Network Flow |

Max-Flow-Min-Cut Theorem, Max-Matching on Bipartite
Graphs

Flow-Definition

~ @ Capacity Constraint: for each e ¢ E, f(e) < c(é), and
~ ® Flow Conservation: for each u € V \ {s, t},

S Yt > fuw).

v:(u,v)EE w:(u,w)€EE

® The value of the flow is defined as v(f) = X,.s)er £ (S, v).

Ford-Fulkerson Algorithm

<= Résidual Nétwork

Current Flowmsp

I — = == - —— - — ~ = mEe o E S 2 Ty

Ford-Fulkerson Algorithm

<= Résidual Nétwork

Current Flowmsp

I — = == - —— - — ~ = mEe o E S 2 Ty

Ford-Fulkerson Algorithm

<= Résidual Nétwork

Current Flowmsp

I — = == - — - — ~ = mEe o E S 2 Ty

Is v(f) = 7 optimal?
Correctness of Ford- Fulkerson algorlthm?

5 -

h ReS|duaI Network

Current Flowmsp

Consider the following partitioh of vertices...

: 4= Résidual Network
3 ‘

Current Flowmsp

———— - - = - — - = o wEe TS 3

" No more additional flow can be sent along
the yeIIow edges crossing the borderI

h Residual Network

o*
\d
*
‘0
*

Current Flowmsp

- - —— N — — - = == s = ~ = =

We have v(f) < 7, since we can send at most
7 units of flow across the border.

: 4= Résidual Network
> ,

/
d
2/3 ‘

4l4

‘O
0‘ -
*

-
*
*
\d
*
‘0
*

Current Flowmsp

e ——— = e - — - ——————— s e sy

Thus, v(f) = 7 is optimal!
¥ ' A br : i . S WU TR el OSSO

<= Résidual Nétwork

*
4
*
*
*
’Q
*

S
Current Flowmsp

In fact, every “cut” gives an upper—bound to v(f)

~v(f)<z+1+1+5—9

v(f)<34+2+4+5+1=11 =

The Minimum Cut Problem

S — < = - ———

? ‘We want to find a fightest upper-bound to v(f) by a
- caretully chosen cut. ,

= Given welghted graph G = (V,E,w) and s,t €V, an s- t cut is
a partition of V to L,R such that s € L and t € R. -

= The value of the cut is defined by |
c(L,R) e Z W(u, V)

(u,v)EE,UEL,VER

» Min-Cut Problem Given G = (V,E,w) and s,t € V/, find the
s-t cut with the minimum value.

Max-Flow-Min-Cut Theorem

E View the capacity C'.('u, v) as the weight w(u, v)

= The value of every s-t cut is an upper-bound to v(f).

Max-Flow-Min-Cut Theorem. The value of the maximum
flow is exactly the value of the minimum cut:

max v(f) = i (L, R)

Proving Max-Flow-Min-Cut Theorem

— - e = - —— - —— e

= Lemma 1. For any flow f and any cut {L, R}, we have v(f) <
“Cc(L Ry '
- - Formalize the |dea that the value of any cut Is an upper-bound to the
“value of any flow.

= Lemma 2. There eX|sts a cut {L, R} such that the flow f
output by Ford-Fulkerson Algorithm satisfies v(f) = ¢(L, R).

- Concludes Max-Flow-Min-Cut Theorem.
- Proves the correctness of Ford-Fulkerson Algorithm.

Proof of Lemma 1

Lemma 1. For any flow f and any éut {L,R}, We have v(f) é(c(L, R). 7'
+ Let f(L,R) be the amount of flow going from L to R:
‘ ALE= > ey

(u,v)EE, UEL,VER
= Define f(R,L) similarly.
= Claim: v(f) = f(L,R) — f(R, L)

- Generalization of flow conservation.

= If the claim holds, Lemma 1 is proved:

B = = z S v) = 2 e L

(u,v)EE, uEL,VER (u,v)EE,uEL,VER

Proving generalized flow conservation

— = =S - = - —— -

 Claim: v(f) = f(L.R) f(R.L)

FLR)

Inner circulation

: I\.

ot

Proving generalized flow conservation

— - : ——— : e e s

Claim: v(f) = f(L‘, R) = f(R.L)

= Let foU'(w) = Xy uwyee f(w, w) be the amount of flow leaving u.

- Let fin(u) = Yw:wwee f (w,u) be the amount of flow entering w.

» Flow conservation:
- fout(y) = fin(y) foru e V \ {s, t}
- fOUN(s) = v(f), fP(s) =0

= Summing up vertices in L:

> (7o =) = f + Y 0=v(h

UEL . ueL\{s}

Proving generalized flow conservation

— - : ——— : e e s

Claim: v(f) = f(L R)— (R L)

L Summlng up vertices in L:

D (Pt -) = £ +) 0= v(f).

UEL JISIANES

- Look at the summation again. Can you see the following?

> (FrwfEmls) e > e

U€EL (u,v)EE, uUEL,VER : (u,v)EE,UER,VEL

= For each f(u,v) with u, v € L, it contributes +f(u, v) to the summation by
% (u) and contributes —f (u, v) by f"(v). Cancelled!

= For each f(u,v) with u € L,v € R, it contributes +f(u, v) to the summation.

= For each f(u,v) with u € R, v € L, it contributes —f (u, v) to the summation.

Proving generalized flow conservation

— - ' —_— . i N s e S s 4

'Clalm v(f) = f(L R)— (R L)

= We have s o |
| D (e —) = o+) 0=v(f)
e u€eL\{s}
. an'd - '
2 (fout(u) - fin(u)) = Z C fwv) - z f(u,v)

UEL ' (u,v)EE, uUEL,VER ; (u,v)EE, UER,VEL
= Putting together: | .
W= > fa-) fan=f@LR-fRL)

(u,v)EE UEL,VER (u,v)EE UER,VEL

Proof of Lemma 1

EE———

Lemmaa. For any flow f and any éut {L,R}, We have v(f) étc(L, R). :
= Claim: v(f) = f(L,R) — f(R, L)

- Generalization of flow conservation.

« Proof of Lemma 1:

WA SIGR =") =eflir)s Y= Eho) = c@.R)

' (w,v)EE,uEL,VER : (u,v)EE, UEL,VER

Proof of Lemma 2

— ! x = — e — — W L)

Lemma 2; There exists a cut {L, R} such that the flow f dutput by F'ovrd—Fquerson Algorithm

satisfies v(f) = c(L,R). - ' Residual Network G/
= f:output of Ford—Fu'Ikersqn e o

L: vertices reachable from s in ¢/ 1 ' ;
nael e G
« Claim A: f(L,R) = c(L, R-) | R = C -
- Claim B: f(R,L) =0 =% 7

() =fLR~fRL =cLB) 7 o R

*
4
*
*
*
‘0
*

Proof of Lemma 2

EE——— - - — o e e N

~Lemma 2. There exists & cut {L, R} such that the flow f o'utput by Ford-Fulkerson
Algorithm satisfies v(f) = c(L, R).

= Claim A: f(L,R) = ¢(L,R) |
~ Otherwise, exist (u,v) with u € L,v € R such that f(u,v) < c(u,v)
- Thus, (u,v) is in ¢’ and v is reachable from s
- Contradict to v € R by our definition of L

= Claim B: f(R,L) =0 |
- Otherwise, exist (v,u) with u € L,v € R such that f(v,u) > 0
- Thus, (w,v) is in ¢/ and v is reachable from s
- Contradict to v € R by our definition of L

Proof of Max-Flow-Min-Cut Theorem

— - S = - — - —_— = S N e o S0 g

~ Lemma 1. For any flow f and any cut {L, R}, we have v(f) < c(L,R).

= v - ula) (L R5) L PR D
& wify) v(f3) : c(L{,R) c(L3, R3) :

Lemma 2. There exists a cut {L, R} such that the flow f output by Ford- Fulkerson
Algorithm satisfies v(f) = ¢(L,R). e

: v(fy) &)
v(f1) v(f3) A"f(L*"R*) c¢(Ls, R3) |

~ Max-Flow = Min-Cut

Algorithm for’finding a minimum cut

S — < = - ———

Min-Cut Problem leen G = (V,E,w) and s,t € V, find the s- t
cut with the mlnlmum value. |

« Solve the max-flow problem with V(u,v) € E: c(u,v) = w(u, v)
= Let f be the maximum flow and construct G/ S
= L: vertices reachable from s in G/

- R=V\L | '

= Return {L,R}

Time CompIeX|ty7

E——

| -‘,Correctness Max FIow Min-Cut Theorem J

= Time Complexity:
- Question 1: Does the algorlthm always halt?
- Question 2: If so, what is the time complexity?

Does the algorithm always halt?

S — - = . e - — o — — -=

= Let's start from simplest case: all the capacities are integers.
= Each while-loop iteration increase the value of f by at least 1.

+ Thus, the algorithm will halt within f,e, iterations.

= Theorem. If each c(e) is an mteger then the value of the
maximum flow f is an integer.

= Proof. The value of f is always an integer throughout Ford—, '
Fulkerson Algorithm.

Does the algorithm always halt?

= How about rational capacities?
= Rescale capacities to make them integers.

- Yes,- the algorithm will halt!

Does the algorithm always halt?

= How about possibly irrational capacities?

= No, the algorithm do not always halt!

Non-terminating example | edit)

Residual capacities
Step Augmenting path | Sent flow
€3
1
{s,v2,v3,t} ‘ 1 0
D1
D2
D1
D3

ies of edges ey, ey and ey are in the form 77, 71

paths p1, p2, p1 and py infinitely many times and residual capacities of these edges will always be in the sam rm. Total flow in the network aft p5isl 4 2(1"l + 7). If we continue to

use augmenting paths as above, the total flow converges to 1 + 2 Z!’;l r* = 3 + 2r. However, hat there is a flow of value 2M + 1, by sending M units of flow along s, ¢, 1 unit of flow

along swawst, and M units of flow along suyt. Therefore, the algorithm never terminates and the flow does not even converge to the maximum flow.[#]

Anather non-terminating example based on the Fuclidean algorithm is given by Backman & Huynh (.), where they also show that the waorst case running-time of the Ford-Fulkerson

algorithm on a network G(V, E) in ordinal numbers is WPUED,

and 0, respectively, for some Y. This means that we can use augmenting

Time CompIeXity?

E——

Assume all capacities are integers, what is the time
- complexity? |

Each iteration requires O(|E]) time:
- O(|E)) is sufficient for finding p, updating f and ¢/

There are at most f,,,, iterations.

Overall: O(IE]| - fingyx)

Can we analyze it better?

Time CompIeXity?

- Can we analyze it b.etter?
= It depends on how you choose p in each iteration!

. The compIeX|ty bound O(|E| - fingy) IS tlght iIf choices of D
are not carefully specified! |

: ‘

: 0000000
ai/f’i”””)'
\V

t

10000000 0000000

Method vs Algorithm

S — < = - ———

« Different choices of augmenting paths p give different
| implementation of Ford-Fulkerson.

« The description of Ford Fulkerson Algorithm is mcomplete.

« For this reason, it is sometimes called Ford-Fulkerson
Method.

. Next Lecture Preview: Edmonds- Karp Algorithm, which
|mp|ement Ford-Fulkerson Method with time compIeX|ty
o(v|-|EI*).

Applications of Integrality Theorem

EE———

— = —_— —— =

= Theorem. If each.c(e) Is an integer, then the value of the
‘maximum flow f is an integer.

. Application 1: Tournament example you have seen in the
last lecture.

= The max-flow f must satisfy Ve: f(e) € Z. - .
: A-B e Maximum
Wins to be : e allowable
distributed 1 wins ~
C A- .B g, : :

TSR >t
/.

Application 2: Maximum Bipartite Matching '

e = = = — Do ieSes e e N

« Top vertices are girls, bottom vertices are boys.
= An edge represent a possible match for a boy and a girl.

. Problem: find a maximum matching for boys and girls.

Maximum 'Bip'artite Matching - Formal

E— = - = - e

- Given a graph G = (V E), a matching M is a subset of edges
- that do not share vertices in common.

. The size of a matching is the number of edges in it. '

= Problem: Given a blpartlte graph ¢ = (4,B,E) find a
matching with the maximum size.

Application 2: Maximum Bipartite Matching '

is —— ————— S AL ~

- Greedy doesn't Work!

Application 2: Maximum Bipartite Matching '

is —— ————— S AL ~

- Greedy doesn't Work!

Application 2: Maximum Bipartite Matching '

is —— ————— S AL ~

> Naive greedy doeshft work!

Application 2: Maximum Bipartite Matching ‘

S ———— = —— —— = - -

> Naive greedy doesrj’t work!

Application 2: Maximum Bipartite Matching ‘

S ———— = —— —— = - -

> Naive greedy doesrj’t work!

= A total of 4 matches...

Application 2: Maximum Bipartite Matching ‘

S ———— = —— —— = - -

- Greedy doesn't Work!

= A better solution...

Application 2: Maximum Bipartite I\/Iatching '

o, X e ———— = — — 5

» Applying maximum flow and Ford-Fulkerson Method.

Application 2: Maximum Bipartite Matching ~

e = = — Do ieSes N e

= An integral flow corresponds to a matching.

= Integrality theorem ensures the maximum flow can be integral.
=5 , s |

Dessert

EE———

=

= A graph is regular if.aII the vertices have the same degree.
= A matching is perfect if all the vertices are matched.

+ Prove that a reqular bipartite graph always has a perfect
matching.

Hall's I\/Iarriagé Theorem

EE———

=

? Consider the matchmg problem on a bipartite graph G =
S4B) | |

« Fora subset SCA, let N(S) C B be the set of vertices that
are incident to vertices in S.

- Hall's Marriage Theorem. There exists a match.ing of size
|A| if and only if |S| < |[N(S)| for-every S c A.

Proof of Hall's Marriage Theorem

_Exist a matching of size |1A] = VS: |S| < [N(S)]|.
= Suppose for the sake of contraction that 35:|S| > [N(S)|.
. There is no way to match all the vertices in S.

= Thus, there is no way to match all the vertices in A.

Proof of Hall's Marriage Theorem

s = - —— - ——— o — — -

Exist a matching of size |A| & VS:|S| < [N(S)].

= Given VS: |S| < |_N(S)|, suppose the
maximum matching has size M < |A]|.

= The maximum flow has value M.
- Integrality Theorem

» The minimum cut has value M.
- Max-Flow-Min-Cut Theorem

~ Proof of Hall's Marriage Theorem

S _ —— e : = N et . ITag W g 5 R s R !

: Three cases for minimum cut {L, R}:

+) L={s,R=AUBU{t},2)L={s}UAUB, 3y Ly,Lg,Ry,Rp #0. -~

Proof of Hall's Marriage Theorem

— - S = - e ———— = - st el N ST 2

: Case P {s},R = A“u Biggtl
= The minimu'm_c'ut has size |A|

. But we have assume the minimum
cut has size M < |A].

= Case 1) cannot happen!

Proof of Hall's Marriage Theorem

S — - S

: Case 2) L={s}uAuU B,R ==
= The minimu'm_c'ut has size |B|

. We have assume the minimum cut
has size M, so |B| = M < |A].

= Vertices in A cannot be fuIIy
matched!

Proof of Hall's Marriage Theorem

— - ——— = - ——

- Case 3) Ly, L, Ra, Rp # O
= Minimum cut size: M = |Lg| + |R4]

We also have |Ls| + |R4| = |A]

M <Al = |Ly| > L]

No edge can go from L, to Ry
- Such an edge has weight o

Thus, N(L,) € Lg, which implies
IN(La)| < [Lg| < [Ly4l ~

Contradicts to our assumption

Today'’s Lecture

= Max-Flow-Min-Cut Theorem
- - Equivalence of Max-Flow and Min-Cut problems
- Correctness of Ford-Fulkerson Method

» Flow Integrality Theorem
- Follows immediately from Ford-Fulkerson Method

. Maximum Bipartite Matching
- Translate the problem to Max-Flow applying integrality theorem
- Hall's Marriage Theorem: application of Max-Flow-Min-Cut Theorem

