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NO! It should 
be a DAG!



A simpler guideline

▪ Find subproblems.

▪ Check whether we are in a DAG and find the topological 
order of this DAG. (Usually, by hand.)

▪ Solve & store the subproblems by the topological order. 



Recap the three examples

▪ Longest Increasing Sequence
– Subproblem 𝐿𝐼𝑆[𝑖]: the longest increasing sequence ended by 𝑎𝑖.

▪ Edit Distance
– Subproblem 𝐸𝐷 𝑖, 𝑗 : the edit distance for 𝐴[1. . 𝑖] and 𝐵[1. . 𝑗].

▪ Knapsack
– Subproblem 𝑓 𝑖, 𝑤 : the maximum value we can get by using first 𝑖

items and 𝑤 budget. 



How to find these subproblems

▪ Think from a recursive method

▪ LIS:
– We want to find the LIS.

– It may be ended by every 𝑎𝑖.

– Solve LIS ended by 𝑎𝑖 need to know all LIS ended by 𝑎𝑗<𝑖.



How to find these subproblems

▪ Think from a recursive method

▪ Edit Distance
– We want to know the Edit Distance.

– We think how we align the last two character.

– Different case make us go into different subproblems. 

– We these subproblems can be merged to 𝐸𝐷[𝑖, 𝑗].



How to find these subproblems

▪ Think from a recursive method

▪ Knapsack
– We want to know the maximum value.

– We know that for each item, we have two choice: buy it or not. 

– Buy: we have W− 𝑐𝑖 budget for other items.

– Not Buy: we have 𝑊 budget for other items.

– Consider we recursive from 𝑎𝑛.

– Subproblems can be merged to 𝑓[𝑖, 𝑤].



Understand Bellman-Ford as A DP

Bellman-Ford
Function bellman_ford(𝐺, 𝑠)

𝑑𝑖𝑠𝑡 𝑠 = 0, 𝑑𝑖𝑠𝑡 𝑥 = ∞ for other 𝑥 ∈ 𝑉

while ∃𝑑𝑖𝑠𝑡[𝑥] is updated

for each 𝑢, 𝑣 ∈ 𝐸

𝑑𝑖𝑠𝑡 𝑣 = min{𝑑𝑖𝑠𝑡 𝑣 , 𝑑𝑖𝑠𝑡 𝑢 + 𝑑(𝑢, 𝑣)}

Lemma 1
After 𝑘 rounds, 𝑑𝑖𝑠𝑡(𝑣) is the shortest distance of all 𝒌-edge-path 
(path with at most 𝒌 edges).



Define subproblems

▪ 𝑑𝑖𝑠𝑡 𝑘, 𝑣 : the shortest distance 
from 𝑠 to 𝑣 among all 𝒌-edge-
path (path with at most 𝒌 edges).

Observation 2
The shortest distance of all |𝑽|-
edge-path can not be shorter 
than the shortest distance of all 
( 𝑽 − 𝟏) –edge-path unless 
there is a Negative Cycle.

Bellman-Ford
function bellman_ford(𝐺, 𝑠)

𝑑𝑖𝑠𝑡 0, 𝑠 = 0, 𝑑𝑖𝑠𝑡 0, 𝑥 = ∞ for other 𝑥 ∈ 𝑉

for 𝑘 = 1 to |𝑉|

for each 𝑢, 𝑣 ∈ 𝐸

𝑑𝑖𝑠𝑡 𝑘, 𝑣 = min{𝑑𝑖𝑠𝑡 𝑘 − 1, 𝑣 , 𝑑𝑖𝑠𝑡 𝑘 − 1, 𝑢 + 𝑑(𝑢, 𝑣)}



Solving Subproblems

𝑓[𝑘, 𝑣] 𝑠 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 … 𝑣|𝑉|

0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1

2

3 𝑓[𝑘, 𝑣]

…

|𝑉|

▪ 𝑑𝑖𝑠𝑡 𝑘, 𝑣 = min{𝑑𝑖𝑠𝑡 𝑘 − 1, 𝑣 , 𝑑𝑖𝑠𝑡 𝑘 − 1, 𝑢 + 𝑑(𝑢, 𝑣)}



All Pair Shortest Path

▪ Input: A directed graph 𝐺(𝑉,𝐸), and a weighted function 
𝑑(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝐸.

▪ Output: Distance 𝑑(𝑢, 𝑣), for all vertex pair u, 𝑣.



What can we do?

▪ Naïve Plan:
– Run |𝑉| times Bellman-Ford

– 𝑂( 𝑉 2 𝐸 )

▪ Improve it by an integrated DP!
– Floyd-Warshall Algorithm! 

– 𝑂( 𝑉 3)

– History from Wikipedia: 



Define subproblems

▪ Bellman-Ford: 𝑑𝑖𝑠𝑡 𝑘, 𝑣 : the shortest distance from 𝑠 to 𝑣
among all 𝒌-edge-path (path with at most 𝒌 edges).

▪ A very natural generalization!

▪ Natural Generalization: 𝑑𝑖𝑠𝑡 𝑘, 𝑢, 𝑣 : the shortest distance 
from 𝑢 to 𝑣 among all 𝒌-edge-path (path with at most 𝒌
edges).



Natural Generalization

▪ Natural Generalization: 𝑑𝑖𝑠𝑡 𝑘, 𝑢, 𝑣 : the shortest distance 
from 𝑢 to 𝑣 among all 𝒌-edge-path (path with at most 𝒌
edges).

▪ Transfer:
– 𝑑𝑖𝑠𝑡 𝑘, 𝑢, 𝑣 = min

𝑠,𝑣 ∈𝐸
{𝑑𝑖𝑠𝑡 𝑘 − 1, 𝑢, 𝑠 + 𝑑(𝑠, 𝑣)}

▪ Time: 
– |𝑉| rounds

– In one round, an edge can be used to update |𝑉| distance.

– Totally 𝑂 𝑉 2 𝐸 !

No improvement!



Solving Subproblems

▪ 𝑑𝑖𝑠𝑡 𝑘, 𝑢, 𝑣 = min
𝑠,𝑣 ∈𝐸

{𝑑𝑖𝑠𝑡 𝑘 − 1, 𝑢, 𝑠 + 𝑑(𝑠, 𝑣)}

𝒌 𝑣1 𝑣2 𝑣3 … 𝑣|𝑉|

𝑣1

𝑣2

𝑣3

𝑣4 𝑓[𝑘, 𝑢, 𝑣]

…

𝑣|𝑉|

𝒌 − 𝟏 𝑣1 𝑣2 𝑣3 … 𝑣|𝑉|

𝑣1

𝑣2

𝑣3

𝑣4

…

𝑣|𝑉|



Floyd-Warshall: Subproblems

▪ Natural Generalization: 𝑑𝑖𝑠𝑡 𝑘, 𝑢, 𝑣 : the shortest distance 
from 𝑢 to 𝑣 among all 𝒌-edge-path (path with at most 𝒌
edges).

▪ Floyd-Warshall: 𝑑𝑖𝑠𝑡 𝑘, 𝑢, 𝑣 : the shortest distance from 𝑢 to 
𝑣 that only across inter-vertices in 𝒗𝟏…𝒗𝒌 .

▪ Remark:
– We can label vertices from 1 to |𝑉|.

– 𝑑𝑖𝑠𝑡[0, 𝑢, 𝑣] is exactly 𝑑(𝑢, 𝑣) or ∞. (allow 0 inter-vertex)

– 𝑑𝑖𝑠𝑡[|𝑉|, 𝑢, 𝑣] is exactly what we want!



Floyd-Warshall: Solving Subproblems

▪ 𝑑𝑖𝑠𝑡 𝑘, 𝑢, 𝑣 : the shortest distance from 𝑢 to 𝑣 that only 
across inter-vertices in 𝒗𝟏…𝒗𝒌 .

▪ Solve 𝑑𝑖𝑠𝑡[𝑘, 𝑢, 𝑣] (give addition power 𝑘 to all pairs)
– Case 1: the shortest path do not go across 𝑘.

– Case 2: the shortest path go across 𝑘. 

– 𝑑𝑖𝑠𝑡 𝑘, 𝑢, 𝑣 = min{𝑑𝑖𝑠𝑡 𝑘 − 1, 𝑢, 𝑣 , 𝑑𝑖𝑠𝑡 𝑘 − 1, 𝑢, 𝑘 + 𝑑𝑖𝑠𝑡[𝑘 − 1, 𝑘, 𝑣]}

𝑢

𝑣

𝑘
{𝑣1…𝑣𝑘−1} {𝑣1…𝑣𝑘−1}



Solving Subproblems

▪ 𝑑𝑖𝑠𝑡 𝑘, 𝑢, 𝑣 = min{𝑑𝑖𝑠𝑡 𝑘 − 1, 𝑢, 𝑣 , 𝑑𝑖𝑠𝑡 𝑘 − 1, 𝑢, 𝑘 + 𝑑𝑖𝑠𝑡[𝑘 − 1, 𝑘, 𝑣]}

𝒌 𝑣1 𝑣2 𝑣3 … 𝑣|𝑉|

𝑣1

𝑣2

𝑣3

𝑣4 𝑓[𝑘, 𝑢, 𝑣]

…

𝑣|𝑉|

𝒌 − 𝟏 𝑣1 𝑣2 𝑣3 … 𝑣|𝑉|

𝑣1

𝑣2

𝑣3

𝑣4

…

𝑣|𝑉|



DAG and Topological

▪ 𝑑𝑖𝑠𝑡[𝑘, 𝑢, 𝑣] only depends
– 𝑑𝑖𝑠𝑡 𝑘 − 1, 𝑢, 𝑣

– 𝑑𝑖𝑠𝑡[𝑘 − 1, 𝑢, 𝑘]

– 𝑑𝑖𝑠𝑡[𝑘 − 1, 𝑘, 𝑣]

▪ We initialize 𝑑𝑖𝑠𝑡 0, 𝑢, 𝑣 = 𝑑 𝑢, 𝑣 for all (𝑢, 𝑣).

▪ Solve them from 𝑘 = 1 to 𝑛 is a topological order. 

▪ Running Time: 3 ⋅ 𝑂( 𝑉 ⋅ 𝑉 ⋅ 𝑉 )



Floyd-Warshall

Floyd-Warshall
function floyd_warshall(𝐺)

𝑑𝑖𝑠𝑡 0, 𝑢, 𝑣 = 𝑑(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝐸, 𝑑𝑖𝑠𝑡 0, 𝑢, 𝑣 = ∞ otherwise.

for 𝑘 = 1 to |𝑉|

for 𝑢 = 1 to |𝑉|

for 𝑣 = 1 to |𝑉|
𝑑𝑖𝑠𝑡 𝑘, 𝑢, 𝑣 = min{𝑑𝑖𝑠𝑡 𝑘 − 1, 𝑢, 𝑣 , 𝑑𝑖𝑠𝑡 𝑘 − 1, 𝑢, 𝑘 + 𝑑𝑖𝑠𝑡 𝑘 − 1, 𝑘, 𝑣 }

𝑂( 𝑉 3)



Floyd-Warshall: a simpler implement 

Floyd-Warshall
function floyd_warshall(𝐺)

𝑑𝑖𝑠𝑡 𝑢, 𝑣 = 𝑑(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝐸, 𝑑𝑖𝑠𝑡 𝑢, 𝑣 = ∞ otherwise.

for 𝑘 = 1 to |𝑉|

for 𝑢 = 1 to |𝑉|

for 𝑣 = 1 to |𝑉|
𝑑𝑖𝑠𝑡 𝑢, 𝑣 = min{𝑑𝑖𝑠𝑡 𝑢, 𝑣 , 𝑑𝑖𝑠𝑡 𝑢, 𝑘 + 𝑑𝑖𝑠𝑡 𝑘, 𝑣 }

𝑂( 𝑉 3) running time but 𝑂( 𝑉 2) space! Why it is correct?



More Smarter Subproblem 
Definitions 

Priority Queue



Largest Number in 𝑘 Consecutive Numbers

▪ Input: A sequence of numbers 𝑎1, 𝑎2, … , 𝑎𝑛, and a number 
𝑘.

▪ Output: The largest number in every 𝑘 consecutive 
numbers.

0 16 4 5 13 9 20 18 3

𝑘=3



Subproblem Definitions 

▪ 𝑙𝑎𝑟𝑔𝑒 𝑖 : the largest number from 𝑎𝑖−𝑘+1 to 𝑎𝑖.

▪ Output: 𝑙𝑎𝑟𝑔𝑒 𝑘 ~𝑙𝑎𝑟𝑔𝑒[𝑛].

0 16 4 5 13 9 20 18 3

𝑘=3 𝑖=6



Solving Subproblems

▪ 𝑙𝑎𝑟𝑔𝑒 𝑖 : the largest number from 𝑎𝑖−𝑘+1 to 𝑎𝑖.

▪ Can you find a way to solve 𝑙𝑎𝑟𝑔𝑒 𝑖 by other subproblems?
– Tips: from 𝑙𝑎𝑟𝑔𝑒 𝑗 , 𝑗 < 𝑖.

0 16 4 5 13 9 20 18 3

𝑘=3 𝑖=6



Solving Subproblems

▪ 𝑙𝑎𝑟𝑔𝑒 𝑖 : the largest number from 𝑎𝑖−𝑘+1 to 𝑎𝑖.

▪ Can you find a way to solve 𝑙𝑎𝑟𝑔𝑒 𝑖 by other subproblems?
– Tips: from 𝑙𝑎𝑟𝑔𝑒 𝑗 , 𝑗 < 𝑖.

– Brute-force: 𝑙𝑎𝑟𝑔𝑒 𝑖 = max𝑗=𝑖−𝑘+1
𝑖 {𝑎𝑖}

0 16 4 5 13 9 20 18 3

𝑘=3 𝑖=6



Recall Knapsack

▪ What we always do before:

▪ 𝑓 𝑖,𝒘 : the maximum value we can get by using the first 𝑖
items, and with 𝒘 budget.

▪ Use 𝑔[𝑖] to store how much budge 𝑓[𝑖] uses.

𝑓[𝑖] 5 10 13 16 21 30 ?

How to solve 
𝑓 𝑖 by 𝑓 𝑗 < 𝑖 ?

We know 𝑓[𝑗] but 
we do not know 

how much 
budget it uses!

Key problem: Subproblem definition 
does not contain enough information!



What kind of information 
do we need now?



Observation

▪ Compare two 𝑙𝑎𝑟𝑔𝑒 𝑖 and 𝑙𝑎𝑟𝑔𝑒[𝑖 − 1].

▪ Difference
– One entering number: 20

– One outgoing number: 5

– Question: how they affect the largest number?

0 16 4 5 13 9 20 18 3

𝑖=6 𝑖=7



How they affect the largest number

▪ Difference
– One entering number: 20

– One leaving number: 5

– Question: how they affect the largest number?

– Case 1: the entering number is the new largest!

- - - 5 - - 20 - -

𝑖=6 𝑖=7



How they affect the largest number

▪ Difference
– One entering number: 20

– One leaving number: 5

– Question: how they affect the largest number?

– Case 2: the leaving number is the previous largest!

- - - 5 - - 4 - -

𝑖=6 𝑖=7

Key problem: We should know what is 
the previous second largest number. Ok, let us 

record it!



How they affect the largest number

▪ Difference
– One entering number: 20

– One leaving number: 5

– Question: how they affect the largest number?

– Case 3: the leaving number is the previous second largest!

- - - 5 - - 4 - -

𝑖=6 𝑖=7

Key problem: We should know what is 
the previous third largest number. Ok, let us 

record it…..



Summarize

▪ Difference
– One entering number: 20

– One leaving number: 5

– Question: how they affect the largest number?

- - - 5 - - 20 - -

𝑖=6 𝑖=7

Summarize: We should maintain 
a data structure!

Support delete 
and insert!

Data Structure 
𝑂(𝑛 log 𝑘)!



Let us think more!

▪ New Subproblem: Solving the Heap of 𝑎𝑖−𝑘+1~𝑎𝑖.
– Delete (Update & PopMax)

– Insert

– FindMax

– 𝑂 𝑛 log 𝑘 !

▪ Is it too powerful?
– We delete and insert only based on the index!

- - - 5 - - 20 - -

𝑖=6 𝑖=7



A new Subproblem!

▪ Think again: why we need the heap?
– We need two know who is the largest.

– We need to know who is the potential largest.

– We need to update the potential largest list. 

▪ Do we have a better way to maintain this potential largest 
list?
– Heap views all 𝑘 numbers as potential largest.



Observation

▪ Who can be the potential largest number?

0 16 4 5 13 9 20 18 3

𝑖=6

5 13 9



Observation

▪ Who can be the potential largest number?

0 16 4 5 13 9 20 18 3

𝑖=6

5 13 9

5 is not a potential largest 
number because 5 is older 

than 13 and 5<13.

9 is a potential largest 
number although 13>9 
because 9 is younger.

Key Observation: the potential 
largest list can be smaller than 𝑘.



Potential Largest List

▪ Potential Largest List (PLL)
– 𝑃𝐿𝐿[𝑖]: the Potential Largest List for 𝑎𝑖−𝑘+1~𝑎𝑖 .

– At most 𝑘 numbers.

– Sorted by the index.

– 𝑖 − 𝑘 + 1 ≤ Index ≤ 𝑖

𝑎5 𝑎6 𝑎8 𝑎12 𝑎13 𝑎15 𝑎16 𝑎19 𝑎20

≤ 𝑘=15

𝑃𝐿𝐿[20] Key Property: 
𝑎𝑖 ≥ 𝑎𝑗 if 𝑖 < 𝑗.

Smaller



How to maintain PLL?

▪ How to solve 𝑃𝐿𝐿[𝑖 = 21] by 𝑃𝐿𝐿 𝑖 − 1 = 20 ?

▪ First, kick the number if 𝑖𝑛𝑑𝑒𝑥 < 𝑖 − 𝑘 + 1 = 6.

𝑎5 𝑎6 𝑎8 𝑎12 𝑎13 𝑎15 𝑎16 𝑎19 𝑎20

≤ 𝑘=15

𝑃𝐿𝐿[20] Key Property: 
𝑎𝑖 ≥ 𝑎𝑗 if 𝑖 < 𝑗.

Smaller



How to maintain PLL?

▪ How to solve 𝑃𝐿𝐿[𝑖 = 21] by 𝑃𝐿𝐿 𝑖 − 1 = 20 ?

▪ First, kick the number if 𝑖𝑛𝑑𝑒𝑥 < 𝑖 − 𝑘 + 1 = 6.

▪ Second, kick numbers by 𝑎𝑖=21.

𝑎5=28 𝑎6=25 𝑎8=25 𝑎12=20 𝑎13=15 𝑎15=9 𝑎16=8 𝑎19=5 𝑎20=3

≤ 𝑘=15

𝑃𝐿𝐿[20] Key Property: 
𝑎𝑖 ≥ 𝑎𝑗 if 𝑖 < 𝑗.

Smaller

𝑎𝑖 = 21



How to maintain PLL?

▪ How to solve 𝑃𝐿𝐿[𝑖 = 21] by 𝑃𝐿𝐿 𝑖 − 1 = 20 ?

▪ First, kick the number if 𝑖𝑛𝑑𝑒𝑥 < 𝑖 − 𝑘 + 1 = 6.

▪ Second, kick numbers by 𝑎𝑖=21.

𝑎5=28 𝑎6=25 𝑎8=25 𝑎12=20 𝑎13=15 𝑎15=9 𝑎16=8 𝑎19=5 𝑎20=3

≤ 𝑘=15

𝑃𝐿𝐿[20] Key Property: 
𝑎𝑖 ≥ 𝑎𝑗 if 𝑖 < 𝑗.

Smaller

𝑎𝑖 = 21



How to maintain PLL?

▪ How to solve 𝑃𝐿𝐿[𝑖 = 21] by 𝑃𝐿𝐿 𝑖 − 1 = 20 ?

▪ First, kick the number if 𝑖𝑛𝑑𝑒𝑥 < 𝑖 − 𝑘 + 1 = 6.

▪ Second, kick numbers by 𝑎𝑖=21.

𝑎5=28 𝑎6=25 𝑎8=25 𝑎12=20 𝑎13=15 𝑎15=9 𝑎16=8 𝑎19=5 𝑎20=3

≤ 𝑘=15

𝑃𝐿𝐿[20] Key Property: 
𝑎𝑖 ≥ 𝑎𝑗 if 𝑖 < 𝑗.

Smaller

𝑎𝑖 = 21



How to maintain PLL?

▪ How to solve 𝑃𝐿𝐿[𝑖 = 21] by 𝑃𝐿𝐿 𝑖 − 1 = 20 ?

▪ First, kick the number if 𝑖𝑛𝑑𝑒𝑥 < 𝑖 − 𝑘 + 1 = 6.

▪ Second, kick numbers by 𝑎𝑖=21.

≤ 𝑘=15

𝑃𝐿𝐿[20] Key Property: 
𝑎𝑖 ≥ 𝑎𝑗 if 𝑖 < 𝑗.

Smaller

𝑎𝑖 = 21

𝑎5=28 𝑎6=25 𝑎8=25 𝑎12=20 𝑎13=15 𝑎15=9 𝑎16=8 𝑎19=5 𝑎20=3



How to maintain PLL?

▪ How to solve 𝑃𝐿𝐿[𝑖 = 21] by 𝑃𝐿𝐿 𝑖 − 1 = 20 ?

▪ First, kick the number if 𝑖𝑛𝑑𝑒𝑥 < 𝑖 − 𝑘 + 1 = 6.

▪ Second, kick numbers by 𝑎𝑖=21.

𝑎5=28 𝑎6=25 𝑎8=25 𝑎21=21 𝑎12=20 𝑎13=15 𝑎15=9 𝑎16=8 𝑎19=5 𝑎20=3

≤ 𝑘=15

𝑃𝐿𝐿[20] Key Property: 
𝑎𝑖 ≥ 𝑎𝑗 if 𝑖 < 𝑗.

Smaller

𝑎𝑖 = 21



Largest Number in 𝑘 Consecutive Numbers

▪ Keep Inserting 𝑎1~𝑎𝑘 & kicking to make 𝑃𝐿𝐿[𝑘].

▪ Solve every 𝑃𝐿𝐿 𝑘 < 𝑖 ≤ 𝑛 by inserting & kicking.

▪ We can easily get 𝑙𝑎𝑟𝑔𝑒[𝑖] by 𝑃𝐿𝐿[𝑖].

▪ It is efficient: 𝑂 𝑛 ! Each number at most:
– Inserted once.

– Kicked once. 

– Pass once (because once we pass, we kick it).



It is an important idea for 
DP improvement!

Priority Queue



Longest Increasing Sequence Revisit 

▪ Input: A sequence 𝑎1, 𝑎2, … , 𝑎𝑛.

▪ Output: the Longest Increasing Subsequence (LIS) 
– 𝑎𝑖1 < 𝑎𝑖2 < 𝑎𝑖3 … < 𝑎𝑖𝑘
– 𝑖1 < 𝑖2 < 𝑖3… < 𝑖𝑘

1 5 13 2 6 24 15 23 2 16



Do you feel that we can 
improve?



Previous Transfer

▪ 𝑙𝑖𝑠 𝑖 = max
𝑎𝑗<𝑎𝑖,𝑗<𝑖

{𝑙𝑖𝑠 𝑗 + 1}

▪ Definition: Potential Prefix
– The set of 𝑎𝑗 that is possible to be the prefix of future numbers.  

1 2 3 2 3 - - - - -

1 5 13 2 6 24 15 23 2 16𝑎[𝑖]

𝑙𝑖𝑠[𝑖]

Who are the Potential Prefix?



Previous Transfer

▪ lis 𝑖 = max
𝑎𝑗<𝑎𝑖,𝑗<𝑖

{𝑙𝑖𝑠 𝑗 + 1}

▪ Definition: Potential Prefix
– The set of 𝑎𝑗 that is possible to be the prefix of future numbers.  

1 2 3 2 3 - - - - -

1 5 13 2 6 24 15 23 2 16𝑎[𝑖]

𝑙𝑖𝑠[𝑖]

Who are the Potential Prefixes?
It is not because 𝑎 𝑖 >
𝑎 𝑗 and 𝑙𝑖𝑠 𝑖 = 𝑙𝑖𝑠[𝑗]



New Subproblem!

▪ 𝑆𝑚 𝑖, 𝑙𝑒𝑛 : the smallest ended number for an increasing 
subsequence with length 𝑙𝑒𝑛.

▪ Remark: it is enough to record all Potential Prefixes (length 
and number).

1 2 3 2 3 - - - - -

1 5 13 2 6 24 15 23 2 16𝑎[𝑖]

𝑙𝑖𝑠[𝑖]



New Subproblem!

▪ 𝑆𝑚 𝑖, 𝑙𝑒𝑛 : the smallest ended number for an increasing 
subsequence with length 𝑙𝑒𝑛 by using a1…𝑎𝑖.

▪ Remark: it is enough to record all Potential Prefixes (length 
and number).

1 2 3 2 3 - - - - -

1 5 13 2 6 24 15 23 2 16𝑎[. ]

𝑙𝑖𝑠[. ]

𝑙𝑒𝑛=0 𝑙𝑒𝑛=1 𝑙𝑒𝑛=2 𝑙𝑒𝑛=3 𝑙𝑒𝑛=4 𝑙𝑒𝑛=5 𝑙𝑒𝑛=6 𝑙𝑒𝑛=7 𝑙𝑒𝑛=8 𝑙𝑒𝑛=9

0 1 2 6 - - - - - -𝑠𝑚[𝑖, 𝑙𝑒𝑛]

𝒊

Larger



Solving 𝑠𝑚[𝑖, 𝑙𝑒𝑛]!

▪ How to solve 𝑠𝑚 𝑖, 𝑙𝑒𝑛 (Potential Prefixes)? 
– By 𝑠𝑚[𝑗 ≤ 𝑖, … ]?

▪ Difference between 𝑖 − 1 and 𝑖?
– 𝑎𝑖 comes in.

– It may become a potential prefixes and kick some potential prefixes.

𝑙𝑒𝑛=0 𝑙𝑒𝑛=1 𝑙𝑒𝑛=2 𝑙𝑒𝑛=3 𝑙𝑒𝑛=4 𝑙𝑒𝑛=5 𝑙𝑒𝑛=6 𝑙𝑒𝑛=7 𝑙𝑒𝑛=8 𝑙𝑒𝑛=9

0 1 2 6 - - - - - -𝑠𝑚[𝑖, 𝑙𝑒𝑛]



Solving 𝑠𝑚[𝑖, 𝑙𝑒𝑛]!

▪ How to solve 𝑠𝑚 𝑖, 𝑙𝑒𝑛 (Potential Prefixes)? 
– By 𝑠𝑚[𝑗 ≤ 𝑖, … ]?

▪ Difference between 𝑖 − 1 and 𝑖?
– 𝑎𝑖 comes in.

– It may become a potential prefixes and kick some potential prefixes.

𝑙𝑒𝑛=0 𝑙𝑒𝑛=1 𝑙𝑒𝑛=2 𝑙𝑒𝑛=3 𝑙𝑒𝑛=4 𝑙𝑒𝑛=5 𝑙𝑒𝑛=6 𝑙𝑒𝑛=7 𝑙𝑒𝑛=8 𝑙𝑒𝑛=9

0 1 2 6 - - - - - -𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

𝑎𝑖 = 5



Solving 𝑠𝑚[𝑖, 𝑙𝑒𝑛]!

▪ How to solve 𝑠𝑚 𝑖, 𝑙𝑒𝑛 (Potential Prefixes)? 
– By 𝑠𝑚[𝑗 ≤ 𝑖, … ]?

▪ Difference between 𝑖 − 1 and 𝑖?
– 𝑎𝑖 comes in.

– It may become a potential prefixes and kick some potential prefixes.

𝑙𝑒𝑛=0 𝑙𝑒𝑛=1 𝑙𝑒𝑛=2 𝑙𝑒𝑛=3 𝑙𝑒𝑛=4 𝑙𝑒𝑛=5 𝑙𝑒𝑛=6 𝑙𝑒𝑛=7 𝑙𝑒𝑛=8 𝑙𝑒𝑛=9

0 1 2 6 - - - - - -𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Case 1: 𝑎𝑖 > 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Case 1: 𝑎𝑖 ≤ 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

𝑎𝑖 = 5



Solving 𝑠𝑚[𝑖, 𝑙𝑒𝑛]!

▪ How to solve 𝑠𝑚 𝑖, 𝑙𝑒𝑛 (Potential Prefixes)? 
– By 𝑠𝑚[𝑗 ≤ 𝑖, … ]?

▪ Difference between 𝑖 − 1 and 𝑖?
– 𝑎𝑖 comes in.

– It may become a potential prefixes and kick some potential prefixes.

𝑙𝑒𝑛=0 𝑙𝑒𝑛=1 𝑙𝑒𝑛=2 𝑙𝑒𝑛=3 𝑙𝑒𝑛=4 𝑙𝑒𝑛=5 𝑙𝑒𝑛=6 𝑙𝑒𝑛=7 𝑙𝑒𝑛=8 𝑙𝑒𝑛=9

0 1 2 6 - - - - - -𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Case 1: 𝑎𝑖 > 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Case 1: 𝑎𝑖 ≤ 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

• it can create a longer LIS.
• it can not update 𝑠𝑚[𝑖, 𝑙𝑒𝑛].

• It may update 𝑠𝑚[𝑖, 𝑙𝑒𝑛]
• it can not create a longer LIS.

𝑎𝑖 = 5



Solving 𝑠𝑚[𝑖, 𝑙𝑒𝑛]!

▪ How to solve 𝑠𝑚 𝑖, 𝑙𝑒𝑛 (Potential Prefixes)? 
– By 𝑠𝑚[𝑗 ≤ 𝑖, … ]?

▪ Difference between 𝑖 − 1 and 𝑖?
– 𝑎𝑖 comes in.

– It may become a potential prefixes and kick some potential prefixes.

𝑙𝑒𝑛=0 𝑙𝑒𝑛=1 𝑙𝑒𝑛=2 𝑙𝑒𝑛=3 𝑙𝑒𝑛=4 𝑙𝑒𝑛=5 𝑙𝑒𝑛=6 𝑙𝑒𝑛=7 𝑙𝑒𝑛=8 𝑙𝑒𝑛=9

0 1 2 6 - - - - - -𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Case 1: 𝑎𝑖 > 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Case 1: 𝑎𝑖 ≤ 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

• it can create a longer LIS.
• it can not update 𝑠𝑚[𝑖, 𝑙𝑒𝑛].

• It may update 𝑠𝑚[𝑖, 𝑙𝑒𝑛]
• it can not create a longer LIS.

𝑎𝑖 = 5



Case 1: 𝑎𝑖 > 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Case 1: 𝑎𝑖 ≤ 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Solving 𝑠𝑚[𝑖, 𝑙𝑒𝑛]!

▪ How to solve 𝑠𝑚 𝑖, 𝑙𝑒𝑛 (Potential Prefixes)? 
– By 𝑠𝑚[𝑗 ≤ 𝑖, … ]?

▪ Difference between 𝑖 − 1 and 𝑖?
– 𝑎𝑖 comes in.

– It may become a potential prefixes and kick some potential prefixes.

𝑙𝑒𝑛=0 𝑙𝑒𝑛=1 𝑙𝑒𝑛=2 𝑙𝑒𝑛=3 𝑙𝑒𝑛=4 𝑙𝑒𝑛=5 𝑙𝑒𝑛=6 𝑙𝑒𝑛=7 𝑙𝑒𝑛=8 𝑙𝑒𝑛=9

0 1 2 6 - - - - - -𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

• it can create a longer LIS.
• it can not update 𝑠𝑚[𝑖, 𝑙𝑒𝑛].

• It may update 𝑠𝑚[𝑖, 𝑙𝑒𝑛]
• it can not create a longer LIS.

𝑎𝑖 = 5



Case 1: 𝑎𝑖 > 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Case 1: 𝑎𝑖 ≤ 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Solving 𝑠𝑚[𝑖, 𝑙𝑒𝑛]!

▪ How to solve 𝑠𝑚 𝑖, 𝑙𝑒𝑛 (Potential Prefixes)? 
– By 𝑠𝑚[𝑗 ≤ 𝑖, … ]?

▪ Difference between 𝑖 − 1 and 𝑖?
– 𝑎𝑖 comes in.

– It may become a potential prefixes and kick some potential prefixes.

𝑙𝑒𝑛=0 𝑙𝑒𝑛=1 𝑙𝑒𝑛=2 𝑙𝑒𝑛=3 𝑙𝑒𝑛=4 𝑙𝑒𝑛=5 𝑙𝑒𝑛=6 𝑙𝑒𝑛=7 𝑙𝑒𝑛=8 𝑙𝑒𝑛=9

0 1 2 6 - - - - - -𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

• it can create a longer LIS.
• it can not update 𝑠𝑚[𝑖, 𝑙𝑒𝑛].

• It may update 𝑠𝑚[𝑖, 𝑙𝑒𝑛]
• it can not create a longer LIS.

𝑎𝑖 = 5



Case 1: 𝑎𝑖 > 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Case 1: 𝑎𝑖 ≤ 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Solving 𝑠𝑚[𝑖, 𝑙𝑒𝑛]!

▪ How to solve 𝑠𝑚 𝑖, 𝑙𝑒𝑛 (Potential Prefixes)? 
– By 𝑠𝑚[𝑗 ≤ 𝑖, … ]?

▪ Difference between 𝑖 − 1 and 𝑖?
– 𝑎𝑖 comes in.

– It may become a potential prefixes and kick some potential prefixes.

𝑙𝑒𝑛=0 𝑙𝑒𝑛=1 𝑙𝑒𝑛=2 𝑙𝑒𝑛=3 𝑙𝑒𝑛=4 𝑙𝑒𝑛=5 𝑙𝑒𝑛=6 𝑙𝑒𝑛=7 𝑙𝑒𝑛=8 𝑙𝑒𝑛=9

0 1 2 6 - - - - - -𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

• it can create a longer LIS.
• it can not update 𝑠𝑚[𝑖, 𝑙𝑒𝑛].

• It may update 𝑠𝑚[𝑖, 𝑙𝑒𝑛]
• it can not create a longer LIS.

𝑎𝑖 = 5



Case 1: 𝑎𝑖 > 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Case 1: 𝑎𝑖 ≤ 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Solving 𝑠𝑚[𝑖, 𝑙𝑒𝑛]!

▪ How to solve 𝑠𝑚 𝑖, 𝑙𝑒𝑛 (Potential Prefixes)? 
– By 𝑠𝑚[𝑗 ≤ 𝑖, … ]?

▪ Difference between 𝑖 − 1 and 𝑖?
– 𝑎𝑖 comes in.

– It may become a potential prefixes and kick some potential prefixes.

𝑙𝑒𝑛=0 𝑙𝑒𝑛=1 𝑙𝑒𝑛=2 𝑙𝑒𝑛=3 𝑙𝑒𝑛=4 𝑙𝑒𝑛=5 𝑙𝑒𝑛=6 𝑙𝑒𝑛=7 𝑙𝑒𝑛=8 𝑙𝑒𝑛=9

0 1 2 6 - - - - - -𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

• it can create a longer LIS.
• it can not update 𝑠𝑚[𝑖, 𝑙𝑒𝑛].

• It must update 𝑠𝑚 𝑖, 𝑙𝑒𝑛 .
• it can not create a longer LIS.

𝑎𝑖 = 5

Because 
we move 
to here.



Case 1: 𝑎𝑖 > 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Case 1: 𝑎𝑖 ≤ 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Solving 𝑠𝑚[𝑖, 𝑙𝑒𝑛]!

▪ How to solve 𝑠𝑚 𝑖, 𝑙𝑒𝑛 (Potential Prefixes)? 
– By 𝑠𝑚[𝑗 ≤ 𝑖, … ]?

▪ Difference between 𝑖 − 1 and 𝑖?
– 𝑎𝑖 comes in.

– It may become a potential prefixes and kick some potential prefixes.

𝑙𝑒𝑛=0 𝑙𝑒𝑛=1 𝑙𝑒𝑛=2 𝑙𝑒𝑛=3 𝑙𝑒𝑛=4 𝑙𝑒𝑛=5 𝑙𝑒𝑛=6 𝑙𝑒𝑛=7 𝑙𝑒𝑛=8 𝑙𝑒𝑛=9

0 1 2 𝒂𝒊=5 - - - - - -𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

• it can create a longer LIS.
• it can not update 𝑠𝑚[𝑖, 𝑙𝑒𝑛].

• It must update 𝑠𝑚[𝑖, 𝑙𝑒𝑛]
• it can not create a longer LIS.

𝑎𝑖 = 5

Because 
we move 
to here.



Longest Increasing Subsequence with 𝑠𝑚 ⋅ .

▪ Plan
– Initialize 𝑠𝑚 0,0 = 0

▪ Solve 𝑠𝑚[𝑖, 𝑙𝑒𝑛] from 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛] by 𝑎𝑖.

▪ Output the largest 𝑙𝑒𝑛 such that 𝑠𝑚 𝑛, 𝑙𝑒𝑛 ≠”-”.



Still Not Finished!

▪ Plan
– Initialize 𝑠𝑚 0,0 = 0

▪ Solve 𝑠𝑚[𝑖, 𝑙𝑒𝑛] from 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛] by 𝑎𝑖.
– It requires 𝑶 𝐦𝐚𝐱{𝒍𝒆𝒏} = 𝒊 !

– Remark, now we do not kick everything we pass.

▪ Output the largest 𝑙𝑒𝑛 such that 𝑠𝑚 𝑛, 𝑙𝑒𝑛 ≠”-”.



Recap The Updating

▪ We need to find the largest 𝑙𝑒𝑛 such that 𝑎𝑖 > 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛].

▪ Then we update: 𝑠𝑚 𝑖, 𝑙𝑒𝑛 + 1 = 𝑎𝑖.

Case 1: 𝑎𝑖 > 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Case 1: 𝑎𝑖 ≤ 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

𝑙𝑒𝑛=0 𝑙𝑒𝑛=1 𝑙𝑒𝑛=2 𝑙𝑒𝑛=3 𝑙𝑒𝑛=4 𝑙𝑒𝑛=5 𝑙𝑒𝑛=6 𝑙𝑒𝑛=7 𝑙𝑒𝑛=8 𝑙𝑒𝑛=9

0 1 2 𝒂𝒊=5 - - - - - -𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

• it can create a longer LIS.
• it can not update 𝑠𝑚[𝑖, 𝑙𝑒𝑛].

• It must update 𝑠𝑚[𝑖, 𝑙𝑒𝑛]
• it can not create a longer LIS.

𝑎𝑖 = 5

Larger



How to do it efficiently?



Yes! Binary Search!



Recap the updating

▪ We need to find the largest 𝑙𝑒𝑛 such that 𝑎𝑖 > 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛].
– Find it by binary search, we only need 𝑂(log max 𝑙𝑒𝑛 = 𝑖 )!

▪ Then we update: 𝑠𝑚 𝑖, 𝑙𝑒𝑛 + 1 = 𝑎𝑖.

Case 1: 𝑎𝑖 > 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

Case 1: 𝑎𝑖 ≤ 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

𝑙𝑒𝑛=0 𝑙𝑒𝑛=1 𝑙𝑒𝑛=2 𝑙𝑒𝑛=3 𝑙𝑒𝑛=4 𝑙𝑒𝑛=5 𝑙𝑒𝑛=6 𝑙𝑒𝑛=7 𝑙𝑒𝑛=8 𝑙𝑒𝑛=9

0 1 2 𝒂𝒊=5 - - - - - -𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛]

• it can create a longer LIS.
• it can not update 𝑠𝑚[𝑖, 𝑙𝑒𝑛].

• It must update 𝑠𝑚[𝑖, 𝑙𝑒𝑛]
• it can not create a longer LIS.

𝑎𝑖 = 5

Larger



Now it is better!

▪ Plan
– Initialize 𝑠𝑚 0,0 = 0

▪ Solve 𝑠𝑚[𝑖, 𝑙𝑒𝑛] from 𝑠𝑚[𝑖 − 1, 𝑙𝑒𝑛] by 𝑎𝑖.
– It requires 𝑂 log 𝑖 .

▪ Output the largest 𝑙𝑒𝑛 such that 𝑠𝑚 𝑛, 𝑙𝑒𝑛 ≠”-”.

▪ Totally 𝑂 𝑛log 𝑛 .



One more Interesting 
problem.



Minimizing Manufacturing Cost 

▪ Input: A sequence of items with cost 𝑎1, 𝑎2, … , 𝑎𝑛.

▪ Need to Do:
– Manufacture these items.

– Operation man(𝑙, 𝑟): manufacture the items from 𝑙 to 𝑟.

– 𝑐𝑜𝑠𝑡 𝑙, 𝑟 = 𝐶 + σ𝑖=𝑙
𝑟 𝑎𝑖

2.

▪ Output: The minimum cost to manufacture all items. 



Discussion

▪ Cost function: 𝑐𝑜𝑠𝑡 𝑙, 𝑟 = 𝐶 + σ𝑖=𝑙
𝑟 𝑎𝑖

2.

▪ Cost function: 𝑐𝑜𝑠𝑡 𝑙, 𝑟 = 𝐶 + σ𝑖=𝑙
𝑟 𝑎𝑖.

▪ Cost function: 𝑐𝑜𝑠𝑡 𝑙, 𝑟 = 𝐶 + σ𝑖=𝑙
𝑟 𝑎𝑖

2, with 𝐶 = 0.

▪ Only the first one need to optimize!



Define subproblems

▪ 𝑓 𝑖 : the minimum cost for manufacturing item 1 to 𝑖.

▪ How to solve 𝑓 𝑖 ?

0 16 4 5 13 9 20 18 3

𝑖



Solving 𝑓[𝑖]

▪ 𝑓 𝑖 : the minimum cost for manufacturing item 1 to 𝑖.

▪ How to solve 𝑓 𝑖 ?

▪ We can manufacture item 𝑖 alone.

0 16 4 5 13 9 20 18 3

𝑖



Solving 𝑓[𝑖]

▪ 𝑓 𝑖 : the minimum cost for manufacturing item 1 to 𝑖.

▪ How to solve 𝑓 𝑖 ?

▪ We can also manufacture 𝑖 along with an interval.

▪ 𝑓 𝑖 = min
𝑗<𝑖

𝑓 𝑗 + 𝐶 + σ𝑘=𝑗+1
𝑖 𝑎𝑘

2

0 16 4 5 13 9 20 18 3

𝑖

𝑐𝑜𝑠𝑡(𝑗 + 1, 𝑖)

𝑗

𝑓[𝑗]



DP algorithm

▪ Define 𝑓 0 = 0.

▪ Solve 𝑓[𝑖] from 1 to 𝑛, and output 𝑓[𝑛].

▪ 𝑓 𝑖 = min
𝑗<𝑖

𝑓 𝑗 + 𝐶 + σ𝑘=𝑗+1
𝑖 𝑎𝑘

2
. 

0 16 4 5 13 9 20 18 3

𝑖

𝑐𝑜𝑠𝑡(𝑗 + 1, 𝑖)

𝑗

𝑓[𝑗]

𝑂(𝑛2)



The Potential Idea Again!

▪ Question: Can every 𝑗 be a potential prefix for the future?
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𝑖



The Potential Idea Again!

▪ Question: Can every 𝑗 be a potential prefix for the future?

▪ Maybe…….. I can find nothing.

0 16 4 5 13 9 20 18 3

𝑖



Let us do some math!



Math Time!

▪ 𝑓 𝑖 = min
𝑗<𝑖

𝑓 𝑗 + 𝐶 + σ𝑘=𝑗+1
𝑖 𝑎𝑘

2
.

▪ Consider j = 𝑥 and j = 𝑦, when 𝑥 is better than 𝑦 for 𝑖?

▪ 𝑓 𝑥 + 𝐶 + σ𝑘=𝑥+1
𝑖 𝑎𝑘

2
< 𝑓 𝑦 + 𝐶 + σ𝑘=𝑦+1

𝑖 𝑎𝑘
2

0 16 4 5 13 9 20 18 3
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𝑐𝑜𝑠𝑡(𝑗 + 1, 𝑖)

𝑗

𝑓[𝑗]



Math Time!

▪ 𝑓 𝑖 = min
𝑗<𝑖

𝑓 𝑗 + 𝐶 + σ𝑘=𝑗+1
𝑖 𝑎𝑘

2
.

▪ Consider j = 𝑥 and j = 𝑦, when 𝑦 is better than 𝑥 for 𝑖?

▪ 𝑓 𝑥 + 𝐶 + σ𝑘=𝑥+1
𝑖 𝑎𝑘

2
> 𝑓 𝑦 + 𝐶 + σ𝑘=𝑦+1

𝑖 𝑎𝑘
2

▪ Let 𝑠(𝑖) = σ𝑗=1
𝑖 𝑎𝑘.

▪ 𝑓 𝑥 − 𝑓 𝑦 > 𝑠 𝑖 − 𝑠 𝑦
2
− 𝑠 𝑖 − 𝑠 𝑥

2

= 𝑠 𝑦 2 − 𝑠 𝑥 2 − 2𝑠(𝑖)(𝑠 𝑦 − 𝑠 𝑥 )

▪
𝑓 𝑦 +𝑠 𝑦 2 − 𝑓 𝑥 +𝑠 𝑥 2

2(𝑠 𝑦 −𝑠 𝑥 )
< 𝑠(𝑖)



Math Time!

▪
𝑓 𝑦 +𝑠 𝑦 2 − 𝑓 𝑥 +𝑠 𝑥 2

2(𝑠 𝑦 −𝑠 𝑥 )
< 𝑠 𝑖

▪ 𝑔 𝑥, 𝑦 =
𝑓 𝑦 +𝑠 𝑦 2 − 𝑓 𝑥 +𝑠 𝑥 2

2(𝑠 𝑦 −𝑠 𝑥 )

▪ View it as two points!
– 𝑥: (2𝑠(𝑥), 𝑓 𝑥 + 𝑠 𝑥 2)

– 𝑦: (2𝑠(𝑦), 𝑓 𝑦 + 𝑠 𝑦 2) 𝑥

𝑦

2𝑠(𝑥)

𝑓 𝑥 + 𝑠 𝑥 2

𝑦 is better than 𝑥 for 𝑖 means the gradient 
of x->y: 𝒈(𝒙, 𝒚) smaller than 𝑠 𝑖 .



Who can be kicked out?



Who can be kicked out?

𝑥

𝑦

𝑦 is better than 𝑥 for 𝑖 means the gradient 
of x->y: 𝒈(𝒙, 𝒚) smaller than 2𝑠 𝑖 .

𝑧

𝑢 𝑣

𝑦 is better than 𝑥 for 𝑖 means the gradient 
of x->y: 𝒈(𝒙, 𝒚) smaller than 𝑠 𝑖 .



Who can be kicked out?

𝑥

𝑦

𝑦 is better than 𝑥 for 𝑖 means the gradient 
of x->y: 𝒈(𝒙, 𝒚) smaller than 2𝑠 𝑖 .

𝑧

𝑢 𝑣

𝑦 is better than 𝑥 for 𝑖 means the gradient 
of x->y: 𝒈(𝒙, 𝒚) smaller than 𝑠 𝑖 .𝑔 𝑦, 𝑧 > 𝑔 𝑧, 𝑢 ! If 𝑧 is 

better than 𝑦, then 𝑢 is 
better than 𝑢.



After Kicking: A Convex Hall.

𝑥

𝑦

𝑧

𝑢

What if 𝑔 𝑥, 𝑦 < 𝑠 𝑖 ?
Kick 𝑥!

𝑦 is better than 𝑥 for 𝑖 means the gradient 
of x->y: 𝒈(𝒙, 𝒚) smaller than 𝑠 𝑖 .



2𝑠(𝑖)2𝑠(𝑗4)

Discussion

▪ Complete the DP
– 𝑓 0 = 0

– Solve 𝑓 𝑖 from 1 to 𝑛.

– Output 𝑓[𝑛].

– How to update the convex hall? 

– We need insert 𝑖!

– Tips: very similar to largest 
number!

– What is the time complexity?
𝑗1

𝑗2

𝑗3

𝑗4

𝑖

2𝑠(𝑗1) 2𝑠(𝑗2)



Today’s goal

▪ Recap the guideline of DP! (Most Important)

▪ Learn how to improve DP by better Subproblems!

▪ Learn the tool: Priority Queue.

▪ Example
– All Pair Shortest Path

– Largest Number in 𝑘 Consecutive Numbers

– Longest Increasing Sequence

– Minimizing Printing Cost


