Dynamic Programming

Smarter Subproblem Definitions



Dynamic Programming

= — - s - = - == - —

Small -

Proble
’ T ==
Smaller™~ ~ / Smaller-

Problem Problem

Smaller Smaller
Problem Problem



A simpler guideline

. Find subproblems. |

= Check whether we are in a DAG and find the topological
order of this DAG. (Usually, by hand.) |

- Solve & store the subproblems by the topological order.




Recap the three examples

e = - o

= Longest Increasing Sequence
~ - Subproblem LIS[i]: the longest increasing sequence ended by a;.

= Edit Distance
- Subproblem ED[i, j]: the edit distance for A[1..i] and B[1..j].

= Knapsack

- Subproblem f[i,w]: the maximum value we can get by using first i
items and w budget.



How to find these subproblems

E——

= Think from a_recursive method

= LIS: |
- We want to find the LIS.
- It may be ended by every a;.
- Solve LIS ended by a; need to know all LIS ended by a;;.



How to find these subproblems

e —————

« Think from a_recursive method

= Edit Distance |
- We want to know the Edit Distance.
- We think how we align the last two character.
- Different case make us go into different subproblems.
- We these subproblems can be merged to EDJi, j]. |



How to find these subproblems

e —————

« Think from a_recursive method

= Knapsack
- We want to know the maximum value.
- We know that for each item, we have two ch0|ce buy it or not.
- Buy: we have W — ¢; budget for other items.
- Not Buy: we have W budget for other items.
- Consider we recursive from a,,.
- Subproblems can be merged to f[i, w].



Understand Bellman-Ford as A DP

S — < - - ———

Y | , Bellman-Ford |
Function bellman_ford(G, s) -
dist[s] = 0,dist[x] = oo forotherx € V
while 3dist[x] is updated
for each (u,v) € E
dist[v] = min{dist[v], dist[u] + d(u, v)}

Lemmaz1 -
After k rounds, dist(v) is the shortest distance of all k- edge path
(path with at most k edges).




Define subproblems

— - S = - —_— - P e = sl ST

= dist[k,v]: the shortest distance | Observation 2
from s to v among all k-edge- The shortest distance of all |V|-
- path (path with at most k edges). |edge-path can not be shorter -
v than the shortest distance of all
(V] — 1) —edge-path unless
there is a Negative Cycle.

Y - Bellman-Ford | ‘
function bellman_ford(G, s) . '
dist[0,s] = 0, dist[0, x] = oo for otherx € V
fork = 1to |V|

foreach (wv) € E

< distlk,v] = min{dist[k — 1,v],dist[k - 1,u] + d(w, 1)} >




Solving Subproblems

N . — - ——

= dist[k,v] = min{dist'[}k — 1L, v] distlk — 1, u] + d(u, v)}

f[k, v] S v, V3 Uy Vs Vg (2 Uiy
(0] (0] co (0/0) 0] o (0.0) 0e] (0.0) (0.0)
1
3 | Sealyle T
IVl




All Pair Shortést Path

— - = - —

Input A d|rected graph G(V,E), and a welghted function
~ d(u,v) forall (u,v) €E. |

g 0utput. Distance ,d(”» v), for all vertex pair u, v.



What can we do?

» Naive Plan:

- Run |V]| times Bellman-Ford
- O(IVI*|ED)

» Improve it by an integrated DP!
- Floyd-Warshall Algorithm!
- 0(IVI°)
- History from Wikipedia:

History and naming |edit]

The Floyd-Warshall algorithm is an example of dynamic programming, and was published in its currently recognized form by Robert Floyd in 1962.13] However, it is essentially
the same as algorithms previously published by Bernard Roy in 19594 and also by Stephen Warshall in 196205 for finding the transitive closure of a graph,[°! and is closely

related to Kleene's algorithm (published in 1956) for converting a deterministic finite automaton into a regular expression.[’] The modern formulation of the algorithm as three
nested for-loops was first described by Peter Ingerman, also in 1962.18]




Define subproblems

S — < - - ———

? Bellman-Ford: dist[k, v]: the shortest distance from s to v
- among all k-edge-path (path with at most k edges). |

- A very natural generalization!

. Natural Generalization: dist[k,u, v]: the shortest distance |
from u to v claglelyle all k-edge- path (path with at most k

edges).



Natural Generalization

N . — - ——

. Natural Generalization: dist[k,u, v]: the shortest distance
from u to v among all k- edge path (path with at most k

- edges).

» Transfer:
- dist[k,u,v] = min {dist[k — 1,u,s] + d(s,v)}
: (s,v)EE |
= Time;
- |V] rounds

- In one round, an edge can be used to update |V| distance.
- Totally o(JV|2|E])!

No improvement!




Solving Subproblems

EE———

= dist[k,u,v] = min {dist[k —Lu,s] +d(s,v)}

- (s,v)EE
k=11 vy | v V3 V| k vy v V3 V|-
vl vl
— ..
Uy 124 \.f[k» u, v]
V| Uiy




Floyd-Warshall: Subproblems

S — < = - ———

. Natural Generalization: dist[k,u, v]: the shortest distance
from u to v among all k- edge path (path with at most k
- edges). ' |

= Floyd-Warshall: dist[k, u, v]: the shortest distance from u to
v that only across inter-vertices in {v1 Vi)

. Remark: |

- We can label vertices from 1 to |V].

- dist[0,u,v] is exactly d(u,v) or «. (allow 0 inter-vertex)
- dist[|V],u, v] is exactly what we want!



Floyd-Warshall: Solving Subproblems

S — = S

—_—

dist[k,u,v]: the shdrtest distance from u to v that only

across inter-vertices in {v; ... v;}.

Solve dist[k,u, v] (give addition power k to all pairs)

- Case 1: the shortest path do not go across k.

- Case 2: the shortest path go across k.

—- dist[k,u,v] = min{dist[k — 1,u,v], dist[k — 1,u, k] + dist[k — 1, k,v]}




Solving Subproblems

— ST

EE———

—

= dist[k,u,v] = min{di'sit[k — 1,u,v], dist|k — 1,u, k] + dist[k — 1,k,v]}

k=11 vy | v V3 V| k vy v V3 V|-
V1 V1
Uy 124 \.f[k» u, v]
V| =4




DAG and Topological

dist[k,u,v] only depends

-~ distlk —1,u,v] |

- - dist[k — 1,u,k]
- distlk — 1,k,v]

We initialize dist[0,u, v] = d(u,v) for all (u, v).

Solve them from k =1 tonis a'topoldgical order.

Running Time: 3-0(|V| - |V] - |V])



Floyd-Wa rshall

=5 Floyd-Warshall o(V|?)
function floyd_warshall(G) '

- dist[0,u,v] = d(u,v) forall (u,v) € E, dist[0, u, v] = o otherwise.
fork=1to|V]
foru=1to|V]
forv=1to|V|
dist[k,u,v] = min{dist[k — 1,u, v], dist[k — 1,u, k] + dist[k — 1, k,v]}




Floyd-Warshall: a simpler implement

— - = - —

. Floyd-Warshall
function floyd_warshall(G) '
dist[u,v] =d(u,v) forall (u,v) € E, dist[u, v] = o otherwise.
fork = 1to|V]
foru=1to|V]
forv=1to|V|
dist[u, v] = min{dist[u, v], dist[u, k] + dist[k, v]}

O(|V|3) running time but O(|V|?) space! Why it is correct?



More Smarter Subproblem
Deflnltlons

Priority Queue



Largest Number in k Consecutive Numbers

E——

= Input: A sequence of numbers a;, a,, ..., a,, and a number

5 =
- 0utput: The largest number in every k consecutive
numbers. |
k=3
0 16 4 5 ( 13 \ 9 20 18 3
T




Subproblem Definitions

E————

= largeli]: the Iargest' number from a;_, to a;.

= Output: large[k]~large[n].

Re3sie=i=6"
f /\
0 16 4 5( 13\9 pYo) 18
T



Solving Subproblems

= - = ' —

= largeli]: the Iargest’ number from a;_, to a;.

= Can you find a way to solve largel[i] by other subproblems?
- Tips: from largel[jl,j < i.

k=37 -i=6
f /\
0 16 4 5( 13 \9 20 18 3
L)



Solving Subproblems

= - = ' —

= largeli]: the largest number from a;_,,; to a;.
= Can you find a way to solve largel[i] by other subproblems?
- Tips: from largeljl,j < i.
- Brute-force: largel[i] = maxjé:i_k“{ai}

Re3sie=i=6"
f /\
0 16 4 5( 13 \9 20 18 3
Cae L



Recall KnapsaCk

? ‘What we always do before:

= f[i,w]: the maximum value we can get by using the first i V
items, and with w budget.

: How to solve
—Useguﬁl—}—te—&teFe—hew—mﬂeh—budge—ﬂl}ste& Flilby flj < i]? |
flil 5 10 13 16 21 30 - We know f[j] but

we do not know
how much
budget it uses!

Key problem: Subproblem definition

does not contain enough information!




“What kind of information
do we need now? ‘




Observation

E————

Compare two large[ ] and largel[i — 1].

= Difference

- One entering number: 20
- One outgoing number: 5
- Question: how they affect the largest number?

(=67 =7
& & 2
16 ' 13 9 pXo) 18
. . / J




How they affect the largest number

E——

= Difference
- One entering number: 20
- One leaving number: 5
- Question: how they affect the largest number?
- Case 1: the entering number is the new largest!

(26" =7

5 - - pJo)

\ " i) J



How they affect the largest number

—_—= < - - ———

= Difference
- One entering number: 20
- One leaving number: 5
- Question: how they affect the largest number?
- Case 2: the leaving number is the previous largest!

=6 i=7

Key problem: We should know what is

the previous second largest number.




How they affect the largest number

—_—= < - - ———

= Difference
- One entering number: 20
- One leaving number: 5
- Question: how they affect the largest number?
- Case 3: the leaving number is the previous second largest!

=6 i=7

Key problem: We should know what is

the previous third largest number.




Summarize

= Difference
- - One enterin’g'-number': 20
- One leaving number: 5
- Question: how they affect the largest number?

Summarize: We should maintain
a data structure!




Let us think more!

E——

= New Subproblem: Solving the Heap of a;_j,~a;.
- Delete (Update & PopMax)
- Insert

- FindMax

- O(nlogk)!

= Is'it too powerful?
- We delete and insert only based on the index!

el & e S
r r s

5 - - 20

. . J J



A new Subproblem!

N . — - ——

= Think again: why we need the heap?
- We need two know who is the largest.
- - We need to know who is the potential largest.
- 'We need to update the potential largest list.

= Do we have a better way to maintain this potential largest
list? - |

- Heap views all kK numbers as potential largest.



Observation |

S _ =

~+ Who can be the potential largest number?

B

.

(26"

13

20

18 3




Observation |

—_—= < - - ———

= Who can be the potential largest number?

5 is not a potential largest g is a potential largest
number because 5 is older number although 13>9
than 13 and 5<a3. e because g is younger.

Key Observation: the potential
largest list can be smaller than k.




Potential Largest List

= Potential Largest List (PLL)

- PLL[i]: the Potential Largest List for a;_x.1 ~a;.

- At most k numbers.
- Sorted by the index.
- i—k+1<Index<i

_ PLL[20] - B ey Property:
; l a; = a;ifi <j.
as s ag a12 a3 a1s :
o




How to maintain PLL?

——— - =X - — — = — —— = = =S e o S

~+ How to solve PLL[i = 21] by PLL[i — 1 = 20]?

= First, kick the'nUmber if index<i—k+1=6.

Key Property:
a; = a;ifi <j.




How to maintain PLL?

— - s - = - — - —— SR e e 5

~+ How to solve PLL[i = 21] by PLL[i — 1 = 20]?
= First, kick the‘nUmber if index<i—k+1=6.

. Secbnd, kic'k numbers by a;_,;.

PLL [20] : : Key Property:

| l a; = a;ifi <j.
- (g=25 | Ag=25 | A12=20 | A13=15 | A15=9 | A16=8 | A19=5
N :
Y ‘
< k=15




How to maintain PLL?

— - s = - == - —— e

~+ How to solve PLL[i = 21] by PLL[i — 1 = 20]?
= First, kick th'e‘nUmber if index<i—k+1=6.

. Secbnd, kic'k numbers by a;_,;.

PLL [20] : : Key Property:

| l a; = a;ifi <j.
- (g=25 | Ag=25 | A12=20 | A13=15 | A15=9 | A16=8 | A19=5
N :
Y .
< k=15




How to maintain PLL?

— - s = - — - —_———e

~+ How to solve PLL[i = 21] by PLL[i — 1 = 20]?
= First, kick th'e‘nUmber if index<i—k+1=6.

. Secbnd, kic'k numbers by a;_,;.

PLL [20] : : Key Property:

a; = a;ifi <j.

a6='25

I




How to maintain PLL?

— - ——— = - ——

~+ How to solve PLL[i = 21] by PLL[i — 1 = 20]?
= First, kick th'e‘nUmber if index<i—k+1=6.

. Secbnd, kic-k numbers by a;_,;.

PLL [20] : : Key Property

| | a; = a;ifi <j.
¥ : : ‘ .

e




How to maintain PLL?

~+ How to solve PLL[i = 21] by PLL[i — 1 = 20]?
= First, kick th~e‘nUmber if index<i—k+1=6.

. Secbnd, kic'k numbers by a;_,;.

PLL [20] : : Key Property

| | a; = a;ifi <j.

M

S kzlS.




Largest Number in k Consecutive Numbers

et = - ——

- Keep Inserting a; ~a; & kicking to make PLL[k].
= Solve every PLL[k < i < n] by inserting & kicking.
. We can easily get large[i] by PLLIi].

= |t is efficient: 0(n)! Each number at most:
— Inserted once. '
- Kicked once. .
- Pass once (because once we pass, we kick it).



It is an important idea for
DP improvement! ‘

Priority Queue



Longest Increasing Sequence Revisit

EE———

= Input: A sequence a;, ay, ..., a,.

- Output: t_h‘e‘ Longest Increasing Subsequence (LIS)

- a; < ai, < Ajy - < aj,
< o =0

= I -

16




Do you feel that we can

|mprove7



Previous Transfer

= lis[i] = max {lis[j] + 1}
aj<ai,]<l :
= Definition: Potential Prefix
- The set of g; that is possible to be the prefix of future numbers.

a[i] 1 5 13 p) 6 24 bty 2 16

liS[i] 3 2 3 ) 3

Who are the Potential Prefix?




Previous Transfer

| ?_lis[i] = max ._{liS[i] + 1}

aj<ai,j<l

= Definition: Potential Prefix
- The set of g; that is possible to be the prefix of future numbers.

6 ‘ 24 bty 2 16
|

e

It is not because ali] > . fivas?
a[j] and lis[i] = lis[j] Who are the Potential Prefixes:




New_SubprobIem!

= Smli,len]: the smallest ended number for an Increasing
- subsequence with length len.

« Remark: it is enough to record all Potential Prefixes (Iength

and number).

EE———

—

5

152

23

16

p




New_SubprOb'Iem!

EE———

—

. Smli, len]: the smallest ended number for an increasing
= subsequence’ with length len by using a; ... a;.

« Remark: it is enough to record all Potential Prefixes (Iength
and number).

24 bty 2 16

len=0 | len=1 | len=2 | len=3 | len=4 | len=5 | len=6

_ len=7 | len=8 | len=9
m|i,len] | o 1 2 6




Solving sm[i, lén]!

N < — - —— § =T =

= How to solve smfi, l}e‘n] (Potential Prefixes)?
- - Bysm[j <4, .(..]? _

= Difference between i — 1 and i?
- a; comes in. '
- It may become a potential prefixes and kick some potential prefixes.

len=0 | len=1 | len=2 | len=3 | len=4 | len=5 | len=6 | len=7 | len=8 | len=9 |

sm|i,len] | o 1 2 6




Solving sm[i, lén]!

e - = - e - ————

E- ‘How to solve smli, l.e.n] (Potential Prefixes)?
= BysmE= Lol

. Difference between i — 1 and i?
- a; comes in. '
- It may become a potential prefixes and kick some potential prefixes.

len=2 | len=3 | len=4 | len=5 | len=6 | len=7 | len=8 | len=9 |

sml|i —1,len]| o 1 2 6




Solving sm[i, lén]!

— - = - —— - —

= How to solve smfi, l.e_n] (Potential Prefixes)?
- By sm[j <1, .’..]? |

= Difference between i — 1 and i?
- a; comes in. '
- It may become a potential prefixes and kick some potential prefixes.

Case1:a; > sm[i — 1, len]

Case1:a; < sm[i — 1, len]

len=5 | len=6 | len=7 | len=8 | len=9

sml|i —1,len]| o 1 2 6




Solving sm[i, lén]!

N . — - —— § —_—

» How to solve smi, l‘e‘n] (Potential Prefixes)?
- By sm[j <1, ...]? |

» Difference between i —1andi?

- a; comes in.
- It may become a potential prefixes and kick some potential prefixes.

it can create a longer LIS.

Case 1: q; > sm|i — 1, len] it can not update sm[i, len].

* It may update sm|[i, len]
* it can not create a longer LIS.

Case 1: q; < Sm[l — 1, len]

len=8

len o)

len=1

len=2

len=3

len=¢4

len=g

len=6

len=7

len=9g

sml|i —1,len]| o

1

p

6




Solving sm[i, lén]!

S - = - —— - ———— s

E- ‘How to solve smli, l.e.n] (Potential Prefixes)?
= BysmE= Lol

. Difference between i — 1 and i?
- a; comes in. '
- It may become a potential prefixes and kick some potential prefixes.

* itcan create alongerlLIS.

Case1:a; > sm[i— 1,len : '
ase1:a; > sm| J * it can not update sm[i, len].

* It may update sm|[i, len]
* it can not create a longer LIS.

Case1:a; < sm[i — 1, len]

sml|i — 1, len]

len=1

len=2

len=3

len=¢4

len=5

len=6

len=7

len=8

len=9g

1

p

6




Solving sm[i, lén]!

s - = - — - —_————

E- ‘How to solve smli, l.e.n] (Potential Prefixes)?
= BysmE= Lol

. Difference between i — 1 and i?
- a; comes in. '
- It may become a potential prefixes and kick some potential prefixes.

* itcan create alongerlLIS.

Case1:a; > sm[i— 1,len : '
ase1:a; > sm| J * it can not update sm[i, len].

* It may update sm|[i, len]
* it can not create a longer LIS.

Case1:a; < sm[i — 1, len]

4

len=o0

len=1

len=2

len=3

len=¢4

len=5

len=6

len=7

len=8

len=9g

sml|i —1,len]| o

1

p

6




Solving sm[i, lén]!

e— - - - — | Rk B L Pl gt

E- ‘How to solve smli, l.e.n] (Potential Prefixes)?
= BysmE= Lol

. Difference between i — 1 and i?
- a; comes in. '
- It may become a potential prefixes and kick some potential prefixes.

* itcan create alongerlLIS.
* it can not update sm|i, len].

Case 1: a; > sm|[i — 1, len]

* It may update sm|[i, len]
* it can not create a longer LIS.

Case1:a; < sm[i — 1, len]

4

sml|i — 1, len]

len=o0

len=1

len=2

len=3

len=¢4

len=5

len=6

len=7

len=8

len=9g

1

p

6




Solving sm[i, lén]!

e - = - e - —

E- ‘How to solve smli, l.e.n] (Potential Prefixes)?
= BysmE= Lol

. Difference between i — 1 and i?
- a; comes in. '
- It may become a potential prefixes and kick some potential prefixes.

* it can create alongerlLIS.

Case1:a; > sml|i—1,len . .
- i [ ] * it can not update sm[i, len].

* It may update sm|[i, len]
* it can not create a longer LIS.

Case1:a; < sm[i — 1, len]

len=0 | len=1 | len=2 | len=3 | len=4 | len=5 | len=6 | len=7 | len=8 | len=9

sml|i —1,len]| o 1 2 6




Solving sm[i, lén]!

— s = - == - —

» How to solve Sm[i, l.e'n] (Potential Prefixes)?
- Bysm[j <i,. ']7.

» Difference between i —1andi?

- a; comes in.
- It may become a potentlal prefixes and k|ck some potential prefixes.

it can create a longer L|

Case1:a; > sml|i—1,len . .
! [ ] it can not update smf[i, le

It must update sm[i, len].
it can not create a longer LIS.

Case1:a; < sm[i — 1, len]

len=o0

len=1

len=2

len=¢4

len=5

len=6

len=7

len=8

len=9g

ml|i —1,len]| o




Solving sm[i, lén]!

— s = - == - —

» How to solve Sm[i, l.e'n] (Potential Prefixes)?
- Bysm[j <i,. ']7.

» Difference between i —1andi?

- a; comes in.
- It may become a potentlal prefixes and k|ck some potential prefixes.

it can create a longer L|

Case1:a; > sml|i—1,len . .
! [ ] it can not update smf[i, le

It must update sm|i, len]
it can not create a longer LIS.

Case1:a; < sm[i — 1, len]

len=o0

len=1

len=2

len=3

len=¢4

len=5

len=6

len=7

len=8

len=9g

ml|i —1,len]| o

a;=5




Longest Increasing Subsequence with sm[-].

———— = - —

= Plan
- Initialize sm[0,0] =0

. Solve sml[i, len] from sm[i — 1, len] by a;.

n n

= Output the largest len such that sm[n, len] #"-".



Still Not Finished!

= Plan
- Initialize sm[0,0] = 0

+ Solve sml[i, len] from sm[i — 1, len] by a;.
- It requires O(max{len} = i)!
- Remark, now we do not kick everything we pass.

n n

- Output the largest len such that smn, len] #"-".



Recap The Updating

E- ‘We need to find th.e' largest len such that a; > sm[i — 1, len].
= Then we update: sml|i,len + 1] = a;.

it can create a longer LIS.

Case1:a; > r="L0 : '
1:a; > smli i, it can not update sm|[i, len].

It must update sm|i, len]
it can not create a longer LIS.

Case1:a; < sm[i — 1, len]

e - = - —_— - ——

len=0 | len=1 | len=2 | len=3 | len=4 | len=5 | len=6 | len=7 | len=8 | len=9

Sm[i = 1, len] 0] : 1 2 ai=



How to do it efficiently?




Yes! Binary Search! ‘



Recap the updating

s - = - — - —_—

= We need to find the largest len such that a; > sm[i — 1, len].
- Find it by bi‘nary search, we only need 0(log(maxlen = i))! '
+ Then we update: sml[i, len + 1] = a;.

it can create a longer LIS.

.. 1 _ .
Case 1:a; > sm|i — 1, len] it can not update sm[i, len].

It must update sm|i, len]
it can not create a longer LIS.

Case1:a; < sm[i — 1, len]

len=0 | len=1 | len=2 | len=3 | len=4 | len=5 | len=6 | len=7 | len=8 | len=9

Sm[i = 1, len] 0] : 1 2 ai=




Now it is better!

= Plan
- Initialize sm[0,0] =0

. Solve sml[i, len] from sm[i — 1, len] by a;.
- It requires O(logi).

" n

= Output the largest len such that sm[n,len] #"-".

= Totally O(nlogn).



One more Interestmg

problem



Minimizing Manufactu‘ring Cost

= - = ' —

= Input: A sequence of items with cost a;,ay, ..., a,.

* Need to Do: 4
- Manufacture these items.
- Operation man(l,r): manufacture the items from [ to r.

- cost(l,ry=C+ CEEra)s

= Output: The minimum cost to manufacture all items.



Discussion

E——

Cost function: cost(l,r) = C + Ol a;)?.

Cost functic_)«n': cost(l,r) =C+ Y!_ a;.

Cost function: cost(l,r) = C+ Ol_;a;)% with € = 0.

Only the first one need to optimize!



Define subproblems

— - = - p——

= f[i]: the minimum Cost for manufacturing item 1 to i.

= How to solve f[i]?




Solving fli]

———— - = - —

= f[i]: the minimum Cost for manufacturing item 1 to i.
= How to solve f[i]?

« We can manufacture item i alone.




Solving f[i]

———— = - —

= f[i]: the minimum Cost for manufacturing item 1 to i.
How to soIve flil?

. We can aIso manufacture i along with an interval.

= fli] = minf[j] + C + (Tko ,+1ak)

j<i

0 16 4 5 13 9 20 18 3
j L




DP algorithm _

- Define f[0] = 0. |
= Solve f[i] from 1 to n, and output f[n].

= fli] = r}1<1{1f[]] +€ +(Z§<=j+1 ak)z' -
N 7] '

o) 16

J




The Potential Idea Again!

= - = . e

= Question: Can every}j be a potential prefix for the future?




The Potential Idea Again!

et = - —

= Question: Can every.j be a potential prefix for the future?

= Maybe........ | can find nothing.
=
0 16 4 5 13 9 20 18 3




Let us do some math!




Math Time! '

: i : ——

 fli] = min i1+ € + (Thejiran)”

Jj<i

, : Consider j = x and j = y, when x is better than y for i?
P+ Ct 0L ) < ] CF Oray)

o) 16

J




Math Time! '

< f[ = minfG1+ € + Chejer ) -

Jj<i
= Consider j = x and j = y, when y is better than x for i?
. 2 : 2
 flxl + C + (Zkexs1a) > FIy] + C +(Zioyr1 )

- Lets(i) =Y’ ay.

e I = Fyl > (sG) = s3))° = (sG) = s(0)”
= s(y)? —s(x)? — 25()(s(¥) — s(x))

’ (fFly]+s()?)—(flx]+s(x)?) .
2(s(y)—s(x)) - s




Math Time!

: (Flyl+s()?)—(flx]+s(x)?) = : y is better than x for i means the gradient
’ it l) of x->y: g(x,y) smaller than s(i).

2(s(y)—s(x))
(FIv1+s()2)=(flxl+s(x)?)
2(s(y)—=s(x))

= View it as two points!
= x: (2s(x), flx] + s(x)?) |
-y 2s), flyl +s()?) et =" ‘ """ o NS

= g(x,y) =

flx] + S(x)z-




Who can be kicked out?



Who can be kicked out?

y is better than x for i means the gradient
of x->y: g(x,y) smaller than s(i).

e— - - - —_— . el Wik & ~P e el !



Who can be kicked out?

— s = : e : L XY S Sy e

y is better than x for i means the gradient
of x->y: g(x,y) smaller than s(i).

gy, z) > g(z,u)!Ifzis
better than y, then u is
better than wu.




After Kicking: A Convex Hall.

What if g(x,y) < s(i)? | y is better than x for i means the gradient
Kick x! ’ of x->y: g(x, y) smaller than s(i).




Discussion

= Complete the DP
- flol=0
- Solve f[i] from 1 to n.
- Output f[n]. _
- How to update the convex hall?
- We need insert i!

- Tips: very similar to largest
number! '

- What is the time complexity?

PsGy 2sG25G)  25@)



Today’s goal '

= Recap the guidelihé of DP! (Most Important)

= Learn how to improve DP by better Subproblems!

. Learn the tool: Priority Queue.

Example

- All Pair Shortest Path .

- Largest Number in k Consecutive Numbers
- Longest Increasing Sequence

- Minimizing Printing Cost



