Network Flow

Max-Flow: Edmonds-Karp Algorithm, Dinitz's Algorithm Max Bipartite Matching: Hopcroft–Karp–Karzanov algorithm

Residual Network G^f

20/30

20/20

10

Given G = (V, E), c, and a flow f

 $G^f = (V, E^f)$ and the associated capacity $c^f : E^f \to \mathbb{R}^+$ are defined as follows:

• $(u, v) \in E^f$ if one of the followings holds

20/20

- $(u, v) \in E$ and f(u, v) < c(u, v): in this case, $c^f(u, v) = c(u, v) - f(u, v)$

20

10

U

20

 G^{J}

10

20

 $-(v,u) \in E$ and f(v,u) > 0: in this case, $c^{f}(u,v) = f(v,u)$

Last Lecture – Ford-Fulkerson Method

- Always terminates for integer/rational capacities
- Not guaranteed to terminate for irrational capacities
- Time complexity for integer capacities: O(|E| · v(f)_{max})
 not a polynomial time

Edmonds-Karp Algorithm

Edmonds-Karp Algorithm

EdmondsKarp(G = (V, E), s, t, c):

1. initialize f such that $\forall e \in E: f(e) = 0$; initialize $G^f \leftarrow G$;

2. while there is an s-t path on G^{f} :

- 3. find such a path *p* by BFS;
- 4. find an edge $e \in p$ with minimum capacity b;
- 5. update f that pushes b units of flow along p;
- 6. update G^f ;
- 7. endwhile
- 8. return *f*

BFS maintains the distances

- distance: num of edges, not weighted distance

A path found by an iteration of Edmonds-Karp Algorithm

Why BFS?

dist ≥ 1

dist = 0

- In the residual network G^{f} , a new appeared edge can only goes from a vertex at distance t + 1 to a vertex at distance t.
- Addition of such edges does not decrease the distance between s and u for every u ∈ V.
- [Key Observation in this lecture!] Thus, dist(u) is non-decreasing throughout the algorithm for every $u \in V$.

dist ≥ 5

dist ≥ 6

dist ≥ 2 dist ≥ 3 dist ≥ 4

The updates to the edges in G^f

Weak Monotonicity to Strong Monotonicity

• dist(u) can only be one of $0, 1, 2, ..., |V|, \infty$

- It can only be increased for |V| + 1 times!
- It's great that BFS buys us distance monotonicity!
- However, weak monotonicity is not enough.
- To make a progress, we need dist(u) strictly increases for some u ∈ V, so that we can upper bound the number of iterations.

Counterexample: dist for all vertices remain unchanged after an iteration.

Towards Strong Monotonicity...

- Observation: At least one edge (u, v) on p is "saturated", and this edge will be deleted in the next iteration.
- Each iteration will remove an edge from a vertex at distance *i* to a vertex at distance *i* + 1.
- Intuitively, we cannot keep removing such edges while keeping the distances of all vertices unchanged.

Towards Strong Monotonicity

- Suppose we are at the (i + 1)-th iteration. f_i is the current flow, and p is the path found in G^{f_i} at the (i + 1)-th iteration.
- We say that an edge (u, v) is critical if the amount of flow pushed along p is c^f(u, v).
- A critical edge disappears in G^fi+1, but it may reappear in the future...
- We will try to bound the number of times (u, v) becomes critical.

Between two "critical"

S

S

A flow along p in G^{f_i} where (u, v) becomes critical

In $G^{f_{i+1}}$, (u, v) disappears, and (v, u) appears.

Before the next time (u, v) becomes critical again, (u, v) must first reappear!

12

12

 \mathcal{V}

U

U

U

p

Before (u, v) reappears, the algorithm must have found *s p* going through (v, u).

Between two "critical"

A REAL PROPERTY AND A REAL

S

S

U

U

p

• t dist^{i+j}(u) = dist^{i+j}(v) + 1

• Distance monotonicity: $dist^{i+j}(v) \ge dist^{i}(v)$.

12

- Thus, $dist^{i+j}(u) = dist^{i+j}(v) + 1 \ge dist^{i}(v) + 1 \ge dist^{i}(u) + 2$.
- The distance of u from s increases by 2 between two "critical".

•••• t

Putting Together

- The distance of u from s increases by 2 between two "critical".
- Distance takes value from $\{0, 1, ..., |V|, \infty\}$, and never decrease.
- Thus, each edge can only be critical for O(|V|) times.
- At least 1 edge become critical in one iteration.
- Total number of iterations is $O(|V| \cdot |E|)$.
- Each iteration takes O(|E|) time.
- Overall time complexity for Edmonds-Karp: $O(|V| \cdot |E|^2)$.
- It can handle the issue with irrational numbers!

Can we improve?

- Each iteration takes O(|E|) time to find a shortest s-t path by BFS.
- However, each shortest s-t path has length at most |V|.
- Idea: push flow from multiple shortest *s*-*t* paths in one iteration!

Dinic's Algorithm (Dinitz's Algorithm)

- Proposed by Yefim Dinitz
- Updated by Shimon Even and Alon Itai
- Time complexity: $O(|V|^2 \cdot |E|)$

Dinic's Algorithm – high-level ideas

Build a level graph:

- Vertices at Level *i* are at distance *i*.
- Only edges go from a level to the next level are kept.
- Can be done in O(|E|) time using a similar idea to BFS.

Dinic's Algorithm – high-level ideas

Find a blocking flow on the level graph:

- Push flow on multiple *s*-*t* paths.
- Each *s*-*t* path must contain a critical edge!

Dinic's Algorithm – high-level ideas

Find a blocking flow on the level graph:

- Push flow on multiple *s*-*t* paths.
- Each *s*-*t* path must contain a critical edge!

not a blocking flow: path s-a-b-t contains no critical edge

Dinic's Algorithm – Overview

- Initialize f to be the empty flow and $G^f = G$.
- Iteratively do the followings until $dist(t) = \infty$:
 - Construct the level graph G_L^f for G^f .
 - Find a blocking flow on G_L^f .
 - Update f and G^f .

Questions Remain

How many iterations do we need before termination?
 How do we find a blocking flow?

Questions Remain

How many iterations do we need before termination?
 How do we find a blocking flow?

Simple yet important observations

- In the level graph $G_L^{f_i}$ at every iteration *i*, every *s*-*t* path has length dist^{*i*}(*t*).
- Every shortest s-t path in G^{f_i} also appears in $G_L^{f_i}$.

Distance Monotonicity

• After one iteration, a new edge (u, v) appearing in $G^{f_{i+1}}$ (but not in G^{f_i}) must be "backward": distⁱ $(u) = dist^i(v) + 1$.

Distance Monotonicity

- After one iteration, a new edge (u, v) appearing in G^fi+1 (but not in G^fi) must satisfy distⁱ(u) = distⁱ(v) + 1.
- Such additions of edges cannot reduce the distance for any vertex!
- We again have that dist(u) is non-decreasing!
- Can we have strong monotonicity?

 All the paths in G_L^{f_i} with length distⁱ(t) are "blocked" after the *i*-th iteration.

• Thus, a path in the (i + 1)-th iteration must use some edges that are not in $G_L^{f_i}$.

- This new edge may be a "backward" edge whose reverse was a critical edge in the previous iteration.
- In this case, dist(t) is increased by at least 2.

Or, it may be an edge in G^{f_i}, but not in G^{f_i}.
In this case, dist(t) is increased by at least 1.

In both cases: distⁱ⁺¹(t) > distⁱ(t)
Let's prove it rigorously then...

Proving distⁱ⁺¹(t) > distⁱ(t)

- Consider an arbitrary *s*-*t* path *p* in $G_L^{f_{i+1}}$ with length dist^{*i*+1}(*t*).
- We have $dist^{i+1}(t) \ge dist^{i}(t)$ by monotonicity.
- Suppose for the sake of contraction that $dist^{i+1}(t) = dist^{i}(t)$.
- Case 1: all edges in p also appear in $G_L^{f_i}$
- Then p is a shortest path containing no critical edges in $G_L^{f_i}$
- Contracting to the definition of blocking flow!

Proving distⁱ⁺¹(t) > distⁱ(t)

- Case 2: p contains an edge (u, v) that is not in $G_L^{f_i}$
- If (u, v) was not in G^{f_i} , then (v, u) was critical in the last iteration. We have $dist^i(u) = dist^i(v) + 1$.
- If (u, v) was in G^{f_i} but not $G_L^{f_i}$, by the definition of level graph, we have $dist^i(u) \ge dist^i(v)$.
- In both cases above, $dist^i(u) \ge dist^i(v)$.
- We have $dist^{i+1}(u) \ge dist^{i}(u)$ by monotonicity,
- and we have $dist^{i+1}(v,t) \ge dist^{i}(v,t)$. (why?)

Proving distⁱ⁺¹(t) > distⁱ(t)

• Case 2: p contains an edge (u, v) that is not in $G_L^{f_i}$

- Fact i: $\operatorname{dist}^{i}(u) \ge \operatorname{dist}^{i}(v)$.
- Fact ii: $\operatorname{dist}^{i+1}(u) \ge \operatorname{dist}^{i}(u)$.
- Fact iii: distⁱ⁺¹(v, t) \geq distⁱ(v, t).

Putting together:

 $dist^{i+1}(t) = dist^{i+1}(u) + 1 + dist^{i+1}(v,t)$ $\geq dist^{i}(u) + 1 + dist^{i}(v,t)$ $\geq dist^{i}(v) + 1 + dist^{i}(v,t)$ $\geq dist^{i}(t) + 1$

(Fact ii and iii) (Fact i) (triangle inequality)

Putting Together...

- dist(t) is increased by at least 1 after each iteration.
- dist(t) takes value from {0, 1, ..., |V|, ∞}, so it can be increased for at most O(|V|) times.
- Total number of iterations is at most O(|V|).

Questions Remain

How many iterations do we need before termination?
 O(|V|)

2. How do we find a blocking flow?

Finding a blocking flow in a level graph...

Iteratively do the followings, until no path from s to t:

- Find an arbitrary maximal path in G_L^f starting from s:
 - At every vertex, find an arbitrary edge in G_L^f and append it to the path.
- Two possibilities:
 - End up at t: in this case, we update f (by pushing flow along the path) and remove the critical edge
 - End up at a dead-end, a vertex v with no out-going edges in G_L^J : in this case, we remove all the incoming edges of v

Finding a blocking flow in a level graph...

At least one edge is removed after each search.

- Total number of searches: O(|E|)
- Each search takes at most |V| steps.
- Time complexity for each iteration of Dinic's algorithm:
 O(|V| · |E|).

Overall Time Complexity for Dinic's Algorithm

- Each iteration: $O(|V| \cdot |E|)$.
- We need at most O(|V|) iterations.
- Overall time complexity for Dinic's algorithm: $O(|V|^2 \cdot |E|)$.

Other Algorithms for Max-Flow

Improvements to Dinic's algorithm:

- [Malhotra, Kumar & Maheshwari, 1978]: $O(|V|^3)$
- Dynamic tree: $O(|V| \cdot |E| \cdot \log|V|)$
- Push-relabel algorithm [Goldberg & Tarjan, 1988]
 - $O(|V|^2|E|)$, later improved to $O(|V|^3)$, $O(|V|^2\sqrt{|E|})$, $O(|V||E|\log\frac{|V|^2}{|E|})$
- [King, Rao & Tarjan, 1994] and [Orlin, 2013]: *O*(|*V*| · |*E*|)
- Interior-point-method-based algorithms:
 - [Kathuria, Liu & Sidford, 2020] $|E|^{\frac{4}{3}+o(1)}U^{\frac{1}{3}}$
 - [BLNPSSSW, 2020] [BLLSSSW, 2021] $\tilde{O}\left(\left(|E| + |V|^{\frac{3}{2}}\right)\log U\right)$
 - [Gao, Liu & Peng, 2021] $\tilde{O}\left(|E|^{\frac{3}{2}-\frac{1}{328}}\log U\right)$

Hopcroft–Karp–Karzanov algorithm

- Find a maximum bipartite matching in O (|E| · √|V|) time.
 Proposed independently by Hopcroft-Karp and Karzanov.
- Can be viewed as a special case of Dinic's algorithm.

Conversion to Max-Flow Problem

Set the capacity to 1 for all edges.

Conversion to Max-Flow Problem

Dinic's algorithm runs in $O\left(|E| \cdot \sqrt{|V|}\right)$ time for this special case.

Conversion to Max-Flow Problem

Integrality theorem also holds for Dinic's algorithm:

- The flow output by Dinic's algorithm in our case is integral.
- We aim to show Dinic's algorithm runs in $O(|E| \cdot \sqrt{|V|})$ time.
- Step 1: Finding a blocking flow in a level graph takes O(|E|) time.
- Step 2: Number of iterations is at most $2\sqrt{|V|}$.

Iteratively do the followings, until no path from s to t:

- Perform DFS from s
- If we reach t, delete all edges on the s-t path (why can we do this?) and start over from s.
- If we ever go backward, delete the edge just travelled. (why can we do this?)

An *s*-*t* path is found, remove all edges from the path.

Start over...

We have to go backward now; delete the edge just travelled.

Again, we have to go backward; delete the edge just travelled.

Again, we have to go backward; delete the edge just travelled.

Again, we have to go backward; delete the edge just travelled.

Find another *s*-*t* path; delete all edges on the path

 \bullet t

We are done!

S •

We have obtained a blocking flow!

Time complexity: O(|E|)
Each edge is visited at most once.

Step 2: Number of iterations is at most $2\sqrt{|V|}$.

- If the algorithm terminates within $\sqrt{|V|}$ iterations, we are already done!
- Otherwise, let f be the flow after $\sqrt{|V|}$ iterations.
- Claim: the maximum flow in G^f has value at most $\sqrt{|V|}$.

Observation on G^f

In each iteration, for each v ∈ V \ {s, t}, either its in-degree is 1, or its out-degree is 1.

- Proof. By Induction...
- At the beginning, this is clearly true.

out-degree = 1

in-degree = 1

Observation on G^f

 In each iteration, for each v ∈ V \ {s, t}, either its in-degree is 1, or its out-degree is 1.

- Proof. At the beginning, this is clearly true.
- For each iteration, the amount of flow going through v is either 0 or 1.
- If it is 0, v's in-degree and out-degree are unchanged.
- Otherwise, exactly one in-edge and one out-edge are flipped; the property is still maintained.

The maximum flow in G^f has value at most $\sqrt{|V|}$

- Integrality Theorem: there exists a maximum integral flow f' in G^f.
- f' consists of edge-disjoint paths.
- Edge-disjointness implies vertex-disjointness by previous observation on G^f.

violating flow conservation

The maximum flow in G^f has value at most $\sqrt{|V|}$

- Max-flow on G^f, f', is integral and consists of edge-disjoint paths.
- By our analysis to Dinic's algorithm, dist^{G^{f}}(s, t) $\geq \sqrt{|V|}$.
- Each path in f' has length at least $\sqrt{|V|}$.
- There are at most $\frac{|V|}{\sqrt{|V|}} = \sqrt{|V|}$ paths in f' by vertex-disjointness.
- $v(f') \leq \sqrt{|V|}$

Step 2: Number of iterations is at most $2\sqrt{|V|}$.

- If the algorithm terminates within $\sqrt{|V|}$ iterations, we are already done!
- Otherwise, let f be the flow after $\sqrt{|V|}$ iterations.
- Claim: the maximum flow in G^f has value at most $\sqrt{|V|}$.
- Each iteration increase the value of flow by at least 1.
- Thus, the algorithm will terminates within at most another $\sqrt{|V|}$ iterations.

• Total number of iterations: $2\sqrt{|V|}$.

Putting Together...

- Step 1: Finding a blocking flow in a level graph takes O(|E|) time.
- Step 2: Number of iterations is at most $2\sqrt{|V|}$.

• Overall time complexity: $O\left(|E| \cdot \sqrt{|V|}\right)$

Today's Lecture

Maximum Flow Problem:

- Edmonds-Karp Algorithm
 - Implement Ford-Fulkerson method by BFS
 - $O(|V| \cdot |E|^2)$
- Dinic's Algorithm
 - Push flow on multiple paths at one iteration
 - Level graph and blocking flow
 - $O(|V|^2 \cdot |E|)$

Maximum Bipartite Matching Problem:

- Hopcroft–Karp–Karzanov algorithm
 - Apply Dinic's algorithm
 - $O\left(|E| \cdot \sqrt{|V|}\right)$