 - dist[k 1, u, k]
 - dist[k-1,k,v]
- We initialize dist[0, u, v] = d(u, v) for all (u, v).
- Solve them from k = 1 to n is a topological order.
- Running Time: $3 \cdot O(|V| \cdot |V| \cdot |V|)$

Floyd-Warshall



Floyd-Warshall: a simpler implement

Floyd-Warshall

```
function floyd_warshall(G)
  dist[u, v] = d(u, v) for all (u, v) \in E, dist[u, v] = \infty otherwise.
  for k = 1 to |V|
    for u = 1 to |V|
    for v = 1 to |V|
        dist[u, v] = min{dist[u, v], dist[u, k] + dist[k, v]}
```

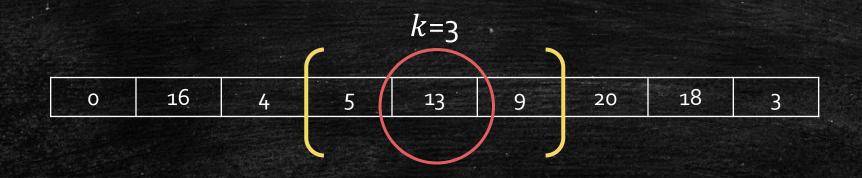
 $O(|V|^3)$ running time but $O(|V|^2)$ space! Why it is correct?

More Smarter Subproblem Definitions

Priority Queue

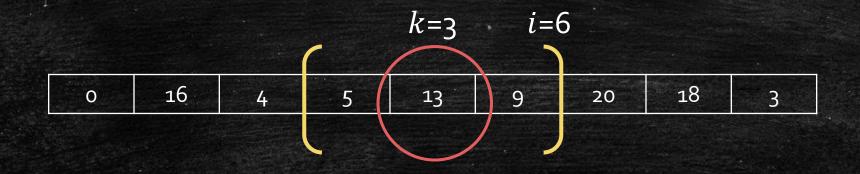
Largest Number in k Consecutive Numbers

- Input: A sequence of numbers a₁, a₂, ..., a_n, and a number k.
- Output: The largest number in every k consecutive numbers.



Subproblem Definitions

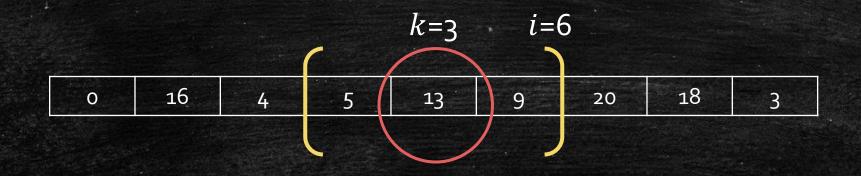
large[*i*]: the largest number from *a*_{*i*-*k*+1} to *a*_{*i*}.
Output: *large*[*k*]~*large*[*n*].



Solving Subproblems

• large[i]: the largest number from a_{i-k+1} to a_i .

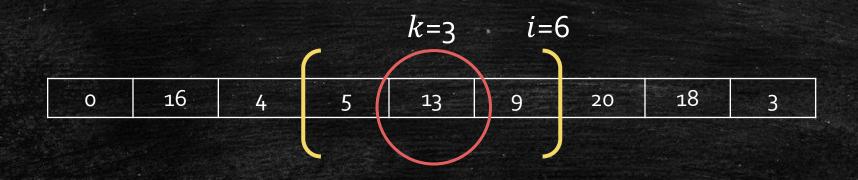
Can you find a way to solve *large[i]* by other subproblems?
 Tips: from *large[j]*, *j < i*.



Solving Subproblems

• large[i]: the largest number from a_{i-k+1} to a_i .

- Can you find a way to solve large[i] by other subproblems?
 - Tips: from large[j], j < i.
 - Brute-force: $large[i] = \max_{j=i-k+1}^{i} \{a_i\}$



Recall Knapsack

- What we always do before:
- *f*[*i*, *w*]: the maximum value we can get by using the first *i* items, and with *w* budget.
- Use g[i] to store how much budge f[i] uses.

How to solve f[i] by f[j < i]?

We know *f*[*j*] but we do not know how much budget it uses!

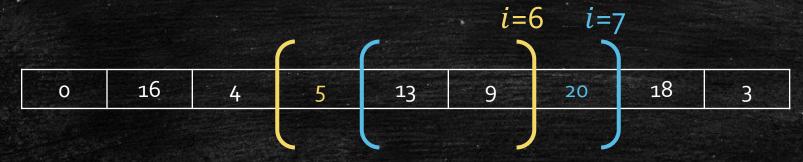
Key problem: Subproblem definition does not contain enough information!

What kind of information do we need now?

Observation

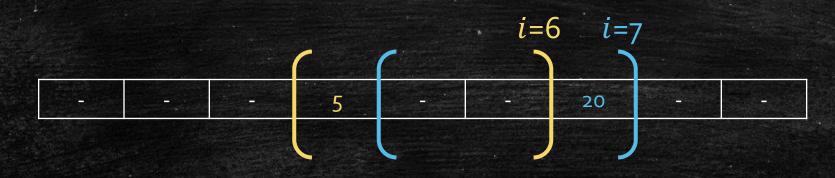
Compare two large[i] and large[i - 1].

- One entering number: 20
- One outgoing number: 5
- Question: how they affect the largest number?



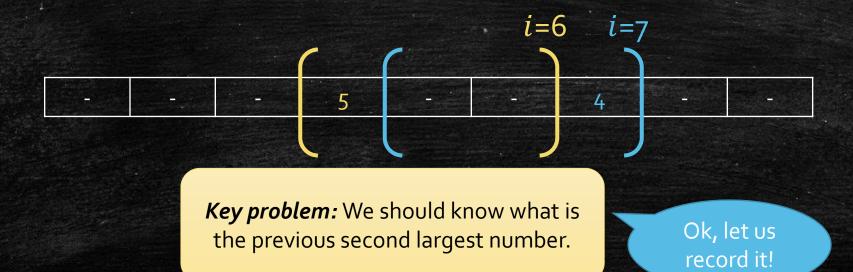
How they affect the largest number

- One entering number: 20
- One leaving number: 5
- Question: how they affect the largest number?
- Case 1: the entering number is the new largest!



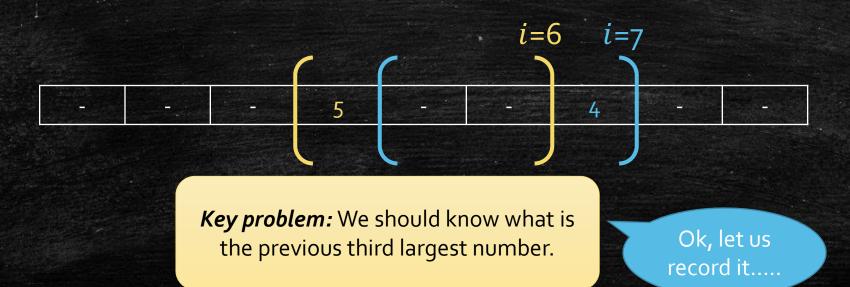
How they affect the largest number

- One entering number: 20
- One leaving number: 5
- Question: how they affect the largest number?
- Case 2: the leaving number is the previous largest!



How they affect the largest number

- One entering number: 20
- One leaving number: 5
- Question: how they affect the largest number?
- Case 3: the leaving number is the previous second largest!



Summarize

Difference

- One entering number: 20
- One leaving number: 5
- Question: how they affect the largest number?

5

Summarize: We should maintain a data structure!

i=6

i=7

20

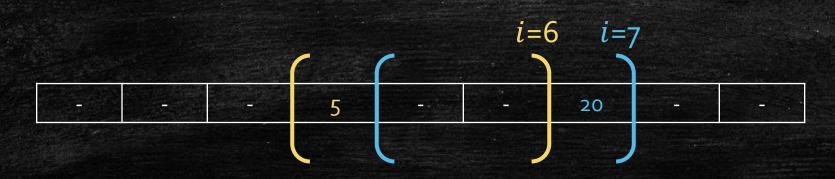
Data Structure $O(n \log k)!$

Support delete and insert!

Let us think more!

• New Subproblem: Solving the Heap of $a_{i-k+1} \sim a_i$.

- Delete (Update & PopMax)
- Insert
- FindMax
- $O(n \log k)!$
- Is it too powerful?
 - We delete and insert only based on the index!

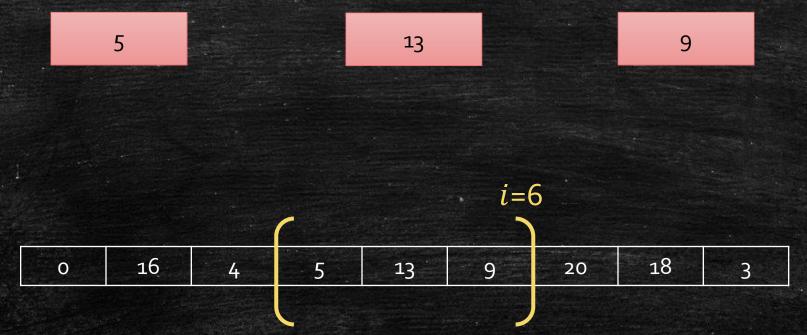


A new Subproblem!

- Think again: why we need the heap?
 - We need two know who is the largest.
 - We need to know who is the **potential largest**.
 - We need to update the **potential largest list**.
- Do we have a better way to maintain this potential largest list?
 - Heap views all k numbers as **potential largest**.

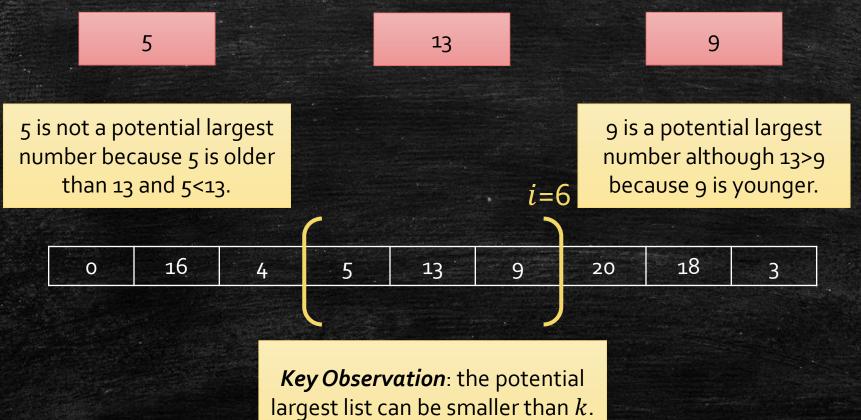
Observation

• Who can be the **potential largest** number?



Observation

• Who can be the **potential largest** number?



Potential Largest List

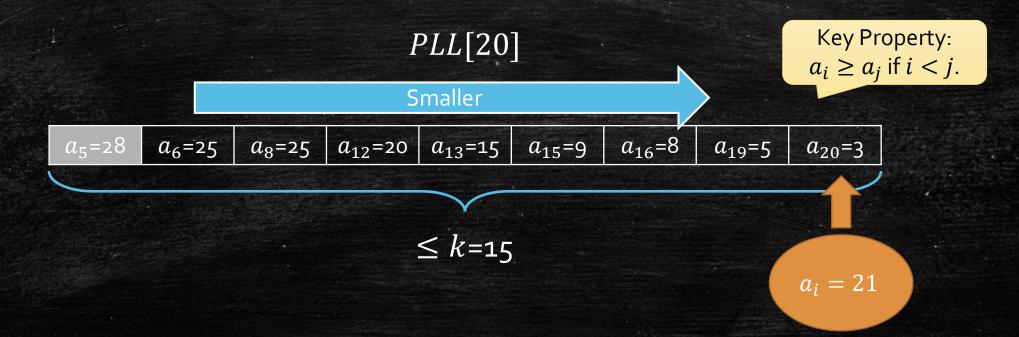
Potential Largest List (PLL)

- *PLL*[*i*]: the Potential Largest List for $a_{i-k+1} \sim a_i$.
- At most k numbers.
- Sorted by the index.
- $-i-k+1 \leq \text{Index} \leq i$

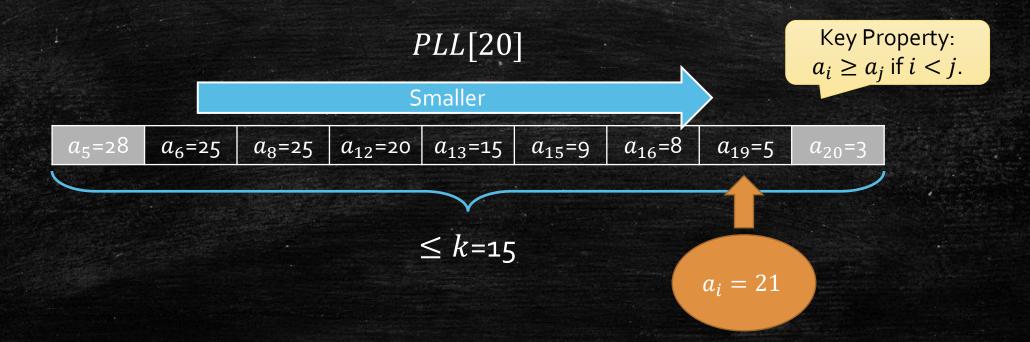
How to solve *PLL*[*i* = 21] by *PLL*[*i* - 1 = 20]?
First, kick the number if *index* < *i* - *k* + 1 = 6.

 $\leq k=15$

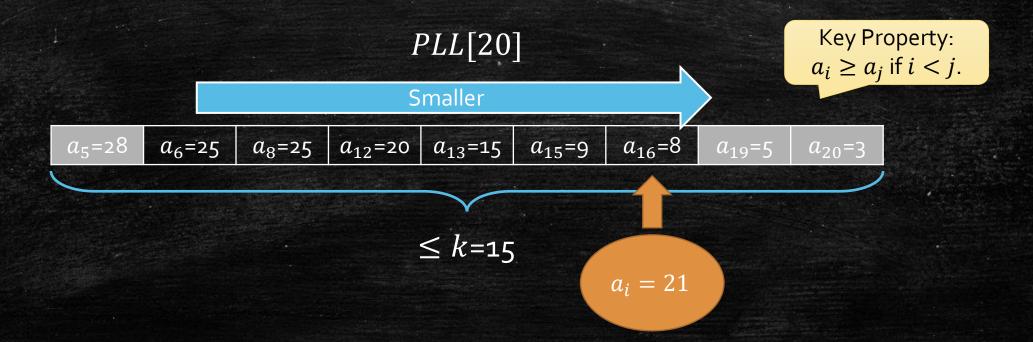
- How to solve PLL[i = 21] by PLL[i 1 = 20]?
- First, kick the number if index < i k + 1 = 6.
- Second, kick numbers by $a_{i=21}$.



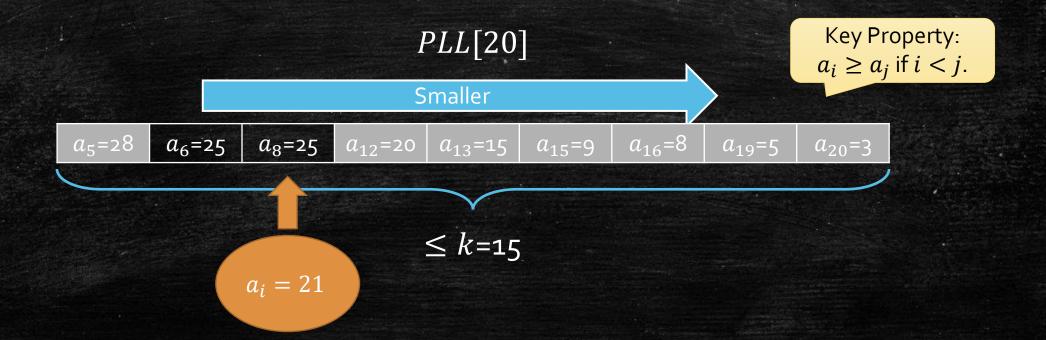
- How to solve PLL[i = 21] by PLL[i 1 = 20]?
- First, kick the number if index < i k + 1 = 6.
- Second, kick numbers by $\overline{a_{i=21}}$.



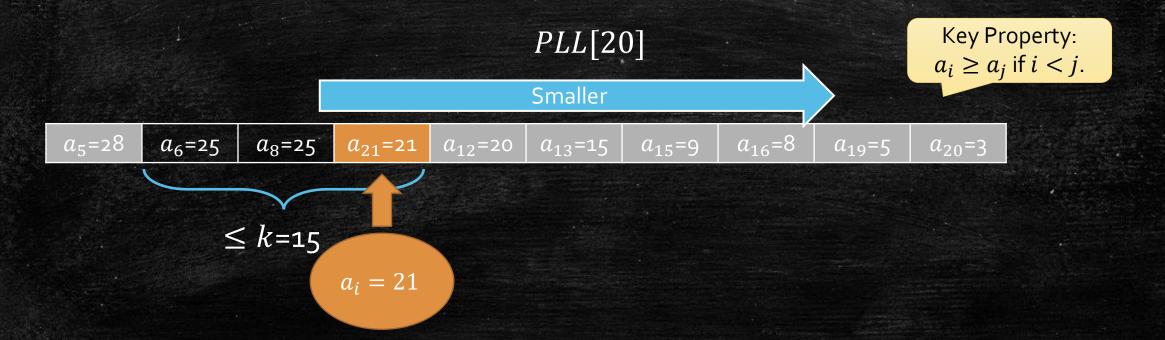
- How to solve PLL[i = 21] by PLL[i 1 = 20]?
- First, kick the number if index < i k + 1 = 6.
- Second, kick numbers by $a_{i=21}$.



- How to solve *PLL*[*i* = 21] by *PLL*[*i* 1 = 20]?
 First, kick the number if *index* < *i k* + 1 = 6.
- Second, kick numbers by $a_{i=21}$.



- How to solve PLL[i = 21] by PLL[i 1 = 20]?
- First, kick the number if index < i k + 1 = 6.
- Second, kick numbers by $a_{i=21}$.



Largest Number in k Consecutive Numbers

- Keep Inserting $a_1 \sim a_k$ & kicking to make *PLL*[k].
- Solve every $PLL[k < i \le n]$ by inserting & kicking.
- We can easily get large[i] by PLL[i].
- It is efficient: O(n)! Each number at most:
 - Inserted once.
 - Kicked once.
 - Pass once (because once we pass, we kick it).

It is an important idea for DP improvement!

Priority Queue

Longest Increasing Sequence Revisit

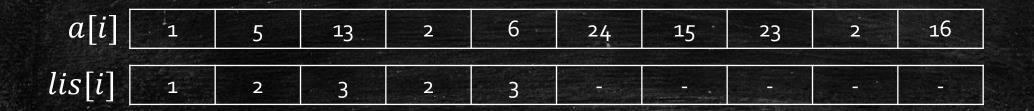
Input: A sequence a₁, a₂, ..., a_n.
 Output: the Longest Increasing Subsequence (LIS)
 - a_{i1} < a_{i2} < a_{i3} ... < a_{ik}

 $- i_1 < i_2 < i_3 \dots < i_k$

Do you feel that we can improve?

Previous Transfer

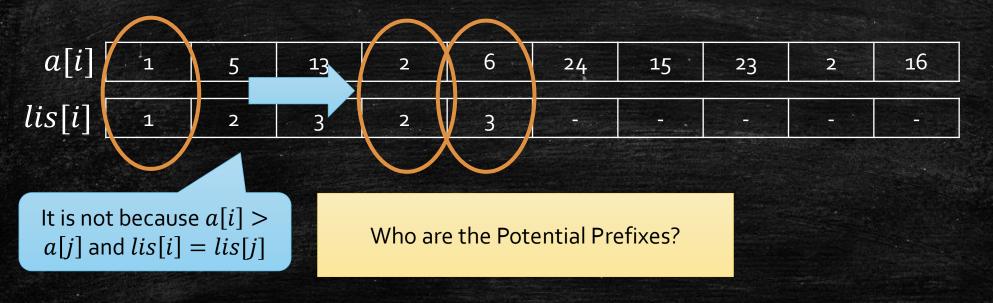
- $lis[i] = \max_{a_j < a_i, j < i} \{ lis[j] + 1 \}$
- Definition: Potential Prefix
 - The set of a_i that is possible to be the prefix of future numbers.



Who are the Potential Prefix?

Previous Transfer

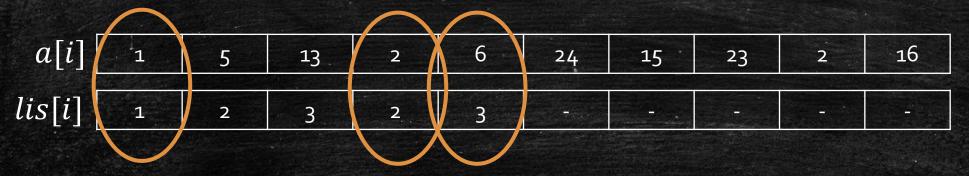
- $lis[i] = \max_{a_j < a_i, j < i} \{ lis[j] + 1 \}$
- Definition: Potential Prefix
 - The set of a_i that is possible to be the prefix of future numbers.



New Subproblem!

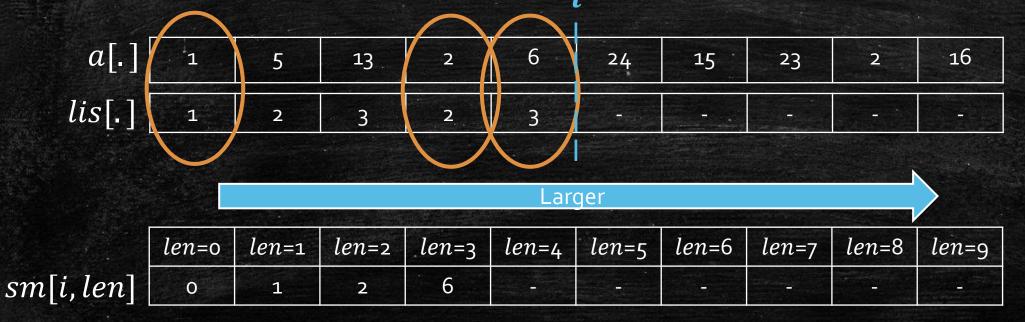
 Sm[i, len]: the smallest ended number for an increasing subsequence with length len.

 Remark: it is enough to record all Potential Prefixes (length and number).



New Subproblem!

- Sm[i, len]: the smallest ended number for an increasing subsequence with length len by using a₁ ... a_i.
- Remark: it is enough to record all Potential Prefixes (length and number).



How to solve sm[i, len] (Potential Prefixes)?

- By $sm[j \le i, ...]$?
- Difference between *i* − 1 and *i*?
 - a_i comes in.
 - It may **become** a potential prefixes and **kick** some potential prefixes.

	<i>len=</i> 0	len=1	len=2	len=3	len=4	len=5	len=6	len=7	len=8	len=9	
sm[i, len]	0	1	2	6					-	-	

• How to solve sm[i, len] (Potential Prefixes)?

- By $sm[j \le i, ...]$?
- Difference between i 1 and i?
 - $-a_i$ comes in.

 $a_i = 5$

	<i>len</i> =0	len=1	len=2	len=3	len=4	len=5	<i>len</i> =6	len=7	len=8	len=9
sm[i-1, len]	0	1	2	6			<u>-</u>			

• How to solve sm[i, len] (Potential Prefixes)?

- By $sm[j \le i, ...]$?
- Difference between *i* − 1 and *i*?
 - a_i comes in.

 a_i

$$Case 1: a_i > sm[i - 1, len]$$

$$Case 1: a_i \le sm[i - 1, len]$$

	<i>len=</i> 0	len=1	len=2	len=3	len=4	len=5	<i>len</i> =6	len=7	len=8	len=9
sm[i-1, len]	0	1	2	6						

How to solve sm[i, len] (Potential Prefixes)?

- By $sm[j \le i, ...]$?
- Difference between *i* − 1 and *i*?
 - $-a_i$ comes in.

sm|i -

$$a_{i} = 5$$

$$Case 1: a_{i} > sm[i - 1, len]$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$(a_{i} \le m_{i} \le m_{$$

How to solve sm[i, len] (Potential Prefixes)?

- By $sm[j \le i, ...]$?
- Difference between *i* − 1 and *i*?
 - a_i comes in.

sm|i -

$$a_{i} = 5$$

$$Case 1: a_{i} > sm[i - 1, len]$$

$$Case 1: a_{i} \leq sm[$$

How to solve sm[i, len] (Potential Prefixes)?

- By $sm[j \le i, ...]$?
- Difference between *i* − 1 and *i*?
 - $-a_i$ comes in.

sm i -

$$a_{i} = 5$$

$$Case 1: a_{i} > sm[i - 1, len]$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$(a_{i} = 5)$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$(a_{i} \le m_{i} \le m_{i}$$

How to solve sm[i, len] (Potential Prefixes)?

- By $sm[j \le i, ...]$?
- Difference between *i* − 1 and *i*?
 - $-a_i$ comes in.

sm i – 1

$$a_{i} = 5$$

$$Case 1: a_{i} > sm[i - 1, len]$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$(a_{i} = 5)$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$(a_{i} = 5)$$

$$(a_{i} = 5)$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$(a_{i} = 5)$$

$$(a_{i} = 6)$$

$$(a_{i$$

How to solve sm[i, len] (Potential Prefixes)?

- By $sm[j \le i, ...]$?
- Difference between *i* − 1 and *i*?
 - $-a_i$ comes in.

sm|i-

$$a_{i} = 5$$

$$Case 1: a_{i} > sm[i - 1, len]$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$It may update sm[i, len]$$

How to solve sm[i, len] (Potential Prefixes)?

- By $sm[j \le i, ...]$?
- Difference between *i* − 1 and *i*?
 - $-a_i$ comes in.

sm|i -

How to solve sm[i, len] (Potential Prefixes)?

- By $sm[j \le i, ...]$?
- Difference between *i* − 1 and *i*?
 - $-a_i$ comes in.

sm i

$$a_{i} = 5$$

$$Case 1: a_{i} > sm[i - 1, len]$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$(a_{i} = 5)$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$(b_{i} = 1 \text{ len} = 1 \text{ len} = 2 \text{ len} = 3 \text{ len} = 4 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 1 \text{ len} = 2 \text{ a}_{i} = 5 \text{ den} = 4 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 1 \text{ len} = 2 \text{ a}_{i} = 5 \text{ den} = 4 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 1 \text{ len} = 5 \text{ den} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 1 \text{ len} = 5 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 1 \text{ len} = 5 \text{ len} = 6 \text{ len} = 7 \text{ len} = 8 \text{ len} = 9 \text{ len} = 1 \text{ len} = 5 \text{ len} = 6 \text{ len} = 1 \text{ len} = 5 \text{ len} = 6 \text{ len} = 1 \text{ len} = 5 \text{ len} = 6 \text{ len} = 1 \text{ len} = 5 \text{ len} = 6 \text{ len} = 1 \text{ len} = 1$$

Longest Increasing Subsequence with $sm[\cdot]$.

Plan

- Initialize sm[0,0] = 0
- Solve sm[i, len] from sm[i 1, len] by a_i .
- Output the largest len such that $sm[n, len] \neq "-"$.

Still Not Finished!

Plan

- Initialize sm[0,0] = 0
- Solve sm[i, len] from sm[i 1, len] by a_i .
 - It requires O(max{len} = i)!
 - Remark, now we do not kick everything we pass.
- Output the largest len such that $sm[n, len] \neq "-"$.

Recap The Updating

S

We need to find the largest *len* such that a_i > sm[i - 1, len].
Then we update: sm[i, len + 1] = a_i.

$$a_{i} = 5$$

$$Case 1: a_{i} > sm[i - 1, len]$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$(a_{i} = 5)$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$(a_{i} \le 1)$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$(a_{i} \le 1)$$

$$(a_{i} = 1)$$

$$(a_{i} = 2)$$

$$(a_{i} = 5)$$

$$(a_{i} = 5$$

How to do it efficiently?

Yes! Binary Search!

Recap the updating

We need to find the largest len such that a_i > sm[i - 1, len].
 Find it by binary search, we only need O(log(max len = i))!

• Then we update: $sm[i, len + 1] = a_i$.

$$a_{i} = 5$$

$$Case 1: a_{i} > sm[i - 1, len]$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$(a_{i} = 5)$$

$$Case 1: a_{i} \le sm[i - 1, len]$$

$$(a_{i} \le m[i - 1, len])$$

$$(a_{i} \le m[i - 1, len$$

Now it is better!

Plan

- Initialize sm[0,0] = 0
- Solve sm[i, len] from sm[i 1, len] by a_i .
 - It requires $O(\log i)$.
- Output the largest *len* such that $sm[n, len] \neq "-"$.
- Totally $O(n \log n)$.

One more Interesting problem.

Minimizing Manufacturing Cost

• **Input:** A sequence of items with cost $a_1, a_2, ..., a_n$.

- Need to Do:
 - Manufacture these items.
 - Operation man(l, r): manufacture the items from l to r.
 - $cost(l,r) = C + (\sum_{i=l}^{r} a_i)^2.$

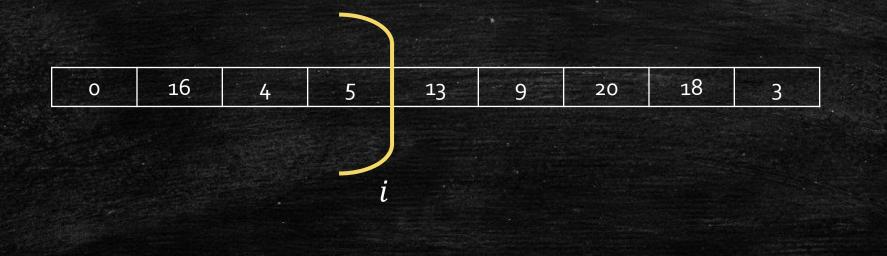
Output: The minimum cost to manufacture all items.

Discussion

- Cost function: $cost(l,r) = C + (\sum_{i=l}^{r} a_i)^2$.
- Cost function: $cost(l,r) = C + \sum_{i=l}^{r} a_i$.
- Cost function: $cost(l,r) = C + (\sum_{i=l}^{r} a_i)^2$, with C = 0.
- Only the first one need to optimize!

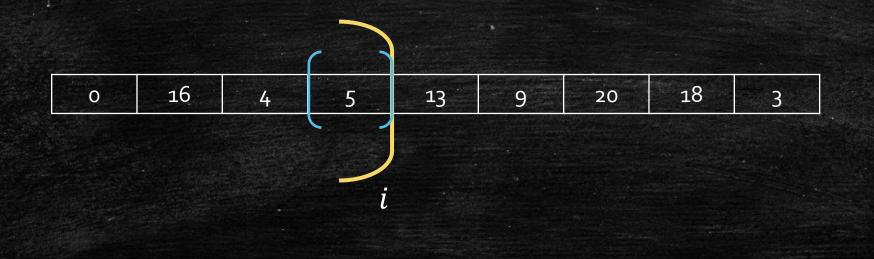
Define subproblems

f[*i*]: the minimum cost for manufacturing item 1 to *i*.
How to solve *f*[*i*]?



Solving f[i]

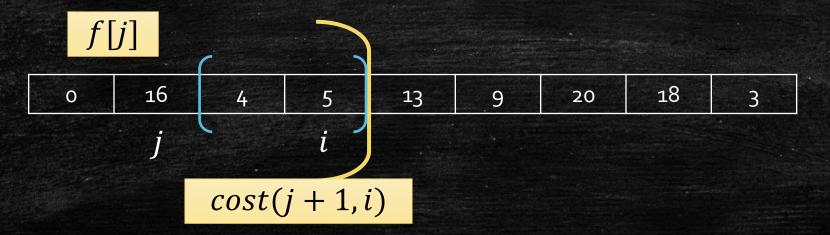
- f[i]: the minimum cost for manufacturing item 1 to *i*.
- How to solve *f*[*i*]?
- We can manufacture item *i* alone.



Solving f[i]

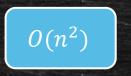
- *f*[*i*]: the minimum cost for manufacturing item 1 to *i*.
- How to solve *f*[*i*]?
- We can also manufacture *i* along with an interval.

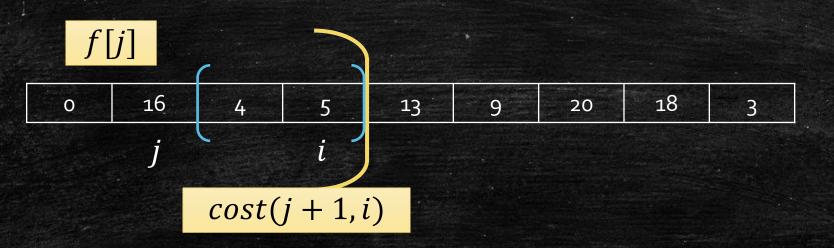
•
$$f[i] = \min_{j \le i} f[j] + C + \left(\sum_{k=j+1}^{i} a_k\right)^2$$



DP algorithm

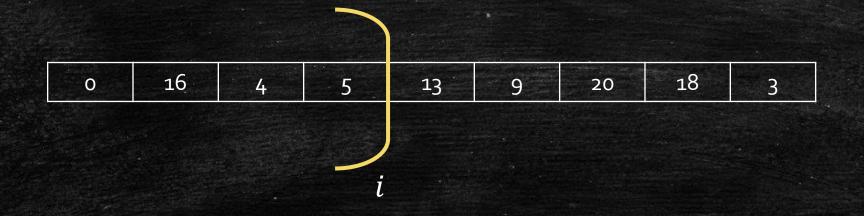
- Define f[0] = 0.
- Solve f[i] from 1 to n, and output f[n].
- $f[i] = \min_{j \le i} f[j] + C + \left(\sum_{k=j+1}^{i} a_k\right)^2$.





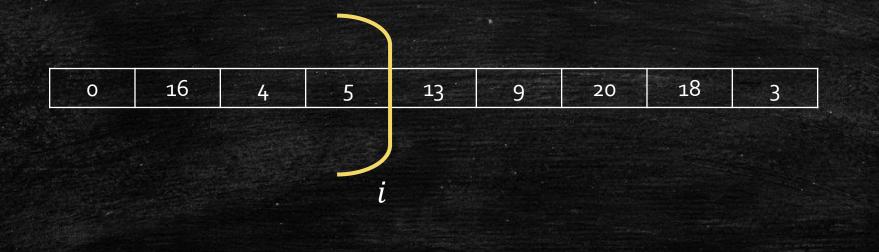
The Potential Idea Again!

• Question: Can every j be a potential prefix for the future?



The Potential Idea Again!

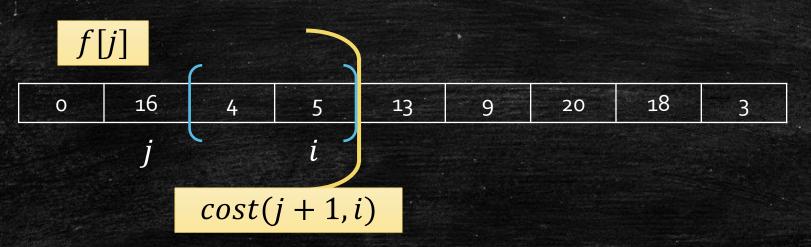
Question: Can every *j* be a potential prefix for the future?
Maybe...... I can find nothing.



Let us do some math!

Math Time!

- f[i] = min_{j<i} f[j] + C + (∑ⁱ_{k=j+1} a_k)².
 Consider j = x and j = y, when x is better than y for i?
- $f[x] + C + \left(\sum_{k=x+1}^{i} a_k\right)^2 < f[y] + C + \left(\sum_{k=y+1}^{i} a_k\right)^2$



Math Time!

- $f[i] = \min_{j \le i} f[j] + C + \left(\sum_{k=j+1}^{i} a_k\right)^2$.
- Consider j = x and j = y, when y is better than x for i?
- $f[x] + C + \left(\sum_{k=x+1}^{i} a_k\right)^2 > f[y] + C + \left(\sum_{k=y+1}^{i} a_k\right)^2$
- Let $s(i) = \sum_{j=1}^{i} a_k$.
- $f[x] f[y] > (s(i) s(y))^2 (s(i) s(x))^2$ = $s(y)^2 - s(x)^2 - 2s(i)(s(y) - s(x))$
- $\frac{(f[y]+s(y)^2)-(f[x]+s(x)^2)}{2(s(y)-s(x))} < s(i)$

Math Time!

 $\frac{(f[y]+s(y)^2) - (f[x]+s(x)^2)}{2(s(y)-s(x))} < s(i)$

• $g(x,y) = \frac{(f[y]+s(y)^2) - (f[x]+s(x)^2)}{2(s(y)-s(x))}$

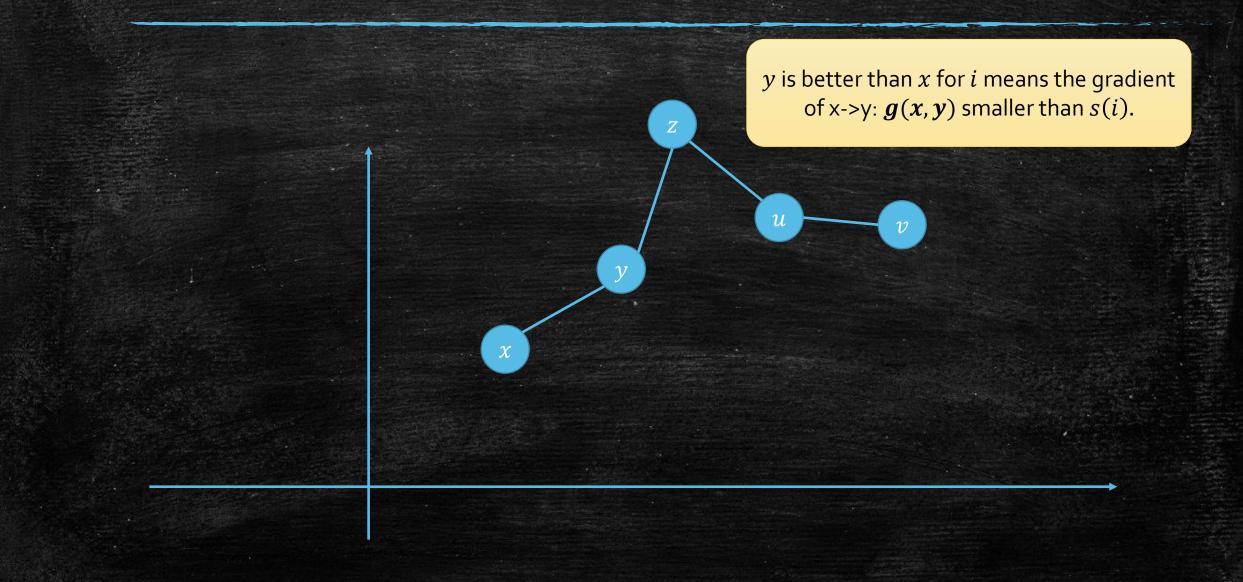
- View it as two points!
 - $x: (2s(x), f[x] + s(x)^2)$

y is better than x for i means the gradient of x->y: g(x, y) smaller than s(i).

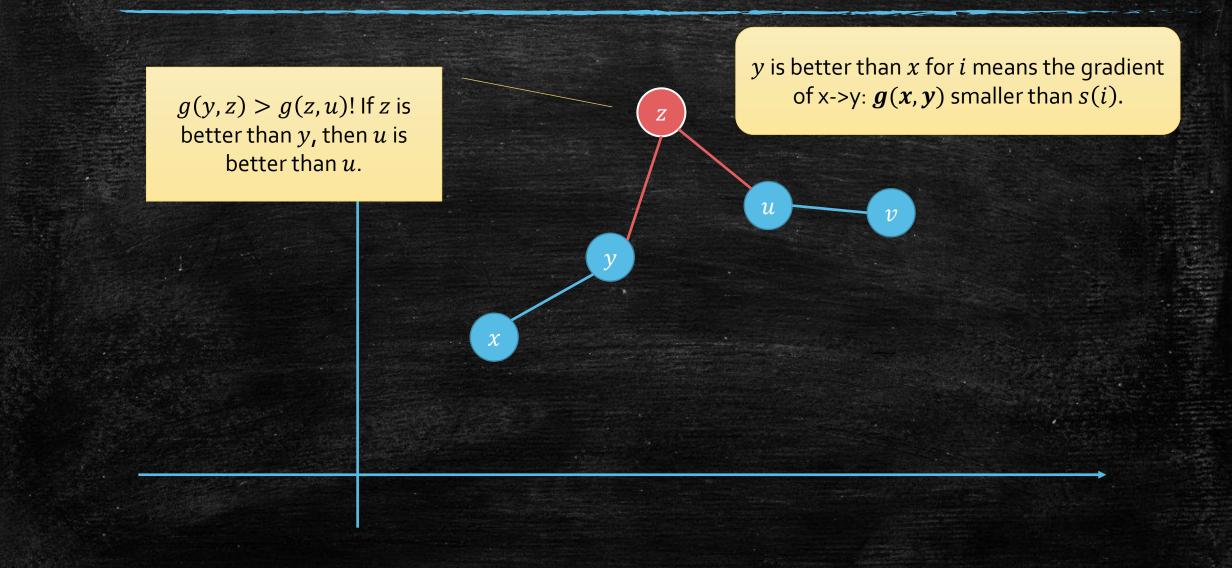
2s(x)

Who can be kicked out?

Who can be kicked out?



Who can be kicked out?



After Kicking: A Convex Hall.

 χ

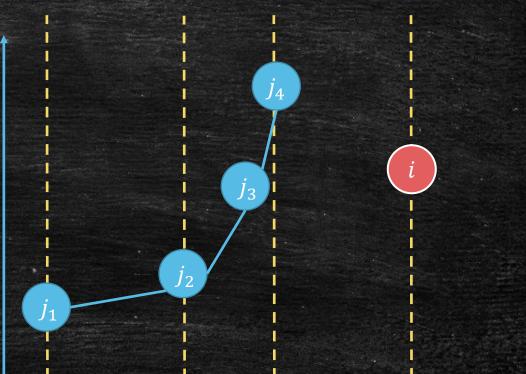
What if g(x, y) < s(i)? Kick x! y is better than x for i means the gradient of x->y: g(x, y) smaller than s(i).

11.

Discussion

Complete the DP

- f[0] = 0
- Solve f[i] from 1 to n.
- Output f[n].
- How to **update** the convex hall?
- We need **insert** *i*!
- Tips: very similar to largest number!
- What is the time complexity?



 $2s(j_1)$ $2s(j_2) 2s(j_4)$ 2s(i)

Today's goal

- Recap the guideline of DP! (Most Important)
- Learn how to improve DP by better Subproblems!
- Learn the tool: Priority Queue.
- Example
 - All Pair Shortest Path
 - Largest Number in *k* Consecutive Numbers
 - Longest Increasing Sequence
 - Minimizing Printing Cost