
Network Flow

Max-Flow-Min-Cut Theorem, Max-Matching on Bipartite
Graphs

Flow-Definition

⚫Capacity Constraint: for each 𝑒 ∈ 𝐸, 𝑓 𝑒 ≤ 𝑐(𝑒), and
⚫Flow Conservation: for each 𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡},

෍

𝑣: 𝑢,𝑣 ∈𝐸

𝑓(𝑣, 𝑢) = ෍

𝑤: 𝑢,𝑤 ∈𝐸

𝑓(𝑢,𝑤) .

⚫The value of the flow is defined as 𝑣 𝑓 = σ𝑣: 𝑠,𝑣 ∈𝐸 𝑓(𝑠, 𝑣) .

3

2/3

1/4

10

2/2

1

1/1

5

1/1

2/2

1/5

s

a

d

c

e

b

t

Ford-Fulkerson Algorithm

3

3

4

10

2

1

1

5

1

2

5

s

a

d

c

e

b

t

3

2/3

4

10

2/2

1

1

5

1

2/2

5

s

a

d

c

e

b

t

Residual Network

Current Flow

Ford-Fulkerson Algorithm

2

1

4

10

2

1

1

5

1

2

5

s

a

d

c

e

b

t

3

2/3

4/4

10

2/2

1

1

4/5

1

2/2

4/5

s

a

d

c

e

b

t

Residual Network

Current Flow

3

Ford-Fulkerson Algorithm

2

1

4

10

2

1

1

4

1

2

s

a

d

c

e

b

t

1/3

2/3

4/4

10

2/2

1/1

1

4/5

1/1

2/2

5/5

s

a

d

c

e

b

t

Residual Network

Current Flow

3

1

1

4

Is 𝑣(𝑓) = 7 optimal?
Correctness of Ford-Fulkerson algorithm?

2
2

4

10

2

1

1

4

1

2

s

a

d

c

e

b

t

1/3

2/3

4/4

10

2/2

1/1

1

4/5

1/1

2/2

5/5

s

a

d

c

e

b

t

Residual Network

Current Flow

1 5

1

1

Consider the following partition of vertices…

2
2

4

10

2

1

1

4

1

2

s

a

d

c

e

b

t

1/3

2/3

4/4

10

2/2

1/1

1

4/5

1/1

2/2

5/5

s

a

d

c

e

b

t

Residual Network

Current Flow

1 5

1

1

No more additional flow can be sent along
the yellow edges crossing the border!

2
2

4

10

2

1

1

4

1

2

s

a

d

c

e

b

t

1/3

2/3

4/4

10

2/2

1/1

1

4/5

1/1

2/2

5/5

s

a

d

c

e

b

t

Residual Network

Current Flow

1 5

1

1

We have 𝑣 𝑓 ≤ 7, since we can send at most
7 units of flow across the border.

2
2

4

10

2

1

1

4

1

2

s

a

d

c

e

b

t

1/3

2/3

4/4

10

2/2

1/1

1

4/5

1/1

2/2

5/5

s

a

d

c

e

b

t

Residual Network

Current Flow

1 5

1

1

Thus, 𝑣 𝑓 = 7 is optimal!

2
2

4

10

2

1

1

4

1

2

s

a

d

c

e

b

t

1/3

2/3

4/4

10

2/2

1/1

1

4/5

1/1

2/2

5/5

s

a

d

c

e

b

t

Residual Network

Current Flow

1 5

1

1

In fact, every “cut” gives an upper-bound to 𝑣(𝑓).

3

3

4

10

2

1

1

5

1

2

5

s

a

d

c

e

b

t

3

3

4

10

2

1

1

5

1

2

5

s

a

d

c

e

b

t

𝑣 𝑓 ≤ 2 + 1 + 1 + 5 = 9

𝑣 𝑓 ≤ 3 + 2 + 5 + 1 = 11

The Minimum Cut Problem

▪ We want to find a tightest upper-bound to 𝑣(𝑓) by a
carefully chosen cut.

▪ Given weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) and 𝑠, 𝑡 ∈ 𝑉, an 𝑠-𝑡 cut is
a partition of 𝑉 to 𝐿, 𝑅 such that 𝑠 ∈ 𝐿 and 𝑡 ∈ 𝑅.

▪ The value of the cut is defined by

𝑐 𝐿, 𝑅 = ෍

𝑢,𝑣 ∈𝐸,𝑢∈𝐿,𝑣∈𝑅

𝑤(𝑢, 𝑣)

▪ Min-Cut Problem: Given 𝐺 = (𝑉, 𝐸, 𝑤) and 𝑠, 𝑡 ∈ 𝑉, find the
𝑠-𝑡 cut with the minimum value.

Max-Flow-Min-Cut Theorem

▪ View the capacity 𝑐(𝑢, 𝑣) as the weight 𝑤(𝑢, 𝑣)

▪ The value of every 𝑠-𝑡 cut is an upper-bound to 𝑣(𝑓).

Max-Flow-Min-Cut Theorem. The value of the maximum
flow is exactly the value of the minimum cut:

max
𝑓

𝑣 𝑓 = min
𝐿,𝑅

𝑐(𝐿, 𝑅)

Proving Max-Flow-Min-Cut Theorem

▪ Lemma 1. For any flow 𝑓 and any cut {𝐿, 𝑅}, we have 𝑣 𝑓 ≤
𝑐(𝐿, 𝑅).
– Formalize the idea that the value of any cut is an upper-bound to the

value of any flow.

▪ Lemma 2. There exists a cut {𝐿, 𝑅} such that the flow 𝑓
output by Ford-Fulkerson Algorithm satisfies 𝑣 𝑓 = 𝑐(𝐿, 𝑅).
– Concludes Max-Flow-Min-Cut Theorem.

– Proves the correctness of Ford-Fulkerson Algorithm.

Proof of Lemma 1

▪ Let 𝑓(𝐿, 𝑅) be the amount of flow going from 𝐿 to 𝑅:

𝑓 𝐿, 𝑅 = ෍

𝑢,𝑣 ∈𝐸,𝑢∈𝐿,𝑣∈𝑅

𝑓(𝑢, 𝑣)

▪ Define 𝑓(𝑅, 𝐿) similarly.

▪ Claim: 𝑣 𝑓 = 𝑓 𝐿, 𝑅 − 𝑓(𝑅, 𝐿)
– Generalization of flow conservation.

▪ If the claim holds, Lemma 1 is proved:

𝑣 𝑓 ≤ 𝑓 𝐿, 𝑅 = ෍

𝑢,𝑣 ∈𝐸,𝑢∈𝐿,𝑣∈𝑅

𝑓 𝑢, 𝑣 ≤ ෍

𝑢,𝑣 ∈𝐸,𝑢∈𝐿,𝑣∈𝑅

𝑐 𝑢, 𝑣 = 𝑐(𝐿, 𝑅)

Lemma 1. For any flow 𝑓 and any cut {𝐿, 𝑅}, we have 𝑣 𝑓 ≤ 𝑐(𝐿, 𝑅).

Proving generalized flow conservation

Claim: 𝑣 𝑓 = 𝑓 𝐿, 𝑅 − 𝑓(𝑅, 𝐿)

s t

𝑓 𝐿, 𝑅

𝑓 𝑅, 𝐿

𝑣(𝑓)

𝐿 𝑅

Inner circulation

Proving generalized flow conservation

▪ Let 𝑓out 𝑢 = σ𝑤: 𝑢,𝑤 ∈𝐸 𝑓(𝑢,𝑤) be the amount of flow leaving 𝑢.

▪ Let 𝑓in 𝑢 = σ𝑤: 𝑤,𝑢 ∈𝐸 𝑓(𝑤, 𝑢) be the amount of flow entering 𝑢.

▪ Flow conservation:
– 𝑓out 𝑢 = 𝑓in 𝑢 for 𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡}
– 𝑓out(𝑠) = 𝑣(𝑓), 𝑓in 𝑠 = 0

▪ Summing up vertices in 𝐿:

෍

𝑢∈𝐿

𝑓out 𝑢 − 𝑓in 𝑢 = 𝑓out 𝑠 + ෍

𝑢∈𝐿∖{𝑠}

0 = 𝑣 𝑓 .

Claim: 𝑣 𝑓 = 𝑓 𝐿, 𝑅 − 𝑓(𝑅, 𝐿)

Proving generalized flow conservation

▪ Summing up vertices in 𝐿:

෍

𝑢∈𝐿

𝑓out 𝑢 − 𝑓in 𝑢 = 𝑓out 𝑠 + ෍

𝑢∈𝐿∖{𝑠}

0 = 𝑣 𝑓 .

▪ Look at the summation again. Can you see the following?

෍

𝑢∈𝐿

𝑓out 𝑢 − 𝑓in 𝑢 = ෍

𝑢,𝑣 ∈𝐸,𝑢∈𝐿,𝑣∈𝑅

𝑓(𝑢, 𝑣) − ෍

𝑢,𝑣 ∈𝐸,𝑢∈𝑅,𝑣∈𝐿

𝑓 𝑢, 𝑣

▪ For each 𝑓(𝑢, 𝑣) with 𝑢, 𝑣 ∈ 𝐿, it contributes +𝑓(𝑢, 𝑣) to the summation by
𝑓out 𝑢 and contributes −𝑓(𝑢, 𝑣) by 𝑓in 𝑣 . Cancelled!

▪ For each 𝑓(𝑢, 𝑣) with 𝑢 ∈ 𝐿, 𝑣 ∈ 𝑅, it contributes +𝑓(𝑢, 𝑣) to the summation.

▪ For each 𝑓(𝑢, 𝑣) with 𝑢 ∈ 𝑅, 𝑣 ∈ 𝐿, it contributes −𝑓(𝑢, 𝑣) to the summation.

Claim: 𝑣 𝑓 = 𝑓 𝐿, 𝑅 − 𝑓(𝑅, 𝐿)

Proving generalized flow conservation

▪ We have

෍

𝑢∈𝐿

𝑓out 𝑢 − 𝑓in 𝑢 = 𝑓out 𝑠 + ෍

𝑢∈𝐿∖{𝑠}

0 = 𝑣 𝑓

▪ and

෍

𝑢∈𝐿

𝑓out 𝑢 − 𝑓in 𝑢 = ෍

𝑢,𝑣 ∈𝐸,𝑢∈𝐿,𝑣∈𝑅

𝑓(𝑢, 𝑣) − ෍

𝑢,𝑣 ∈𝐸,𝑢∈𝑅,𝑣∈𝐿

𝑓 𝑢, 𝑣

▪ Putting together:

𝑣 𝑓 = ෍

𝑢,𝑣 ∈𝐸,𝑢∈𝐿,𝑣∈𝑅

𝑓(𝑢, 𝑣) − ෍

𝑢,𝑣 ∈𝐸,𝑢∈𝑅,𝑣∈𝐿

𝑓 𝑢, 𝑣 = 𝑓 𝐿, 𝑅 − 𝑓(𝑅, 𝐿)

Claim: 𝑣 𝑓 = 𝑓 𝐿, 𝑅 − 𝑓(𝑅, 𝐿)

Proof of Lemma 1

▪ Claim: 𝑣 𝑓 = 𝑓 𝐿, 𝑅 − 𝑓(𝑅, 𝐿)
– Generalization of flow conservation.

▪ Proof of Lemma 1:

𝑣 𝑓 ≤ 𝑓 𝐿, 𝑅 = ෍

𝑢,𝑣 ∈𝐸,𝑢∈𝐿,𝑣∈𝑅

𝑓 𝑢, 𝑣 ≤ ෍

𝑢,𝑣 ∈𝐸,𝑢∈𝐿,𝑣∈𝑅

𝑐 𝑢, 𝑣 = 𝑐(𝐿, 𝑅)

Lemma 1. For any flow 𝑓 and any cut {𝐿, 𝑅}, we have 𝑣 𝑓 ≤ 𝑐(𝐿, 𝑅).

Proof of Lemma 2

▪ 𝑓: output of Ford-Fulkerson

▪ 𝐿: vertices reachable from 𝑠 in 𝐺𝑓

▪ 𝑅 = 𝑉 ∖ 𝐿

▪ Claim A: 𝑓 𝐿, 𝑅 = 𝑐(𝐿, 𝑅)

▪ Claim B: 𝑓 𝑅, 𝐿 = 0

▪ 𝑣 𝑓 = 𝑓 𝐿, 𝑅 − 𝑓 𝑅, 𝐿 = 𝑐(𝐿, 𝑅)

Lemma 2. There exists a cut {𝐿, 𝑅} such that the flow 𝑓 output by Ford-Fulkerson Algorithm
satisfies 𝑣 𝑓 = 𝑐(𝐿, 𝑅).

2
2

4

10

2

1

1

4

1

2

s

a

d

c

e

t

1 5

1

1

𝐿

𝑅

Residual Network 𝐺𝑓

Proof of Lemma 2

▪ Claim A: 𝑓 𝐿, 𝑅 = 𝑐(𝐿, 𝑅)
– Otherwise, exist (𝑢, 𝑣) with 𝑢 ∈ 𝐿, 𝑣 ∈ 𝑅 such that 𝑓 𝑢, 𝑣 < 𝑐(𝑢, 𝑣)

– Thus, (𝑢, 𝑣) is in 𝐺𝑓 and 𝑣 is reachable from 𝑠

– Contradict to 𝑣 ∈ 𝑅 by our definition of 𝐿

▪ Claim B: 𝑓 𝑅, 𝐿 = 0
– Otherwise, exist (𝑣, 𝑢) with 𝑢 ∈ 𝐿, 𝑣 ∈ 𝑅 such that 𝑓 𝑣, 𝑢 > 0

– Thus, (𝑢, 𝑣) is in 𝐺𝑓 and 𝑣 is reachable from 𝑠

– Contradict to 𝑣 ∈ 𝑅 by our definition of 𝐿

Lemma 2. There exists a cut {𝐿, 𝑅} such that the flow 𝑓 output by Ford-Fulkerson
Algorithm satisfies 𝑣 𝑓 = 𝑐(𝐿, 𝑅).

Proof of Max-Flow-Min-Cut Theorem

Lemma 1. For any flow 𝑓 and any cut {𝐿, 𝑅}, we have 𝑣 𝑓 ≤ 𝑐(𝐿, 𝑅).

Lemma 2. There exists a cut {𝐿, 𝑅} such that the flow 𝑓 output by Ford-Fulkerson
Algorithm satisfies 𝑣 𝑓 = 𝑐(𝐿, 𝑅).

𝑣 𝑓1

𝑣 𝑓2

𝑣 𝑓3

𝑣 𝑓4

𝑐 𝐿1, 𝑅1

𝑐 𝐿2, 𝑅2

𝑐 𝐿3, 𝑅3

𝑐 𝐿4, 𝑅4

𝑣 𝑓1

𝑣 𝑓2

𝑣 𝑓3

𝑣 𝑓∗

𝑐 𝐿∗, 𝑅∗

𝑐 𝐿2, 𝑅2

𝑐 𝐿3, 𝑅3

𝑐 𝐿4, 𝑅4

Max-Flow = Min-Cut

Algorithm for finding a minimum cut

Min-Cut Problem: Given 𝐺 = (𝑉, 𝐸, 𝑤) and 𝑠, 𝑡 ∈ 𝑉, find the 𝑠-𝑡
cut with the minimum value.

▪ Solve the max-flow problem with ∀ 𝑢, 𝑣 ∈ 𝐸: 𝑐 𝑢, 𝑣 = 𝑤(𝑢, 𝑣)

▪ Let 𝑓 be the maximum flow and construct 𝐺𝑓

▪ 𝐿: vertices reachable from 𝑠 in 𝐺𝑓

▪ 𝑅 = 𝑉 ∖ 𝐿

▪ Return {𝐿, 𝑅}

Time Complexity?

▪ Correctness: Max-Flow-Min-Cut Theorem

▪ Time Complexity:
– Question 1: Does the algorithm always halt?

– Question 2: If so, what is the time complexity?

Does the algorithm always halt?

▪ Let’s start from simplest case: all the capacities are integers.

▪ Each while-loop iteration increase the value of 𝑓 by at least 1.

▪ Thus, the algorithm will halt within 𝑓𝑚𝑎𝑥 iterations.

▪ Theorem. If each 𝑐(𝑒) is an integer, then the value of the
maximum flow 𝑓 is an integer.

▪ Proof. The value of 𝑓 is always an integer throughout Ford-
Fulkerson Algorithm.

Does the algorithm always halt?

▪ How about rational capacities?

▪ Rescale capacities to make them integers.

▪ Yes, the algorithm will halt!

Does the algorithm always halt?

▪ How about possibly irrational capacities?

▪ No, the algorithm do not always halt!

Time Complexity?

▪ Assume all capacities are integers, what is the time
complexity?

▪ Each iteration requires 𝑂(|𝐸|) time:
– 𝑂(|𝐸|) is sufficient for finding 𝑝, updating 𝑓 and 𝐺𝑓

▪ There are at most 𝑓𝑚𝑎𝑥 iterations.

▪ Overall: 𝑂(𝐸 ⋅ 𝑓𝑚𝑎𝑥)

▪ Can we analyze it better?

Time Complexity?

▪ Can we analyze it better?

▪ It depends on how you choose 𝑝 in each iteration!

▪ The complexity bound 𝑂(𝐸 ⋅ 𝑓𝑚𝑎𝑥) is tight if choices of 𝑝
are not carefully specified!

u

ts

v

1

10000000

10000000

10000000

10000000

Method vs Algorithm

▪ Different choices of augmenting paths 𝑝 give different
implementation of Ford-Fulkerson.

▪ The description of Ford-Fulkerson Algorithm is incomplete.

▪ For this reason, it is sometimes called Ford-Fulkerson
Method.

▪ Next Lecture Preview: Edmonds-Karp Algorithm, which
implement Ford-Fulkerson Method with time complexity
𝑂 𝑉 ⋅ 𝐸 2 .

Applications of Integrality Theorem

▪ Theorem. If each 𝑐(𝑒) is an integer, then the value of the
maximum flow 𝑓 is an integer.

▪ Application 1: Tournament example you have seen in the
last lecture.

▪ The max-flow 𝑓 must satisfy ∀𝑒: 𝑓 𝑒 ∈ ℤ.

s t

B-C

A-C B

C

6
6

6

1

1
1

1 1

1

1

3

4

Wins to be
distributed

Maximum
allowable
wins

A-B AWins Max Num of
Additional Wins

A 40 1

B 38 3

C 37 4

D 41

Application 2: Maximum Bipartite Matching

▪ Top vertices are girls, bottom vertices are boys.

▪ An edge represent a possible match for a boy and a girl.

▪ Problem: find a maximum matching for boys and girls.

Maximum Bipartite Matching - Formal

▪ Given a graph 𝐺 = (𝑉, 𝐸), a matching 𝑀 is a subset of edges
that do not share vertices in common.

▪ The size of a matching is the number of edges in it.

▪ Problem: Given a bipartite graph 𝐺 = (𝐴, 𝐵, 𝐸) find a
matching with the maximum size.

Application 2: Maximum Bipartite Matching

▪ Greedy doesn’t work!

Application 2: Maximum Bipartite Matching

▪ Greedy doesn’t work!

Application 2: Maximum Bipartite Matching

▪ Naïve greedy doesn’t work!

Application 2: Maximum Bipartite Matching

▪ Naïve greedy doesn’t work!

Application 2: Maximum Bipartite Matching

▪ Naïve greedy doesn’t work!

▪ A total of 4 matches…

Application 2: Maximum Bipartite Matching

▪ Greedy doesn’t work!

▪ A better solution…

Application 2: Maximum Bipartite Matching

▪ Applying maximum flow and Ford-Fulkerson Method.

s

t

1
111

1

1
111111

∞

∞

∞ ∞∞∞∞

∞

∞∞

Application 2: Maximum Bipartite Matching

▪ An integral flow corresponds to a matching.

▪ Integrality theorem ensures the maximum flow can be integral.
s

t

1
111

1

1
111111

∞

∞

∞ ∞∞∞∞

∞

∞∞

Dessert

▪ A graph is regular if all the vertices have the same degree.

▪ A matching is perfect if all the vertices are matched.

▪ Prove that a regular bipartite graph always has a perfect
matching.

Hall’s Marriage Theorem

▪ Consider the matching problem on a bipartite graph 𝐺 =
(𝐴, 𝐵, 𝐸).

▪ For a subset 𝑆 ⊆ 𝐴, let 𝑁 𝑆 ⊆ 𝐵 be the set of vertices that
are incident to vertices in 𝑆.

▪ Hall’s Marriage Theorem. There exists a matching of size
|𝐴| if and only if 𝑆 ≤ |𝑁 𝑆 | for every 𝑆 ⊆ 𝐴.

Proof of Hall’s Marriage Theorem

Exist a matching of size |𝐴| ⟹ ∀𝑆: 𝑆 ≤ |𝑁 𝑆 |.

▪ Suppose for the sake of contraction that ∃𝑆: 𝑆 > |𝑁 𝑆 |.

▪ There is no way to match all the vertices in 𝑆.

▪ Thus, there is no way to match all the vertices in 𝐴.

Proof of Hall’s Marriage Theorem

Exist a matching of size |𝐴| ⟸ ∀𝑆: 𝑆 ≤ |𝑁 𝑆 |.

▪ Given ∀𝑆: 𝑆 ≤ |𝑁 𝑆 |, suppose the
maximum matching has size 𝑀 < |𝐴|.

▪ The maximum flow has value 𝑀.
– Integrality Theorem

▪ The minimum cut has value 𝑀.
– Max-Flow-Min-Cut Theorem

s

t

1
111

1

1
111111

∞

∞

∞ ∞∞∞∞

∞

∞∞

Proof of Hall’s Marriage Theorem

Three cases for minimum cut {𝐿, 𝑅}:

▪ 1) 𝐿 = 𝑠 , 𝑅 = 𝐴 ∪ 𝐵 ∪ {𝑡}, 2) 𝐿 = 𝑠 ∪ 𝐴 ∪ 𝐵, 3) 𝐿𝐴, 𝐿𝐵, 𝑅𝐴, 𝑅𝐵 ≠ ∅.

𝐿𝐴

𝑅𝐴

𝐿𝐵

𝑅𝐵

Proof of Hall’s Marriage Theorem

Case 1) 𝐿 = 𝑠 , 𝑅 = 𝐴 ∪ 𝐵 ∪ {𝑡}:

▪ The minimum cut has size |𝐴|

▪ But we have assume the minimum
cut has size 𝑀 < |𝐴|.

▪ Case 1) cannot happen!

Proof of Hall’s Marriage Theorem

Case 2) 𝐿 = 𝑠 ∪ 𝐴 ∪ 𝐵, 𝑅 = {𝑡}:

▪ The minimum cut has size |𝐵|

▪ We have assume the minimum cut
has size 𝑀, so 𝐵 = 𝑀 < |𝐴|.

▪ Vertices in 𝐴 cannot be fully
matched!

Proof of Hall’s Marriage Theorem

Case 3) 𝐿𝐴, 𝐿𝐵, 𝑅𝐴, 𝑅𝐵 ≠ ∅:

▪ Minimum cut size: 𝑀 = 𝐿𝐵 + |𝑅𝐴|

▪ We also have 𝐿𝐴 + 𝑅𝐴 = |𝐴|

▪ 𝑀 < 𝐴 ⟹ 𝐿𝐴 > 𝐿𝐵

▪ No edge can go from 𝐿𝐴 to 𝑅𝐵
– Such an edge has weight ∞

▪ Thus, 𝑁 𝐿𝐴 ⊆ 𝐿𝐵, which implies
𝑁 𝐿𝐴 ≤ 𝐿𝐵 < 𝐿𝐴

▪ Contradicts to our assumption

𝐿𝐴

𝑅𝐴

𝐿𝐵

𝑅𝐵

Today’s Lecture

▪ Max-Flow-Min-Cut Theorem
– Equivalence of Max-Flow and Min-Cut problems

– Correctness of Ford-Fulkerson Method

▪ Flow Integrality Theorem
– Follows immediately from Ford-Fulkerson Method

▪ Maximum Bipartite Matching
– Translate the problem to Max-Flow applying integrality theorem

– Hall’s Marriage Theorem: application of Max-Flow-Min-Cut Theorem

