
Network Flow

Maximum Flow Problem, Ford-Fulkerson Algorithm, Max-
Matching on Bipartite Graphs

Maximum Flow Problem

▪ Railway system has a network of city-to-city routes.

▪ Each route labeled with maximum number of passengers per train.

▪ Question: How many passengers can we send from Chengdu to
Shanghai?

3

3

4

10

2

1

1

5

1

2

5

Chengdu

Wuhan

Guangzhou

Changsha

Fuzhou

Nanjing

Shanghai

Flow – Formal Definition

▪ Given a directed graph 𝐺 = (𝑉, 𝐸) with a source 𝑠 ∈ 𝑉 and a
sink 𝑡 ∈ 𝑉, and a capacity assigned to each edge 𝑐: 𝐸 → ℝ+,
a flow is a map 𝑓: 𝐸 → ℝ≥0 satisfying the followings:
– Capacity Constraint: for each 𝑒 ∈ 𝐸, 𝑓 𝑒 ≤ 𝑐(𝑒), and

– Flow Conservation: for each 𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡},

𝑣: 𝑢,𝑣 ∈𝐸

𝑓(𝑣, 𝑢) =

𝑤: 𝑢,𝑤 ∈𝐸

𝑓(𝑢, 𝑤) .

The value of the flow is defined as

𝑣 𝑓 =

𝑣: 𝑠,𝑣 ∈𝐸

𝑓(𝑠, 𝑣) .

More Applications

▪ We want to build a data transmission channel from 𝑠 to 𝑡.

▪ We can use intermediate routers 𝑎, 𝑏, 𝑐, 𝑑, 𝑒.

▪ Each edge has a bandwidth, limiting the maximum rate of data
transmission.

▪ What is the maximum rate of data that can be transferred?

3

3

4

10

2

1

1

5

1

2

5

s

a

d

c

e

b

t

More Applications

▪ Table describes number of matches each team has won.

▪ Number on each edge represents number of remaining
matches.

▪ Does Team D have a chance for the champion?

Wins

A 40

B 38

C 37

D 29

C

B

A

D

1 4

4

4

6

1

More Applications

▪ Let us first assume Team D wins all the 12 remaining
matches.

Wins

A 40

B 38

C 37

D 29+12=41

C

B

A

D

1 4

4

4

6

1

More Applications

▪ Team A must win at most 1

▪ Team B must win at most 3

▪ Team C must win at most 4

Wins

A 40

B 38

C 37

D 41

C

B

A1
6

1

More Applications

▪ Model the problem as Max-Flow.

C

B

A
1

6

1

Wins Max Num of
Additional Wins

A 40 1

B 38 3

C 37 4

D 41
s t

A-B

B-C

A-C

A

B

C

6

6

6

1

1

1

1 1

1

1

3

4

Wins to be
distributed

Maximum
allowable wins

More Applications

▪ If Team D has a chance for championship,
the maximum flow should be 1+6+1=8.

C

B

A
1

6

1

Wins Max Num of
Additional Wins

A 40 1

B 38 3

C 37 4

D 41
s t

A-B

B-C

A-C

A

B

C

6

6

6

1

1

1

1 1

1

1

3

4

A Greedy Attempt

▪ Iteratively find an 𝑠-𝑡 path and push as much flow as
possible along it.

u

ts

v

20

30

10

2010

A Greedy Attempt

▪ Iteratively find an 𝑠-𝑡 path and push as much flow as
possible along it.
– s-u-t

u

ts

v

20

30

10

2010

A Greedy Attempt

▪ Iteratively find an 𝑠-𝑡 path and push as much flow as
possible along it.
– s-u-t

u

ts

v

10/20

0/30

10/10

0/200/10

A Greedy Attempt

▪ Iteratively find an 𝑠-𝑡 path and push as much flow as
possible along it.
– s-u-t, s-v-t

u

ts

v

10/20

0/30

10/10

10/2010/10

A Greedy Attempt

▪ Iteratively find an 𝑠-𝑡 path and push as much flow as
possible along it.
– s-u-t, s-v-t, s-u-v-t

u

ts

v

20/20

10/30

10/10

20/2010/10

A Greedy Attempt

▪ We have a flow of size 30, and it is optimal.

▪ Is it always optimal?

u

ts

v

20/20

10/30

10/10

20/2010/10

A Greedy Attempt

▪ Iteratively find an 𝑠-𝑡 path and push as much flow as
possible along it.

▪ What if our first choice is s-u-v-t?

u

ts

v

20

30

10

2010

A Greedy Attempt

▪ Iteratively find an 𝑠-𝑡 path and push as much flow as
possible along it.

▪ What if our first choice is s-u-v-t?

u

ts

v

20/20

20/30

10

20/2010

Flow “Cancellation”

▪ What if our first choice is s-u-v-t?

▪ We need to be able to “cancel” flow on an edge!

u

ts

v

20/20

20/30

10

20/2010

+10
-10

+10

Residual Network

▪ Residual Network 𝐺𝑓 with respect to a flow 𝑓.

u

ts

v

20/20

20/30

10

20/2010

u

ts

v

10

10

𝐺 𝐺𝑓

20

20

20 10

Residual Network

▪ Now we are able to continue!

▪ There is a path on 𝐺𝑓: s-v-u-t

u

ts

v

20/20

20/30

10

20/2010

u

ts

v

10

10

𝐺 𝐺𝑓

20

20

20 10

Residual Network

▪ Now we are able to continue!

▪ We can push 10 unit of flow on s-v-u-t

u

ts

v

20/20

20/30

10

20/2010

u

ts

v

10/10

10/10

𝐺 𝐺𝑓

0/20

0/20

10/20 0/10

Residual Network

original graph 𝐺.
u

ts

v

20/20

10/30

10/10

20/2010/10

u

ts

v

10

10

𝐺 𝐺𝑓

20

20

10 20

residual graph 𝐺𝑓.

Now it is clear to us that no more flow can be pushed from s to t!

Update Residual Network 𝐺𝑓

Given 𝐺 = (𝑉, 𝐸), 𝑐, and a flow 𝑓

𝐺𝑓 = (𝑉𝑓 , 𝐸𝑓) and the associated capacity 𝑐𝑓: 𝐸𝑓 → ℝ+ are
defined as follows:

▪ 𝑉𝑓 = 𝑉

▪ 𝑢, 𝑣 ∈ 𝐸𝑓 if one of the followings holds
– 𝑢, 𝑣 ∈ 𝐸 and 𝑓 𝑢, 𝑣 < 𝑐(𝑢, 𝑣): in this case, 𝑐𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓(𝑢, 𝑣)

– 𝑣, 𝑢 ∈ 𝐸 and 𝑓 𝑣, 𝑢 > 0: in this case, 𝑐𝑓 𝑢, 𝑣 = 𝑓 𝑣, 𝑢

Putting Together

▪ Initialize an empty flow 𝑓 and the corresponding residual
flow 𝐺𝑓.

▪ Iteratively
– find a path on 𝐺𝑓,

– push maximum amount of flow on 𝐺𝑓, and

– update 𝑓 and 𝐺𝑓,

▪ until there is no 𝑠-𝑡 path on 𝐺𝑓.

This is exactly Ford-Fulkerson Algorithm!

FordFulkerson(𝐺 = 𝑉, 𝐸 , 𝑠, 𝑡, 𝑐):

1. initialize 𝑓 such that ∀𝑒 ∈ 𝐸: 𝑓 𝑒 = 0; initialize 𝐺𝑓 ← 𝐺;

2. while there is an 𝑠-𝑡 path 𝑝 on 𝐺𝑓:

3. find an edge 𝑒 ∈ 𝑝 with minimum capacity 𝑏;

4. for each 𝑒 = 𝑢, 𝑣 ∈ 𝑝:

5. if 𝑢, 𝑣 ∈ 𝐸: update 𝑓 𝑒 ← 𝑓 𝑒 + 𝑏;

6. if 𝑣, 𝑢 ∈ 𝐸: update 𝑓 𝑒 ← 𝑓 𝑒 − 𝑏;

7. endfor

8. update 𝐺𝑓;

9. endwhile

10. return 𝑓

Ford-Fulkerson Algorithm

A Small Bug…

▪ What if we have both 𝑢, 𝑣 ∈ 𝐸 and 𝑣, 𝑢 ∈ 𝐸?

▪ We need to do either 5 or 6, but not both!

▪ Fix: modify the graph so that no anti-parallel edge exists.

4. for each 𝑒 = 𝑢, 𝑣 ∈ 𝑝:

5. if 𝑢, 𝑣 ∈ 𝐸: update 𝑓 𝑒 ← 𝑓 𝑒 + 𝑏;

6. if 𝑣, 𝑢 ∈ 𝐸: update 𝑓 𝑒 ← 𝑓 𝑒 − 𝑏;

7. endfor

Correctness? Time Complexity?

▪ Correctness: Max-Flow-Min-Cut Theorem

▪ Time Complexity:
– Question 1: Does the algorithm always halt?

– Question 2: If so, what is the time complexity?

Does the algorithm always halt?

▪ Let’s start from simplest case: all the capacities are integers.

▪ Each while-loop iteration increase the value of 𝑓 by at least 1.

▪ Thus, the algorithm will halt within 𝑓𝑚𝑎𝑥 iterations.

▪ Theorem. If each 𝑐(𝑒) is an integer, then the value of the
maximum flow 𝑓 is an integer.

▪ Proof. The value of 𝑓 is always an integer throughout Ford-
Fulkerson Algorithm.

Does the algorithm always halt?

▪ How about rational capacities?

▪ Rescale capacities to make them integers.

▪ Yes, the algorithm will halt!

Does the algorithm always halt?

▪ How about possibly irrational capacities?

▪ No, the algorithm do not always halt!

Time Complexity?

▪ Assume all capacities are integers, what is the time
complexity?

▪ Each iteration requires 𝑂(|𝐸|) time:
– 𝑂(|𝐸|) is sufficient for finding 𝑝, updating 𝑓 and 𝐺𝑓

▪ There are at most 𝑓𝑚𝑎𝑥 iterations.

▪ Overall: 𝑂(𝐸 ⋅ 𝑓𝑚𝑎𝑥)

▪ Can we analyze it better?

Time Complexity?

▪ Can we analyze it better?

▪ It depends on how you choose 𝑝 in each iteration!

▪ The complexity bound 𝑂(𝐸 ⋅ 𝑓𝑚𝑎𝑥) is tight for arbitrary
choices!

u

ts

v

1

10000000

10000000

10000000

10000000

Method vs Algorithm

▪ Different choices of augmenting paths 𝑝 give different
implementation of Ford-Fulkerson.

▪ The description of Ford-Fulkerson Algorithm is incomplete.

▪ For this reason, it is sometimes called Ford-Fulkerson
Method.

Next Lecture…

▪ Max-Flow-Min-Cut Theorem
– Correctness of Ford-Fulkerson Method

– Many theorem applications

▪ Edmonds-Karp Algorithm
– An implementation of Ford-Fulkerson Method with complexity
𝑂 𝑉 ⋅ 𝐸 2 .

Applications of Integrality Theorem

▪ Theorem. If each 𝑐(𝑒) is an integer, then the value of the
maximum flow 𝑓 is an integer.

▪ Application 1: Tournament example you have seen earlier.

▪ The max-flow 𝑓 must satisfy ∀𝑒: 𝑓 𝑒 ∈ ℤ.

s t

B-C

A-C B

C

6
6

6

1

1
1

1 1

1

1

3

4

Wins to be
distributed

Maximum
allowable
wins

A-B A

Application 2: Maximum Bipartite Matching

▪ Top vertices are girls, bottom vertices are boys.

▪ An edge represent a possible match for a boy and a girl.

▪ Problem: find a maximum matching for boys and girls.

Maximum Bipartite Matching - Formal

▪ Given a graph 𝐺 = (𝑉, 𝐸), a matching 𝑀 is a subset of edges
that do not share vertices in common.

▪ The size of a matching is the number of edges in it.

▪ Problem: Given a bipartite graph 𝐺 = (𝐴, 𝐵, 𝐸) find a
matching with the maximum size.

Application 2: Maximum Bipartite Matching

▪ Greedy doesn’t work!

Application 2: Maximum Bipartite Matching

▪ Greedy doesn’t work!

Application 2: Maximum Bipartite Matching

▪ Naïve greedy doesn’t work!

Application 2: Maximum Bipartite Matching

▪ Naïve greedy doesn’t work!

Application 2: Maximum Bipartite Matching

▪ Naïve greedy doesn’t work!

▪ A total of 4 matches…

Application 2: Maximum Bipartite Matching

▪ Greedy doesn’t work!

▪ A better solution…

Application 2: Maximum Bipartite Matching

▪ Applying maximum flow and Ford-Fulkerson Method.

s

t

1
111

1

1
111111

∞

∞

∞ ∞∞∞∞

∞

∞∞

Application 2: Maximum Bipartite Matching

▪ An integral flow corresponds to a matching.

▪ Integrality theorem ensures the maximum flow can be integral.
s

t

1
111

1

1
111111

∞

∞

∞ ∞∞∞∞

∞

∞∞

Dessert

▪ A graph is regular if all the vertices have the same degree.

▪ A matching is perfect if all the vertices are matched.

▪ Prove that a regular bipartite graph always has a perfect
matching.

