Network Flow

Max-Flow: Edmonds Karp Algorithm, Dinitz's Algorlthm
I\/Iax Bipartite Matchlng Hopcroft-Karp—Karzanov algorithm

Residual Network 6/

' G_iven G =(V,E),c ah.d a flow f

G’ = (V,E7) and the associated capacity ¢/: Ef -» R* are
defined as follows:

= (u,v) € E/ if one of the followings holds
- (u,v) € E and f(u, v) < c(u,v): in this case, ¢/ (u,v) = c(u,v) — f(u, v)
- (v,u) €E %nd f(v,u) > 0: in this case, ¢/ (u,v) = f(v,u)

10

Last Lecture — Ford-Fulkerson Method

e—

- Always terminates for integer/rational capacities
= Not guaranteed to terminate for irrational capacities

. Time complexity for integer capacities: O(|E| - v(f) max)
- not a polynomial time

Edmonds-Karp Algorithm

EE———

'Edmonds-Karp Algorithm

{ EdmondsKarp(G = (V,E), s, t,c):

1. initialize f such that Ve € E: f(e) = 0; initialize G « G;
2. while there is an s-t path on G’

3

4. findanedgee €p with minimum capacity b;

5. update f that pushes b units of flow along p;

6. update Gf;»

7. endwhile

8. return f

Why BFS?

= BFS maintains the distances
- distance: num of edges, not weighted distance

dict =1 dist=2 dist==3 dist=14

' | . dist = 5
Jiebts —————D P O—— ¢
: ./

‘\dii£=6

t

A path found by an iteration of Edmonds-Karp Algorithm

WhyBFS? =

—— = ==

S — < - - ———

= In the re5|dual network G/, a new appeared edge can only goes
from a vertex at distance t + 1 to a vertex at distance t.

» Addition of such edges does not decrease the distance between S
and u for every u e V.

» [Key Observation in this lecture!] Thus, dist(u) is'non—decreasing
throughout the algorithm for every u e V.

dist > 1 dist>2 dist>3 dist> 4
e 155 dist = 5
1S .—/yo '_/‘ ,’\;.\\‘ji>6 .

The updates to the edges in G/

Weak I\/Ionotc)nicity to Strong Monotonicity

o, X e ———— = — — 5

dist(u) can only be one 0f 0,1, 2, ..., |V], o
- - ltcan only be increased for |V| + 1 times!

It's great that BFS buys us distance monotonicity!

However, weak monotonicity is not enough.

To make a progress, we need dist(u) strictly increases for
some u € V, so that we can upper bound the number of
iterations.

Counterexample dist for all vertices remain
unchanged after an iteration.

Towards Strong Monotonicity...

—

= Observation: At least one edge (u,v) on p is “saturated”,
- and this edge will be deleted in the next iteration.

« Each iteration will remove an edge from a vertex at
distance i to a vertex at distance i + 1.

= Intuitively, we cannot keep removing such'edges while
keeping the distances of all vertices unchanged.

Towards Strong Monotonicity

=, X - V— p— 4 — i ——— —— -

= Suppose we are at the (i + 1)-th iteration. f; is the current
- flow, and p is the path found in G/ at the (i + 1)-th
’ |terat|on ’

= We say that an edge (u,v) is critical if the amount of flow
pushed along p is ¢/i(u, v). |

« A critical edge disappears in Gfi+1, but it may reappear in
the future... .

= We will try to bound the number of times (u, v) becomes
critical.

Between two “critical”

. s u v |
A ﬂOW a|0ng p |n Gfl Where e -y.—}.
(u,v) becomes critical s ¢7 5 e
- ' , u v
In G/i+1, (u, v) disappears, O Gy -
and (v, u) appears. ST b

Before the next time (u, v) becomes critical again, (u, v) must first reappear!

u v
Before (u, v) reappears, the PSR
algorithm must have found s © ®

p going through (v, u).

Between two “critical”

——— - = - —

: - O et y.ﬁ. >® t dlstl(v) o dlStl(u) + 1
p ,
u v =
e e o ¢ distt(u) =distt(v) +1

Distance monotonicity: disti*/ (v) > dist!(v).
Thus, dist't/ (u) = dist'™/ (v) + 1 > dist'(v) + 1 > dist'(w) + 2.

The distance of u from s increases by 2 between two “critical”.

e ————— == — e

Putting Together

= The distance of u from s increases by 2 between two “critical”
= Distance takes value from {0, 1, ..., |V|, 0}, and never decrease. -
- Thu-s, each .edge can only be critical for 0(|V]) times.
= At least 1 edge become critical in one iteration.
= Total number of iterations is O(|V| - |[E]).

= Each iteration takes O(|E|) time. | |
= Overall time complexity for Edmonds-Karp: 0(|V] - |E]?).

= |t can handle theissue with irrational numbers!

s = - —— - ——— o — — -

Can we improve?

e —— - . e . = . —_— - — = = e s Sy
T~

- ‘Each iteration ’-cakesh O(|E]) time to
~ find a shortest s-t path by BFS.

= However, each shortest s-t path has
ength at most |V].

= Idea: push flow from multiple
shortest s-t paths in one iteration!

Dinic’s Algorithm (Dinitz's Algorithm)

» Proposed by Yefim’Dinitz
Updated by Shimon Even and Alon ltai
. Time complexity: 0(|V|% - |[E])

Dinic’s Algorithm — high-level ideas

— - e - = - —— - —_—

= Build a level graph:

- Vertices at Level i are at distance i.

~ - Only edges go from a level to the next Ievel are kept.
- Can be done in 0(|E|) time using a similar idea to BFS.

Level 1 Level 2 Level 3

Dinic’s Algorit.hm — high-level ideas

EE———

= Find a blocking flow on the level graph:
~ — Push flow on multiple s-t paths.
' - Each s-t path must contain a critical edge!

e b

2/2

ot

4/5
o
45 e

Level 1 Level 2 Level3

Dinic’s Algorit.hm — high-level ideas

e - = — - ———— === =T A

= Find a blocking flow on the level graph:
~ — Push flow on multiple s-t paths.
' - Each s-t path must contain a critical edge!

8 a2 & ot a. 2 b
113 / \\2/2 3 1/2
1/3 , St l S o 1/3 . t
, C 5 , : C :
= _ﬁ% - T al
—
_ o4 =le d 4/5 e .
a blocking flow not a blocking flow: path s-a-b-t

contains no critical edge

Dinic’s Algorithm — Overview

E——

- Initialize f to be the empty flow and ¢/ =G.

= |teratively do the followings until dist(t) = oo:
- Construct the level graph G/ for ¢”.

- Find a blocking flow on 6/
- Update f and G.

Questions Remain

et = - —

1. How many iteratiOns do we need before termination?

2. How do we find a blocking flow?

Questions Remain

S — < = - ———

1. How many iteratibns do we need before termination?

2. How do we find a blocking flow?

Simple yet'important observations

S — < = - ———

= In the level graph Gf‘ at every iteration i, every s-t path has
: Iength dist'(t). »

- Every shortest s-¢ path in G’t also appears in Gf‘

Gfi N RE ez e ey

"‘.\»._._..»zr"' ‘\

5\55 ," EEC

Distance I\/Ion'otonicity‘

S ~ ' = - e L . Y i taddel s 2

= After one |terat|on a new edge (u,v) appearing in G/i+1
(but not in Gfl) must be “backward”: dist'(u) = dist!(v) + 1.

fi N ’ |
GL II \\ ,I \\ A new edge that will appearin G/i+1

ot

Level k Level kK + 1

Distance I\/Ion'otonicity‘

E——

= After one iteration, a new edge (u,v) appearing in GTi+1
~ (but not in 6/i) must satisfy dist'(u) = dist'(v) + 1.

. Such additions of edges cannot reduce the distance for any
vertex!

- We again have that dist(u) is non-decreasing!

= Can we have strong monotoniéity?

Taking a closer look...

E——

= All the paths in GLf" with length dist!(t) are "blocked” after
~ the i-th iteration. |

. Thus, a path in the (i + 1)-th iteration must use some
edges that are not in G/

Taking a closer look...

——— - = - —

= This new edge may be a “backward” edge whose reverse
~ was a critical edge in the previous iteration.

- In this case, dist(¢) is increased by at least 2.

e S N\
fi

Taking a closer look...

E————

= Or, it may be an edge in 61, but not in G/

= In this case, dist(¢) is increased by at least 1.

2N
G fi &
/ | ®..)
l |
@ I l —
S llllllllllllllllllll l l
...T..;. I
. I
X /
\ /

Taking a closer look...

= In both cases: dist'*(¢) > dist'(t)

= Let's prove it rigorously then...

Proving disti+1(¢) > disti(t)

>, X ' V— i 5 = i ——— == -— = - =

= Consider an arbitrary s-t path p in GLf"+1 with length dist'*1(¢).
= We have disti*1(t) > disti(t) by monotonicity.

= Suppose for the sake of contraction that dist'*1(t) = dist'(t).

= Case 1: all edges in p also appear in GLf" ' 4

= Then p is a shortest path containing no critical edges In GLf"

. Contracting to the definition of blocking flow!

Proving disti+1(¢) > disti(t)

et = - —e—

. Case 2: p contains an edge (u,v) that is not in G/

« If (u,v) was not in G/5, then (v,u) was critical in the last
iteration. We have dist'(u) = dist'(v) + 1.

= If (u,v) was in G7i but not GLf‘, by the definition of level
graph, we have dist'(u) > dist!(v).

= |In both cases above, dist'(u) = dist!(v).
= We have dist'*1(u) > dist'(u) by monotonicity,

= and we have dist'*!(v, t) = dist'(v, t). (Why?)

Proving disti+1(¢) > disti(t)

=, X - V— p— 4 — i ——— —— -

Case 2: p contains an edge (u,v) that is not in G/
« Fact i: disti(u) = dist'(v).

= Fact ii: dist't1(w) > dist!(w).

+ Fact jii: dist™*(v,) > dist'(v,).

- Putting together:
dist'*1(t) = dist'*1(u) + 1 + dist'* (v, t) _
> dist!(u) + 1 + dist!(v, t) (Fact ii and iii)
> dist!(v) + 1 + dist'(v, t) (Fact i)
> dist!(t) + 1 (triangle inequality)

Putting Together...

et = - —e—

= dist(t) is increased by at least 1 after each iteration.

= dist(t) takes value from {0, 1, ..., |V], =}, so it can be
Increased for at most 0(|V]) times.

« Total number of iterations is at most 0(|V]).

Questions Remain

— - — - —— . — e P i I

1. How many iteratidns do we need before termination? J
- - o(vDh | | |

2. How do we find a blocking flow?

Finding a blocking flow in a level graph...

X ' V— i 5 = i ——— == -— = - =

Iteratively do the followings, until no path from s to ¢:

+ Find an arbitrary maximal path in ¢/ starting from s:

~ At every vertex, find an arbitrary edge in G/ and append it to the
path. ‘

» Two possibilities:

- End up at ¢: in this case, we update f (by pushlng flow along the
path) and remove the critical edge

- End up at a dead-end, a vertex v with no out-going edges in G/: in
this case, we remove all the incoming edges of v

Finding a blocking flow in a level graph...

e—

- At least one edge is removed after each search.
- - Total number of searches: O(|E|)

. Each search takes at most |V| steps.

= Time complexity for each iteration of Dinic's algorlthm
o(v]-IED.

Overall Time Complexity for Dinic’s Algokithm

e = x = = - - — Do ieSes — e s

= Each iteration: 0(|V] - |E]).
= We need at most 0(|V]) iterations.

. Ovérall time complexity for Dinic's algorithm: o(|V|% - |E]).

Other Algorithms for Max-Flow

>, X ' V— —— N — i — — -— = - =

= Improvements to Dinic’s algorithm:
- [Malhotra, Kumar & Maheshwari, 1978]: 0(|V|?)
- - Dynamic tree: 0(|V| - |E| - log|V])
= Push-relabel algorithm [Goldberg & Tarjan, 1988]
- O(|VI?|E]), later improved to O(|V|?), O (|V|2\/E)’: 0 (|V”E|‘ log%)

. [King, Rao & Tarjan, 1994] and {Orlin, 2013]: o(|V] - |E])

= Interior-point-method-based algorithms:
- [Kathuria, Liu & Sidford, 2020] |E[s**PUs3
_ [BLNPSSSW, 2020] [BLLSSSW, 20211 6 ((|£] + [V]2) 10g U)

3 1

- [Gao, Liu & Peng, 2021] 0 (IEITﬁ log U)

Hopcroft-Karp—Karzanov algorithm

——— = - —e—

» Find a maximum bipartite matching in 0 (|E| -w/|V|) time.

= Proposed in’dependent‘ly by Hopcroft-Karp and Karzanov.

= Can be viewed as a special case of Dinic’s algorithm.

Conversion to Max-Flow Problem

:-‘ = - 7_ —

Set the capacity to 1 for all edges.

Conversion to Max-Flow Problem

S — : p—

Dinic’s algorithm runs in 0 (IEI c o/ |.V|) time for this special case.

Conversion to Max-Flow Problem

et = - —e—

= Integrality theorem also holds for Dinic’s algorithm:
= The flow output by Dinic’s algorithm in our case is integral.

. We'aim to show Dinic's algorithm runs in 0 (|E| -w/|V|) time.

= Step 1: Finding a blocking flow in a level graph takes O(|E|)
time. | - '

= Step 2: Number of iterations is at most 2./|V|.

Step 1: Finding a blocking flow in a level
graph takes O(|E|) time.

——— = - —e—

Iteratively do the followings, until no path from s to ¢:
= Perform DFS from s

« If we reach t, delete all edges on the s-t path (why can we
do this?) and start over from s. |

- If we ever go backward, delete the edge just travelled. (why
can we do this?)

Step 1: Finding a blocking flow in a level
graph takes 0(|E|) time.

Step 1: Finding a blocking flow in a level
graph takes 0(|E|) time.

Step 1: Finding a blocking flow in a level
graph takes 0(|E|) time.

Step 1: Finding a blocking flow in a level
graph takes 0(|E|) time.

' Step 1: Finding a blocking flow in a level
graph takes O(|E|) time.

S — < - - ———

~ Ans-t pathis found, remove all edges from the path.

Step 1: Finding a blocking flow in a level
graph takes O(|E|) time.

EE——— —_—

- Start over...

' Step 1: Finding a blocking flow in a level
~graph takes O(|E|) time.

— = —

' Step 1: Finding a blocking flow in a level
graph takes O(|E|) time.

S — < = - ———

~ We have to go backward nbw; delete the edge just travelled.

S ® | : ot

' Step 1: Finding a blocking flow in a level
~graph takes O(|E|) time.

=== - = - . ——

S\wt
S —

Step 1: Finding a blocking flow in a level
graph takes O(|E|) time.

S — < = - ———

- Again, we have to»go batkward; delete the edge just travelled.

S ® | . : ot

‘—

Step 1: Finding a blocking flow in a level
graph takes O(|E|) time.

S — < = - ———

- Again, we have to»go batkward; delete the edge just travelled.

S @ | . : ot
__—_». ..

Step 1: Finding a blocking flow in a level
graph takes O(|E|) time.

S — < = - ———

- Again, we have to»go batkward; delete the edge just travelled.

S @ | . : ot

' Step 1: Finding a blocking flow in a level
‘ graph takes O(|E|) time.

S — < = - ———

Step 1: Finding a blocking flow in a level
graph takes O(|E|) time.

— - = - e —

Step 1: Finding a blocking flow in a level
graph takes O(|E|) time.

—_—= < - - ———

- Find another s-t p.ath; d"eléte all edges on the path

Step 1: Finding a blocking flow in a level
graph takes O(|E|) time.

—_—= < - - ———

- We are done!

S ® , ' ot

' Step 1: Finding a blocking flow in a level
graph takes O(|E|) time.

S — < = - ———

~ We have obtained a blotkihg flow!

Yz/ :

Step 1: Finding a blocking flow in a level
graph takes O(|E|) time.

et = - —e—

Time complexity: O(|E])

= Each edge is visited at most once.

Step 2: Number of iterations is at most 2,/[V]. -

N < — ———

= If the algorithm terminates within /|V| iterations, we are
~ already done!

- Otherwise, let f be the flow after /|V| iterations.

= Claim: the maximum flow in G/ has value at most y/|V|.

Observation on G/

s = - —— - ——— o — — -

= In each iteration, for each v e V \ {s, t}, either its In- degree
~is 1, orits out- degree s 1.

« Proof. By Inductlon

.
= At the beginning, this is clearly true. _
- ~ in-degree =1
.
| 1

e ‘W
t

Observation on G/

— - ' —_— . i N s e S s 4

= In each iteration, for each v e V \ {s, t}, either its In- degree
~is 1, orits out- degree is 1.

« Proof. At the begmnmg, this is clearly true.

- For each iteration, the amount of flow going through v is
either O or 1. .

= Ifitis 0, v's in-degree and out—degree are unchanged.

- Otherwise, exactly one in-edge and one out-edge are
flipped; the property is still maintained.

g

The maximum flow in G/ has value at most /|V]

— - s = - —— - ———— S e e e T

Integrallty Theorem there exists a maximum integral flow
= InG

= f' consists of edge- dISJOInt paths.

» Edge-disjointness |mpI|es vertex- d|SJ0|ntness by previous
observation on G/. - |
VIoIatlng row.

. conservatlon :
S t

The maximum flow in ¢/ has value at most /|V]

e— . - - —— | T T St

: ‘Max-flow on Gf f Is integral and consists of edge-disjoint
- paths.

- By our analysis to DiniC’s algorithm, dist® (s, t) = /|V].
. Each path in f' has Iength at least w/|V

. There are at most —

- v(f) < IVI

J_ = |V paths In f by vertex-disjointness.

Step 2: Number of iterations is at most 2,/[V]. -

» .= ey

E—— - — ——

= If the algorithm terminates within /|V| iterations, we are
~ already done!

- Otherwise, let f be the flow after ,/|V] iterations. |
= Claim: the maximum flow in G/ has value at most |/|V]|. J

- Each iteration increase the value of flow by at least 1.

+ Thus, the algorithm will terminates within at most another

\/|V| iterations.

» Total number of iterations: 2./|V].

Putting Together...

e - = . —

. Step 1: Fmdmg a blockmg flow in a level graph takes 0(|E|) \/
time. _ J

. Step 2% Number of iterations is at most 2/ |V1.

. Overall time complexity: 0 (|E| : ./lVl) |

Today'’s Lecture

- Maximum Flow P&roble'm:

= Edmonds-Karp Algorithm
- - Implement Ford-Fulkerson method by BFS
- o(|v| - |EI?)

= Dinic’s Algorithm
- Push flow on multiple paths at one iteration
- Level graph and blocking flow

- o(lv|* - |E])
- Maximum Bipartite Matching Problem:

= Hopcroft—Karp—Karzanov algorithm
- Apply Dinic’s algorithm

- o (IE1-IV])

