Network Flow |

Maximum Flow Problem, Ford-Fulkerson Algorithm, Max-
Matching on Bipartite Graphs

Maximum Flow Problem

- Railway system has a network of city-to-city routes.
. 'Each route Ia~b’e|ed with maximum number of passengers per train.

« Question: How many passengers can we send from Chengdu to
Shanghai? -

Wuhan Nanjing

Chengdu Shanghai

Guangzhou 5 Fuzhou

Flow — Formal Definition

E——

= Given a directed graph ¢ = (V,E) with a source s e V and a
sink t € V, and a capacity assigned to each edge c: E - R*,
~aflowisamap f:E - R, satisfying the followings:
- -Capacity Constraint: for each e € E, f(e) < c(e), and
- Flow Conservation: for each u € V \ {s, t},

> few= Y faw.

v:(u,v)EE w:(U,wW)€EE

The value of the flow is defined as

W)=). Flsv).

v:(s,v)EE

More Applications

N . — - ——

We want to build a data transmission channel from s to t.
We can use intermediate routers a b, c,d,e.

Each edge has a bandwidth, limiting the maximum rate of data
transmission. v

What is the maximum rate of data that can be transferred?

More Applications

E————

— = —_— —————

» Table describ_es number of matches each team has won.

= Number on each edge represents number of remaining
matches.

+ Does Team D have a chance for the champion?

More Applications

— - — - ———

= Let us first assume Team D wins all the 12 remaining
- matches. |

More Applications

» Team A must win atmost 1

« Team B must win at most 3

. ""ea-m C must win at most 4

4,0

38
37

More Applications

- ‘Model the problem. as Max-Flow.

= AB—es A
Winstobe e : Maximum

distributed

allowable wins

More Applications

EE———

= |f Team D has a chance for champioﬁship,
the maximum flow should be 1+6+1=8.

_ABoee A

A Gr_eedy Attémpt

S — < = - ———

Iteratlvely flnd an s- t path and push as much flow as
_ p055|ble anng It.

U

A Gr_eedy Attémpt

S — < - - ———

Iteratlvely flnd an s- t path and push as much flow as
~ possible anng It.

- —'sut

A Greedy Attémpt

S — < = - ———

Iteratlvely flnd an s- t path and push as much flow as
‘possible anng It.

- - s-u-t

A Gr_eedy Attémpt

S — < - - ———

Iteratlvely flnd an s- t path and push as much flow as

~ possible along it.
- - s-u-t, s-v-t

= -

Sar

A Gr_eedy Attémpt

S — < - - ———

Iteratlvely flnd an s- t path and push as much flow as
~possible along it.

—_sutsvtsuvt

A Greedy Attempt

EE———

E ‘We have a fIQw of éize 30, and it is optimal.

= |s it always cpti'mal?

A Greedy Attémpt

— - = - —

Iterat|vely flnd an s- t path and push as much flow as
- possible along it.

» What if our first choice is s-u-v-t?

U

A Greedy Attémpt

S — < = ' ———

Iterat|vely flnd an s- t path and push as much flow as
- possible along it.

» What if our first choice is s-u-v-t?

Flow “Cancellation”

= What if our first chdice IS s-u-v-t?

= We need to be able to “cancel” flow on an edge!

\x

Residual Network

=— - = - —_— - — Mo S i S

~» Residual Network G/ with respect to a flow f.

Residual Network

—— = = = : E ; | R e S

= Now we are able to continue!

= There s a pat‘h on G': s-v-u-t

Residual Network

= Now we are able to continue!

. We can push"10 unit of flow on s-v-u-t

Residual Network

m— . = - —_— - T, T 2 S e s S

= original graph 6. | | | residual graph ¢.

G . ' Gl

Now it is clear to us that no more flow can be pushed from s to t!

Update Residual Network 6/

et = - ——

Given G = (V,E), ¢, and a flow f

6! = (V/,E") and the associated capacity ¢/: E/ - R* are
defined as follows:

« V=V

 (u,v) € E/ if one of the followings holds
- (u,v) €E and f(u,v) < c(u,v): in this case, ¢/ (u,v) = c(w,v) — f(u, v)
- (v,u) € E and f(v,u) > 0: in this case, ¢/ (u,v) = f(v,u)

Putting Together

et = - ——

= Initialize an empty flow f and the corresponding residual
flow ¢7.

= Iteratively
- find a path on G/,
- push maximum amount of flow on ¢/, and
- update f and ¢/, |

= until there is no s-t path on G’.

This is exactly Ford- Fulkerson Algorlthm'

S < ——

‘Ford-Fulkerson Algorlthm

FordFulkerson(G = (V,E), s, t, c):

1 “initialize f such that Ve € E: f(e) = 0; initialize Gf — G;
2. while thereis an s-t pathp on G/

3 find an edge e € p with minimum capacity b;

4. ~ foreache = (u,v) € p: :

= if (u,v) € E: update f(e) < f(e) + b;

6. f (v,) € E: update f(e) « f(e) — b;
7 endfor
8 update G/ ;
9

. endwhile

10. return f

A Small Bug...'

foreache = (u,v) € p:

b-

= if(u,v) € E:update f(e) < f(e) + b;
6. -~ if (v, u) EE:updatef(e) « f(e) — b;
7 endfor |

= What if we have both (v,v) € E and (v,u) € E?
= We need to do either 5 or 6, but not both!

= Fix: modify the graph so that no anti-parallel edge exists.

T e

Correctness? Time Complexity?

—

= Correctness: Max—FIow—Min—Cut Theorem

= Time Complexity:
- Question 1: Does the algorlthm always halt?
- Question 2: If so, what is the time complexity?

Does the algorithm always halt?

S —— - = ' . - — o~ — -=

= Let's start from simplest case: all the capacities are integers.
= Each while-loop iteration increase the value of f by at least 1.

. Thu-s, the algorithm will halt within f£,,,, iterations.

= Theorem. If each c(e) is an mteger then the value of the
maximum flow f is an integer.

= Proof. The value of f is always an integer throughout Ford—, '
Fulkerson Algorithm.

Does the algorithm always halt?

= How about rational capacities?
= Rescale capacities to make them integers.

- Yes,- the algorithm will halt!

Does the algorithm always halt?

= How about possibly irrational capacities?

= No, the algorithm do not always halt!

Non-terminating example [edit)

Residual capacities
Step | Augmenting path | Sent flow
€3

1
{s,v2,v3,t} ‘ y 0
D1
D2
D1
D3
"1 and 0, respectively, for some n € . This means that we can use augmenting
m. Total flow in the network aft b 5is 14 2(r' + r?). If we continue to

hat there is a flow of value 2M + 1, by sending M units of flow along swvy ¢, 1 unit of flow
along svavst, and M units of flow along svyt. Therefore, the algorithm never terminates and the flow does not even converge to the maximum flow.[*]
Another non-terminating example based on the Euclidean algorithm is given by Backman & Huynh (. , where they also show that the worst case running-time of the Ford-Fulkerson

algorithm on a network G(V, B) in ordinal numbers is w®(F1).

Time COmpIeXity?

E——

Assume all capacities are integers, what is the time
- complexity? |

Each iteration requires O(|E]) time:
- O(|E|) is sufficient for finding p, updating f and G/

There are at most f,,,, iterations.

Overall: O(IE]| - fingyx)

Can we analyze it better?

Time COmpIeXity?

- Can we analyze it b'e}tter?
= It depends on how you choose p in each iteration! |
. The compIeX|ty bound O(|E| - fingy) IS tlght for arbitrary
choices! A

U

{ J
: 0000000
i///ﬁf//////]

t

10000000 0000000

) 4
@

\Y,

Method vs Algorithm

et = - ——

- Different choices of augmenting paths p give different
~ implementation of Ford-Fulkerson.

» The description of Ford-Fulkerson Algorithm is incomplete.

« For this reason, it is sometimes called Ford-Fulkerson
Method.

Next Lecture...

= Max-Flow-Min-Cut Theorem
- Correctness of Ford-Fulkerson Method
- Many theorem applications

» Edmonds-Karp Algorithm
- An implementation of Ford-Fulkerson Method with complexity
o(Ivl-IEI?).

Applications of Integrality Theorem

S ——— < - ——— - —— o R AT S

» Theorem. If each c(e) is an integer, then the value of the
- maximum flow f is an integer. |

. Application 1: Tournament example you have seen earlier.

= The max-flow f must satisfy ve: f(e) € Z.

A-B " Maximum

- Winsto be

distributed wins

allowable

Application 2: Maximum Bipartite I\/Iatching '

e = = = — Aah s SLTRS A

« Top vertices are girls, bottom vertices are boys.
= An edge represent a possible match for a boy and a girl.

. Problem: find a maximum matching for boys and girls.

Maximum 'Bip'artite Matching - Formal

E— = - = - e —

» Given a graph G = (V E), a matching M is a subset of edges
~ that do not share vertices in common.

. The size of a matching is the number of edges in it.

= Problem: Given a blpartlte graph ¢ = (4,B,E) find a
matching with the maximum size.

Application 2: Maximum Bipartite I\/Iatching ~

T ——— —————— = — — = _ —~

- Greedy doesn't work!

Application 2: Maximum Bipartite I\/Iatching '

is — ————— St ~

- Greedy doesn't Work!

Application 2: Maximum Bipartite I\/Iatching '

is — ————— St ~

« Naive greedy doeshft work!

Application 2: Maximum Bipartite I\/Iatching ‘

S ———— = —— —— = - -

- Naive greedy doesrj’t work!

Application 2: Maximum Bipartite I\/Iatching '

is — ————— St ~

« Naive greedy doeshft work!

= A total of 4 matches...

Application 2: Maximum Bipartite I\/Iatching ‘

S ———— = —— —— = - -

- Greedy doesn't Work!

= A better solution...

Application 2: Maximum Bipartite I\/Iatching '

e = = = — Aah s SLTRS N

= Applying maximum flow and Ford-Fulkerson Method.

Application 2: Maximum Bipartite I\/Iatching ‘

e = = — Aah s SLTRS N

= An integral flow corresponds to a matching.

= Integrality theorem ensures the maximum flow can be integral.
= , - |

Dessert

EE———

—

= A graph is regular if.aII the vertices have the same degree.
= A matching is perfect if all the vertices are matched.

+ Prove that a reqular bipartite graph always has a perfect
matching.

