
Network Flow

Max-Flow: Edmonds-Karp Algorithm, Dinitz’s Algorithm
Max Bipartite Matching: Hopcroft–Karp–Karzanov algorithm

Residual Network 𝐺𝑓

Given 𝐺 = (𝑉, 𝐸), 𝑐, and a flow 𝑓

𝐺𝑓 = (𝑉, 𝐸𝑓) and the associated capacity 𝑐𝑓: 𝐸𝑓 → ℝ+ are
defined as follows:

▪ 𝑢, 𝑣 ∈ 𝐸𝑓 if one of the followings holds
– 𝑢, 𝑣 ∈ 𝐸 and 𝑓 𝑢, 𝑣 < 𝑐(𝑢, 𝑣): in this case, 𝑐𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓(𝑢, 𝑣)

– 𝑣, 𝑢 ∈ 𝐸 and 𝑓 𝑣, 𝑢 > 0: in this case, 𝑐𝑓 𝑢, 𝑣 = 𝑓 𝑣, 𝑢
u

ts

v

20/20

20/30

10

20/2010

u

ts

v

10

10

𝐺 𝐺𝑓

20

20

20 10

Last Lecture – Ford-Fulkerson Method

▪ Always terminates for integer/rational capacities

▪ Not guaranteed to terminate for irrational capacities

▪ Time complexity for integer capacities: 𝑂 𝐸 ⋅ 𝑣(𝑓)max

– not a polynomial time

Edmonds-Karp Algorithm

EdmondsKarp(𝐺 = 𝑉, 𝐸 , 𝑠, 𝑡, 𝑐):

1. initialize 𝑓 such that ∀𝑒 ∈ 𝐸: 𝑓 𝑒 = 0; initialize 𝐺𝑓 ← 𝐺;

2. while there is an 𝑠-𝑡 path on 𝐺𝑓:

3. find such a path 𝒑 by BFS;

4. find an edge 𝑒 ∈ 𝑝 with minimum capacity 𝑏;

5. update 𝑓 that pushes 𝑏 units of flow along 𝑝;

6. update 𝐺𝑓;

7. endwhile

8. return 𝑓

Edmonds-Karp Algorithm

Why BFS?

▪ BFS maintains the distances
– distance: num of edges, not weighted distance

𝑠
𝑡

dist = 1 dist = 2 dist = 3 dist = 4
dist = 5

dist = 6dist = 0

A path found by an iteration of Edmonds-Karp Algorithm

Why BFS?

▪ In the residual network 𝐺𝑓, a new appeared edge can only goes
from a vertex at distance 𝑡 + 1 to a vertex at distance 𝑡.

▪ Addition of such edges does not decrease the distance between 𝑠
and 𝑢 for every 𝑢 ∈ 𝑉.

▪ [Key Observation in this lecture!] Thus, dist(𝑢) is non-decreasing
throughout the algorithm for every 𝑢 ∈ 𝑉.

𝑠
𝑡

dist ≥ 1 dist ≥ 2 dist ≥ 3 dist ≥ 4
dist ≥ 5

dist ≥ 6dist = 0

The updates to the edges in 𝐺𝑓

Weak Monotonicity to Strong Monotonicity

▪ dist(𝑢) can only be one of 0, 1, 2,… , |𝑉|,∞
– It can only be increased for |𝑉| + 1 times!

▪ It’s great that BFS buys us distance monotonicity!

▪ However, weak monotonicity is not enough.

▪ To make a progress, we need dist(𝑢) strictly increases for
some 𝑢 ∈ 𝑉, so that we can upper bound the number of
iterations.

Counterexample: dist for all vertices remain
unchanged after an iteration.

3

3

4

10

2

1

1

5

1

2

5

s

a

d

c

e

b

t

2

1

4

10

2

1

1

5

1

2

5

s

a

d

c

e

b

t3

Towards Strong Monotonicity…

▪ Observation: At least one edge (𝑢, 𝑣) on 𝑝 is “saturated”,
and this edge will be deleted in the next iteration.

▪ Each iteration will remove an edge from a vertex at
distance 𝑖 to a vertex at distance 𝑖 + 1.

▪ Intuitively, we cannot keep removing such edges while
keeping the distances of all vertices unchanged.

Towards Strong Monotonicity

▪ Suppose we are at the 𝑖 + 1 -th iteration. 𝑓𝑖 is the current
flow, and 𝑝 is the path found in 𝐺𝑓𝑖 at the 𝑖 + 1 -th
iteration.

▪ We say that an edge (𝑢, 𝑣) is critical if the amount of flow
pushed along 𝑝 is 𝑐𝑓𝑖(𝑢, 𝑣).

▪ A critical edge disappears in 𝐺𝑓𝑖+1 , but it may reappear in
the future…

▪ We will try to bound the number of times (𝑢, 𝑣) becomes
critical.

Between two “critical”

𝑠 𝑡

𝑢 𝑣

𝑝

A flow along 𝑝 in 𝐺𝑓𝑖 where
(𝑢, 𝑣) becomes critical

𝑠 𝑡

𝑢 𝑣
In 𝐺𝑓𝑖+1, (𝑢, 𝑣) disappears,
and (𝑣, 𝑢) appears.

Before the next time (𝑢, 𝑣) becomes critical again, (𝑢, 𝑣) must first reappear!

𝑠 𝑡

𝑢 𝑣
Before (𝑢, 𝑣) reappears, the
algorithm must have found
𝑝 going through (𝑣, 𝑢).

Between two “critical”

𝑠 𝑡

𝑢 𝑣

𝑝

𝑠 𝑡

𝑢 𝑣

dist𝑖 𝑣 = dist𝑖 𝑢 + 1

dist𝑖+𝑗 𝑢 = dist𝑖+𝑗 𝑣 + 1

▪ Distance monotonicity: dist𝑖+𝑗 𝑣 ≥ dist𝑖 𝑣 .

▪ Thus, dist𝑖+𝑗 𝑢 = dist𝑖+𝑗 𝑣 + 1 ≥ dist𝑖 𝑣 + 1 ≥ dist𝑖 𝑢 + 2.

▪ The distance of 𝑢 from 𝑠 increases by 2 between two “critical”.

Putting Together

▪ The distance of 𝑢 from 𝑠 increases by 2 between two “critical”.

▪ Distance takes value from 0, 1,… , 𝑉 ,∞ , and never decrease.

▪ Thus, each edge can only be critical for 𝑂(𝑉) times.

▪ At least 1 edge become critical in one iteration.

▪ Total number of iterations is 𝑂(𝑉 ⋅ 𝐸).

▪ Each iteration takes 𝑂 𝐸 time.

▪ Overall time complexity for Edmonds-Karp: 𝑂 𝑉 ⋅ 𝐸 2 .

▪ It can handle the issue with irrational numbers!

Can we improve?

▪ Each iteration takes 𝑂 𝐸 time to
find a shortest 𝑠-𝑡 path by BFS.

▪ However, each shortest 𝑠-𝑡 path has
length at most |𝑉|.

▪ Idea: push flow from multiple
shortest 𝑠-𝑡 paths in one iteration!

Dinic’s Algorithm (Dinitz’s Algorithm)

▪ Proposed by Yefim Dinitz

▪ Updated by Shimon Even and Alon Itai

▪ Time complexity: 𝑂 𝑉 2 ⋅ 𝐸

Dinic’s Algorithm – high-level ideas

▪ Build a level graph:
– Vertices at Level 𝑖 are at distance 𝑖.

– Only edges go from a level to the next level are kept.

– Can be done in 𝑂 𝐸 time using a similar idea to BFS.

3

3

4

10

2

1

1

5

1

2

5

s

a

d

c

e

b

t
3

3

4

2

1

1

5

2

5

s

a

d

c

e

b

t

Level 1 Level 2 Level 3

Dinic’s Algorithm – high-level ideas

▪ Find a blocking flow on the level graph:
– Push flow on multiple 𝑠-𝑡 paths.

– Each 𝑠-𝑡 path must contain a critical edge!

3

2/3

4/4

2/2

1

1

4/5

2/2

4/5

s

a

d

c

e

b

t

Level 1 Level 2 Level 3

Dinic’s Algorithm – high-level ideas

▪ Find a blocking flow on the level graph:
– Push flow on multiple 𝑠-𝑡 paths.

– Each 𝑠-𝑡 path must contain a critical edge!

1/3

1/3

4/4

1/2

1/1

1

4/5

2/2

4/5

s

a

d

c

e

b

t

a blocking flow

1/3

3

4/4

2

1/1

1

4/5

1/2

4/5

s

a

d

c

e

b

t

not a blocking flow: path s-a-b-t
contains no critical edge

Dinic’s Algorithm – Overview

▪ Initialize 𝑓 to be the empty flow and 𝐺𝑓 = 𝐺.

▪ Iteratively do the followings until dist 𝑡 = ∞:

– Construct the level graph 𝐺𝐿
𝑓 for 𝐺𝑓.

– Find a blocking flow on 𝐺𝐿
𝑓.

– Update 𝑓 and 𝐺𝑓.

Questions Remain

1. How many iterations do we need before termination?

2. How do we find a blocking flow?

Questions Remain

1. How many iterations do we need before termination?

2. How do we find a blocking flow?

Simple yet important observations

▪ In the level graph 𝐺𝐿
𝑓𝑖 at every iteration 𝑖, every 𝑠-𝑡 path has

length dist𝑖 𝑡 .

▪ Every shortest 𝑠-𝑡 path in 𝐺𝑓𝑖 also appears in 𝐺𝐿
𝑓𝑖.

ts

𝐺𝐿
𝑓𝑖

Distance Monotonicity

▪ After one iteration, a new edge (𝑢, 𝑣) appearing in 𝐺𝑓𝑖+1

(but not in 𝐺𝑓𝑖) must be “backward”: dist𝑖 𝑢 = dist𝑖 𝑣 + 1.

ts

Level 𝑘 Level 𝑘 + 1

𝐺𝐿
𝑓𝑖

u

v
A new edge that will appear in 𝐺𝑓𝑖+1

Distance Monotonicity

▪ After one iteration, a new edge (𝑢, 𝑣) appearing in 𝐺𝑓𝑖+1

(but not in 𝐺𝑓𝑖) must satisfy dist𝑖 𝑢 = dist𝑖 𝑣 + 1.

▪ Such additions of edges cannot reduce the distance for any
vertex!

▪ We again have that dist(𝑢) is non-decreasing!

▪ Can we have strong monotonicity?

Taking a closer look…

▪ All the paths in 𝐺𝐿
𝑓𝑖 with length dist𝑖(𝑡) are “blocked” after

the 𝑖-th iteration.

▪ Thus, a path in the (𝑖 + 1)-th iteration must use some
edges that are not in 𝐺𝐿

𝑓𝑖.

Taking a closer look…

▪ This new edge may be a “backward” edge whose reverse
was a critical edge in the previous iteration.

▪ In this case, dist(𝑡) is increased by at least 2.

t
s

𝐺𝐿
𝑓𝑖

Taking a closer look…

▪ Or, it may be an edge in 𝐺𝑓𝑖, but not in 𝐺𝐿
𝑓𝑖.

▪ In this case, dist(𝑡) is increased by at least 1.

t
s

𝐺𝐿
𝑓𝑖

Taking a closer look…

▪ In both cases: dist𝑖+1 𝑡 > dist𝑖(𝑡)

▪ Let’s prove it rigorously then…

Proving dist𝑖+1 𝑡 > dist𝑖(𝑡)

▪ Consider an arbitrary 𝑠-𝑡 path 𝑝 in 𝐺𝐿
𝑓𝑖+1 with length dist𝑖+1(𝑡).

▪ We have dist𝑖+1 𝑡 ≥ dist𝑖(𝑡) by monotonicity.

▪ Suppose for the sake of contraction that dist𝑖+1 𝑡 = dist𝑖(𝑡).

▪ Case 1: all edges in 𝑝 also appear in 𝐺𝐿
𝑓𝑖

▪ Then 𝑝 is a shortest path containing no critical edges in 𝐺𝐿
𝑓𝑖

▪ Contracting to the definition of blocking flow!

Proving dist𝑖+1 𝑡 > dist𝑖(𝑡)

▪ Case 2: 𝑝 contains an edge (𝑢, 𝑣) that is not in 𝐺𝐿
𝑓𝑖

▪ If (𝑢, 𝑣) was not in 𝐺𝑓𝑖, then (𝑣, 𝑢) was critical in the last
iteration. We have dist𝑖 𝑢 = dist𝑖 𝑣 + 1.

▪ If (𝑢, 𝑣) was in 𝐺𝑓𝑖 but not 𝐺𝐿
𝑓𝑖, by the definition of level

graph, we have dist𝑖 𝑢 ≥ dist𝑖 𝑣 .

▪ In both cases above, dist𝑖 𝑢 ≥ dist𝑖 𝑣 .

▪ We have dist𝑖+1 𝑢 ≥ dist𝑖(𝑢) by monotonicity,

▪ and we have dist𝑖+1 𝑣, 𝑡 ≥ dist𝑖(𝑣, 𝑡). (why?)

Proving dist𝑖+1 𝑡 > dist𝑖(𝑡)

▪ Case 2: 𝑝 contains an edge (𝑢, 𝑣) that is not in 𝐺𝐿
𝑓𝑖

▪ Fact i: dist𝑖 𝑢 ≥ dist𝑖 𝑣 .

▪ Fact ii: dist𝑖+1 𝑢 ≥ dist𝑖 𝑢 .

▪ Fact iii: dist𝑖+1 𝑣, 𝑡 ≥ dist𝑖(𝑣, 𝑡).

Putting together:
dist𝑖+1 𝑡 = dist𝑖+1 𝑢 + 1 + dist𝑖+1(𝑣, 𝑡)

≥ dist𝑖 𝑢 + 1 + dist𝑖(𝑣, 𝑡)

≥ dist𝑖 𝑣 + 1 + dist𝑖(𝑣, 𝑡)

≥ dist𝑖 𝑡 + 1

(Fact ii and iii)

(Fact i)

(triangle inequality)

Putting Together…

▪ dist(𝑡) is increased by at least 1 after each iteration.

▪ dist(𝑡) takes value from {0, 1, … , 𝑉 ,∞}, so it can be
increased for at most 𝑂 𝑉 times.

▪ Total number of iterations is at most 𝑂 𝑉 .

Questions Remain

1. How many iterations do we need before termination?
– 𝑂 𝑉

2. How do we find a blocking flow?

Finding a blocking flow in a level graph…

Iteratively do the followings, until no path from 𝑠 to 𝑡:

▪ Find an arbitrary maximal path in 𝐺𝐿
𝑓 starting from 𝑠:

– At every vertex, find an arbitrary edge in 𝐺𝐿
𝑓 and append it to the

path.

▪ Two possibilities:
– End up at 𝑡: in this case, we update 𝑓 (by pushing flow along the

path) and remove the critical edge

– End up at a dead-end, a vertex 𝑣 with no out-going edges in 𝐺𝐿
𝑓: in

this case, we remove all the incoming edges of 𝑣

Finding a blocking flow in a level graph…

▪ At least one edge is removed after each search.
– Total number of searches: 𝑂 𝐸

▪ Each search takes at most |𝑉| steps.

▪ Time complexity for each iteration of Dinic’s algorithm:
𝑂 𝑉 ⋅ 𝐸 .

Overall Time Complexity for Dinic’s Algorithm

▪ Each iteration: 𝑂 𝑉 ⋅ 𝐸 .

▪ We need at most 𝑂 𝑉 iterations.

▪ Overall time complexity for Dinic’s algorithm: 𝑂 𝑉 2 ⋅ 𝐸 .

Other Algorithms for Max-Flow

▪ Improvements to Dinic’s algorithm:
– [Malhotra, Kumar & Maheshwari, 1978]: 𝑂 𝑉 3

– Dynamic tree: 𝑂 𝑉 ⋅ 𝐸 ⋅ log 𝑉

▪ Push-relabel algorithm [Goldberg & Tarjan, 1988]

– 𝑂 𝑉 2 𝐸 , later improved to 𝑂 𝑉 3 , 𝑂 𝑉 2 𝐸 , 𝑂 𝑉 𝐸 log
𝑉 2

𝐸

▪ [King, Rao & Tarjan, 1994] and [Orlin, 2013]: 𝑂 𝑉 ⋅ 𝐸

▪ Interior-point-method-based algorithms:

– [Kathuria, Liu & Sidford, 2020] 𝐸
4

3
+𝑜(1)𝑈

1

3

– [BLNPSSSW, 2020] [BLLSSSW, 2021] ෨𝑂 𝐸 + 𝑉
3

2 log𝑈

– [Gao, Liu & Peng, 2021] ෨𝑂 𝐸
3

2
−

1

328 log𝑈

Hopcroft–Karp–Karzanov algorithm

▪ Find a maximum bipartite matching in 𝑂 𝐸 ⋅ 𝑉 time.

▪ Proposed independently by Hopcroft-Karp and Karzanov.

▪ Can be viewed as a special case of Dinic’s algorithm.

Conversion to Max-Flow Problem

s

t

1
111

1

1
111111

1 1
1

1
1

1
1

1 1

1

Set the capacity to 1 for all edges.

Conversion to Max-Flow Problem

s

t

1
111

1

1
111111

1 1
1

1
1

1
1

1 1

1

Dinic’s algorithm runs in 𝑂 𝐸 ⋅ 𝑉 time for this special case.

Conversion to Max-Flow Problem

▪ Integrality theorem also holds for Dinic’s algorithm:
– The flow output by Dinic’s algorithm in our case is integral.

▪ We aim to show Dinic’s algorithm runs in 𝑂 𝐸 ⋅ 𝑉 time.

▪ Step 1: Finding a blocking flow in a level graph takes 𝑂 𝐸
time.

▪ Step 2: Number of iterations is at most 2 𝑉 .

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

Iteratively do the followings, until no path from 𝑠 to 𝑡:

▪ Perform DFS from 𝑠

▪ If we reach 𝑡, delete all edges on the 𝑠-𝑡 path (why can we
do this?) and start over from 𝑠.

▪ If we ever go backward, delete the edge just travelled. (why
can we do this?)

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

An 𝑠-𝑡 path is found, remove all edges from the path.

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

Start over…

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

We have to go backward now; delete the edge just travelled.

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

Again, we have to go backward; delete the edge just travelled.

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

Again, we have to go backward; delete the edge just travelled.

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

Again, we have to go backward; delete the edge just travelled.

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

Find another 𝑠-𝑡 path; delete all edges on the path

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

We are done!

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

s t

We have obtained a blocking flow!

Step 1: Finding a blocking flow in a level
graph takes 𝑂 𝐸 time.

Time complexity: 𝑂 𝐸

▪ Each edge is visited at most once.

Step 2: Number of iterations is at most 2 𝑉 .

▪ If the algorithm terminates within 𝑉 iterations, we are
already done!

▪ Otherwise, let 𝑓 be the flow after 𝑉 iterations.

▪ Claim: the maximum flow in 𝐺𝑓 has value at most 𝑉 .

Observation on 𝐺𝑓

▪ In each iteration, for each 𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}, either its in-degree
is 1, or its out-degree is 1.

▪ Proof. By Induction…

▪ At the beginning, this is clearly true.

t

s

1
111

1

111111

1 1
1

1
1

1
1

1

1

in-degree = 1

out-degree = 1

Observation on 𝐺𝑓

▪ In each iteration, for each 𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}, either its in-degree
is 1, or its out-degree is 1.

▪ Proof. At the beginning, this is clearly true.

▪ For each iteration, the amount of flow going through 𝑣 is
either 0 or 1.

▪ If it is 0, 𝑣’s in-degree and out-degree are unchanged.

▪ Otherwise, exactly one in-edge and one out-edge are
flipped; the property is still maintained.

The maximum flow in 𝐺𝑓 has value at most 𝑉

▪ Integrality Theorem: there exists a maximum integral flow
𝑓′ in 𝐺𝑓.

▪ 𝑓′ consists of edge-disjoint paths.

▪ Edge-disjointness implies vertex-disjointness by previous
observation on 𝐺𝑓.

s t s t

violating flow
conservation

The maximum flow in 𝐺𝑓 has value at most 𝑉

▪ Max-flow on 𝐺𝑓, 𝑓′, is integral and consists of edge-disjoint
paths.

▪ By our analysis to Dinic’s algorithm, dist𝐺
𝑓
𝑠, 𝑡 ≥ 𝑉 .

▪ Each path in 𝑓′ has length at least 𝑉 .

▪ There are at most
𝑉

𝑉
= 𝑉 paths in 𝑓′ by vertex-disjointness.

▪ 𝑣 𝑓′ ≤ 𝑉

Step 2: Number of iterations is at most 2 𝑉 .

▪ If the algorithm terminates within 𝑉 iterations, we are
already done!

▪ Otherwise, let 𝑓 be the flow after 𝑉 iterations.

▪ Claim: the maximum flow in 𝐺𝑓 has value at most 𝑉 .

▪ Each iteration increase the value of flow by at least 1.

▪ Thus, the algorithm will terminates within at most another
𝑉 iterations.

▪ Total number of iterations: 2 𝑉 .

Putting Together…

▪ Step 1: Finding a blocking flow in a level graph takes 𝑂 𝐸
time.

▪ Step 2: Number of iterations is at most 2 𝑉 .

▪ Overall time complexity: 𝑂 𝐸 ⋅ 𝑉

Today’s Lecture

Maximum Flow Problem:

▪ Edmonds-Karp Algorithm
– Implement Ford-Fulkerson method by BFS

– 𝑂 𝑉 ⋅ 𝐸 2

▪ Dinic’s Algorithm
– Push flow on multiple paths at one iteration
– Level graph and blocking flow

– 𝑂 𝑉 2 ⋅ |𝐸|

Maximum Bipartite Matching Problem:

▪ Hopcroft–Karp–Karzanov algorithm
– Apply Dinic’s algorithm

– 𝑂 𝐸 ⋅ 𝑉

