# **Network Flow**

Maximum Flow Problem, Ford-Fulkerson Algorithm, Max-Matching on Bipartite Graphs

### Maximum Flow Problem

- Railway system has a network of city-to-city routes.
- Each route labeled with maximum number of passengers per train.
- Question: How many passengers can we send from Chengdu to Shanghai?



### Flow – Formal Definition

• Given a directed graph G = (V, E) with a source  $s \in V$  and a sink  $t \in V$ , and a capacity assigned to each edge  $c: E \to \mathbb{R}^+$ , a flow is a map  $f: E \to \mathbb{R}_{\geq 0}$  satisfying the followings:

- **<u>Capacity Constraint</u>**: for each  $e \in E$ ,  $f(e) \le c(e)$ , and
- **Flow Conservation**: for each  $u \in V \setminus \{s, t\}$ ,

 $\sum_{v:(u,v)\in E}f(v,u)=\sum_{w:(u,w)\in E}f(u,w).$ 

The value of the flow is defined as

$$v(f) = \sum_{v:(s,v)\in E} f(s,v).$$

- We want to build a data transmission channel from s to t.
- We can use intermediate routers *a*, *b*, *c*, *d*, *e*.
- Each edge has a bandwidth, limiting the maximum rate of data transmission.
- What is the maximum rate of data that can be transferred?



- Table describes number of matches each team has won.
- Number on each edge represents number of remaining matches.
- Does Team D have a chance for the champion?





### Let us first assume Team D wins all the 12 remaining matches.





Team A must win at most 1
Team B must win at most 3
Team C must win at most 4

6

B





6

A-B

A-(

**B-**(

6

S

 If Team D has a chance for championship, the maximum flow should be 1+6+1=8.

A

1

|   | Wins | Max Num of<br>Additional Wins |  |  |
|---|------|-------------------------------|--|--|
| А | 40   | 1                             |  |  |
| В | 38   | 3                             |  |  |
| С | 37   | 4                             |  |  |
| D | 41   |                               |  |  |



 Iteratively find an s-t path and push as much flow as possible along it.



 Iteratively find an s-t path and push as much flow as possible along it.

– s-u-t



 Iteratively find an s-t path and push as much flow as possible along it.



 Iteratively find an s-t path and push as much flow as possible along it.

– s-u-t, s-v-t



 Iteratively find an s-t path and push as much flow as possible along it.

- s-u-t, s-v-t, s-u-v-t



We have a flow of size 30, and it is optimal.
Is it always optimal?



- Iteratively find an s-t path and push as much flow as possible along it.
- What if our first choice is s-u-v-t?



- Iteratively find an s-t path and push as much flow as possible along it.
- What if our first choice is s-u-v-t?



### Flow "Cancellation"

What if our first choice is s-u-v-t?
We need to be able to "cancel" flow on an edge!



• Residual Network  $G^f$  with respect to a flow f.



Now we are able to continue!
There is a path on *G<sup>f</sup>*: s-v-u-t



Now we are able to continue!
We can push 10 unit of flow on s-v-u-t





Now it is clear to us that no more flow can be pushed from s to t!

### Update Residual Network G<sup>f</sup>

Given G = (V, E), c, and a flow f

 $G^f = (V^f, E^f)$  and the associated capacity  $c^f : E^f \to \mathbb{R}^+$  are defined as follows:

•  $V^f = V$ 

- $(u, v) \in E^f$  if one of the followings holds
  - $-(u,v) \in E$  and f(u,v) < c(u,v): in this case,  $c^{f}(u,v) = c(u,v) f(u,v)$
  - $(v, u) \in E$  and f(v, u) > 0: in this case,  $c^{f}(u, v) = f(v, u)$

### Putting Together

- Initialize an empty flow *f* and the corresponding residual flow *G<sup>f</sup>*.
- Iteratively
  - find a path on  $G^f$ ,
  - push maximum amount of flow on  $G^f$ , and
  - update f and  $G^{f}$ ,
- until there is no s-t path on  $G^f$ .

### This is exactly Ford-Fulkerson Algorithm!

#### Ford-Fulkerson Algorithm

**FordFulkerson**(G = (V, E), s, t, c):

- 1. initialize f such that  $\forall e \in E: f(e) = 0$ ; initialize  $G^f \leftarrow G$ ;
- 2. while there is an s-t path p on  $G^{f}$ :
- 3. find an edge  $e \in p$  with minimum capacity b;
- 4. for each  $e = (u, v) \in p$ :
- 5. if  $(u, v) \in E$ : update  $f(e) \leftarrow f(e) + b$ ;
- 6. if  $(v, u) \in E$ : update  $f(e) \leftarrow f(e) b$ ;
- 7. endfor
- 8. update  $G^f$ ;
- 9. endwhile

10. return *f* 

### A Small Bug...

|  | 4. | for eac | he = 0 | (u, v) | $e \in p$ : |
|--|----|---------|--------|--------|-------------|
|--|----|---------|--------|--------|-------------|

- 5. if  $(u, v) \in E$ : update  $f(e) \leftarrow f(e) + b$ ;
- 6. if  $(v, u) \in E$ : update  $f(e) \leftarrow f(e) b$ ;
- 7. endfor
- What if we have both  $(u, v) \in E$  and  $(v, u) \in E$ ?
- We need to do either 5 or 6, but not both!
- Fix: modify the graph so that no anti-parallel edge exists.

### Correctness? Time Complexity?

- Correctness: Max-Flow-Min-Cut Theorem
- Time Complexity:
  - Question 1: Does the algorithm always halt?
  - Question 2: If so, what is the time complexity?

### Does the algorithm always halt?

Let's start from simplest case: all the capacities are integers.
Each while-loop iteration increase the value of *f* by at least 1.
Thus, the algorithm will halt within *f<sub>max</sub>* iterations.

- Theorem. If each c(e) is an integer, then the value of the maximum flow f is an integer.
- *Proof.* The value of *f* is always an integer throughout Ford-Fulkerson Algorithm.

### Does the algorithm always halt?

- How about rational capacities?
- Rescale capacities to make them integers.
- Yes, the algorithm will halt!

### Does the algorithm always halt?

How about possibly irrational capacities?No, the algorithm do not always halt!

#### Non-terminating example [edit]

Consider the flow network shown on the right, with source s, sink t, capacities of edges  $e_1$ ,  $e_2$  and  $e_3$  respectively 1,  $r = (\sqrt{5} - 1)/2$  and 1 and the capacity of all other edges some integer  $M \ge 2$ . The constant r was chosen so, that  $r^2 = 1 - r$ . We use augmenting paths according to the following table, where  $p_1 = \{s, v_4, v_3, v_2, v_1, t\}$ ,  $p_2 = \{s, v_2, v_3, v_4, t\}$  and  $p_3 = \{s, v_1, v_2, v_3, t\}$ .

| Stop | Augmenting path   | Sent flow | <b>Residual capacities</b> |       |       |
|------|-------------------|-----------|----------------------------|-------|-------|
| ыер  |                   |           | $e_1$                      | $e_2$ | $e_3$ |
| 0    |                   |           | $r^0=1$                    | r     | 1     |
| 1    | $\{s,v_2,v_3,t\}$ | 1         | $r^0$                      | $r^1$ | 0     |
| 2    | $p_1$             | $r^1$     | $r^2$                      | 0     | $r^1$ |
| 3    | $p_2$             | $r^1$     | $r^2$                      | $r^1$ | 0     |
| 4    | $p_1$             | $r^2$     | 0                          | $r^3$ | $r^2$ |
| 5    | $p_3$             | $r^2$     | $r^2$                      | $r^3$ | 0     |



Note that after step 1 as well as after step 5, the residual capacities of edges  $e_1$ ,  $e_2$  and  $e_3$  are in the form  $r^n$ ,  $r^{n+1}$  and 0, respectively, for some  $n \in \mathbb{N}$ . This means that we can use augmenting paths  $p_1$ ,  $p_2$ ,  $p_1$  and  $p_3$  infinitely many times and residual capacities of these edges will always be in the same form. Total flow in the network after step 5 is  $1 + 2(r^1 + r^2)$ . If we continue to use augmenting paths as above, the total flow converges to  $1 + 2\sum_{i=1}^{\infty} r^i = 3 + 2r$ . However, note that there is a flow of value 2M + 1, by sending M units of flow along  $sv_1t$ , 1 unit of flow along  $sv_2v_3t$ , and M units of flow along  $sv_4t$ . Therefore, the algorithm never terminates and the flow does not even converge to the maximum flow.<sup>[4]</sup>

Another non-terminating example based on the Euclidean algorithm is given by Backman & Huynh (2018), where they also show that the worst case running-time of the Ford-Fulkerson algorithm on a network G(V, E) in ordinal numbers is  $\omega^{\Theta(|E|)}$ .

### Time Complexity?

- Assume all capacities are integers, what is the time complexity?
- Each iteration requires O(|E|) time:
  - O(|E|) is sufficient for finding p, updating f and  $G^{f}$
- There are at most *f<sub>max</sub>* iterations.
- Overall:  $O(|E| \cdot f_{max})$
- Can we analyze it better?

### Time Complexity?

- Can we analyze it better?
- It depends on how you choose p in each iteration!
- The complexity bound  $O(|E| \cdot f_{max})$  is tight for arbitrary choices!



### Method vs Algorithm

- Different choices of augmenting paths p give different implementation of Ford-Fulkerson.
- The description of Ford-Fulkerson Algorithm is incomplete.
- For this reason, it is sometimes called Ford-Fulkerson Method.

### Next Lecture...

- Max-Flow-Min-Cut Theorem
  - Correctness of Ford-Fulkerson Method
  - Many theorem applications
- Edmonds-Karp Algorithm
  - An implementation of Ford-Fulkerson Method with complexity  $O(|V| \cdot |E|^2)$ .

### **Applications of Integrality Theorem**

- Theorem. If each c(e) is an integer, then the value of the maximum flow f is an integer.
- Application 1: Tournament example you have seen earlier.
- The max-flow f must satisfy  $\forall e: f(e) \in \mathbb{Z}$ .



- Top vertices are girls, bottom vertices are boys.
- An edge represent a possible match for a boy and a girl.
- Problem: find a maximum matching for boys and girls.



### Maximum Bipartite Matching - Formal

- Given a graph G = (V, E), a matching M is a subset of edges that do not share vertices in common.
- The size of a matching is the number of edges in it.
- Problem: Given a bipartite graph G = (A, B, E) find a matching with the maximum size.

Greedy doesn't work!



Greedy doesn't work!



Naïve greedy doesn't work!



Naïve greedy doesn't work!



Naïve greedy doesn't work!A total of 4 matches...



Greedy doesn't work!A better solution...



Applying maximum flow and Ford-Fulkerson Method.



An integral flow corresponds to a matching.

 $\infty$ 

8

00

bo

 $\infty$ 

 $\hat{\mathbf{O}}$ 

Integrality theorem ensures the maximum flow can be integral.

00

00

 $\infty$ 

### Dessert

- A graph is regular if all the vertices have the same degree.
- A matching is perfect if all the vertices are matched.
- Prove that a regular bipartite graph always has a perfect matching.