Linear Programming

Linear Programming, LP Duality Theorem, LP-Relaxation

Linear Program (LP)

- A set of linear equations/inequalities.
- Maximize or minimize a given linear objective function.

maximize $c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$ subject to $a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n \le b_1$ $a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n \le b_2$

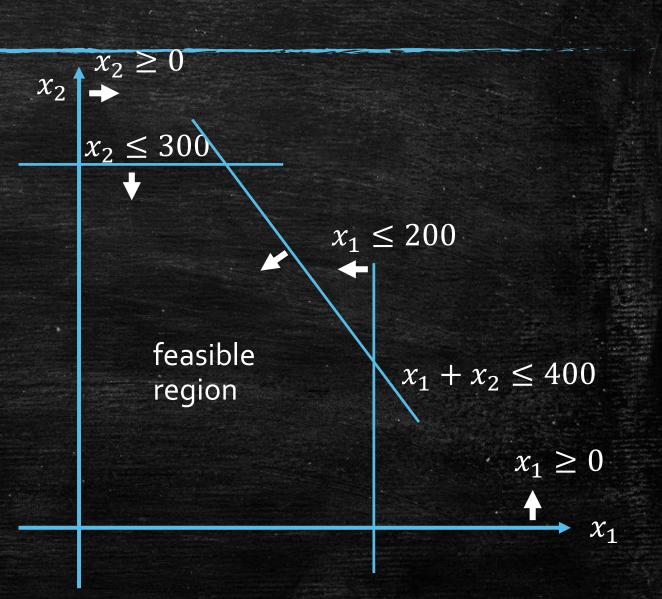
> $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$ $x_1, x_2, \dots, x_n \ge 0$

Example

 Suppose a factory can produce two kinds of products: oil and sugar.

- Profit for 1 tons of sugar: 1
- Profit for 1 tons of oil: 6
- Limited resources, can produce at most
 - 200 tons of sugar
 - 300 tons of oil
 - Overall weight is at most 400 tons
- Problem: maximize the profit

Feasible Region



Maximizing the Objective

 x_2

We want to

maximize *c*.

 x_1

 $x_1 + 6x_2 = c$

Maximizing the Objective

 x_2

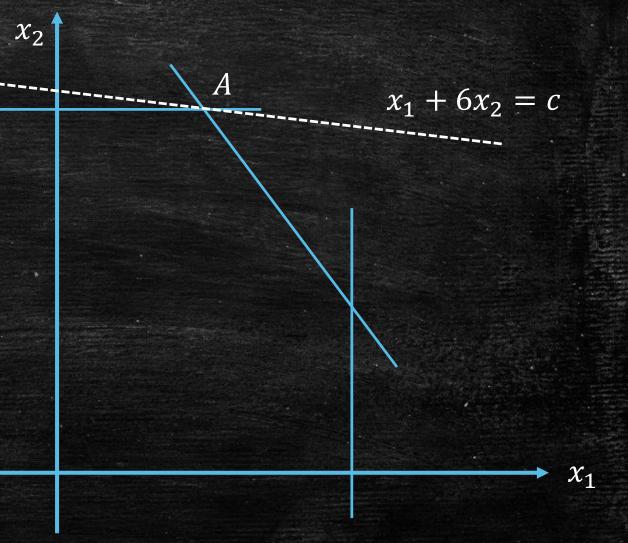
 $x_1 + 6x_2 = c$

 x_1

Maximizing the Objective

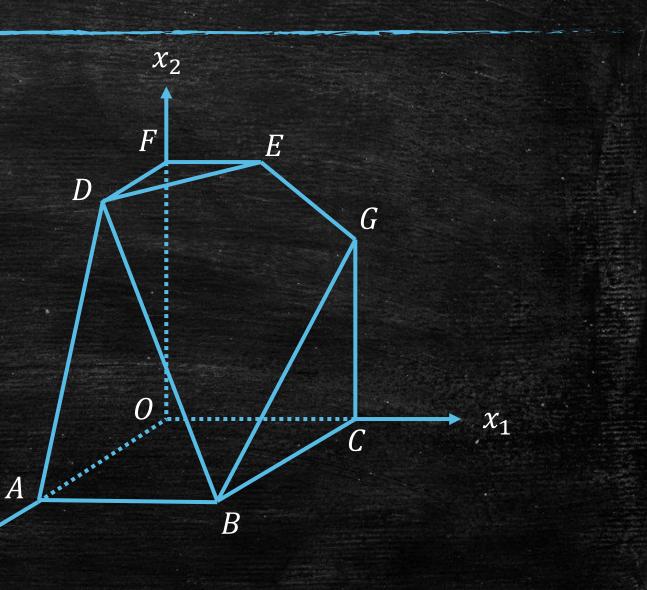
maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

Optimum is obtained at vertex A, where $(x_1, x_2) = (100, 300)$ and c = 1900.



Another Example with Three variables

 x_3



Another Example with Three variables

 x_3

 x_2

 $x_1 + 6x_2 + 13x_3 = c$

 x_1

Another Example with Three variables

Optimum

 x_3

 x_2

 $x_1 + 6x_2 + 13x_3 = c$

 x_1

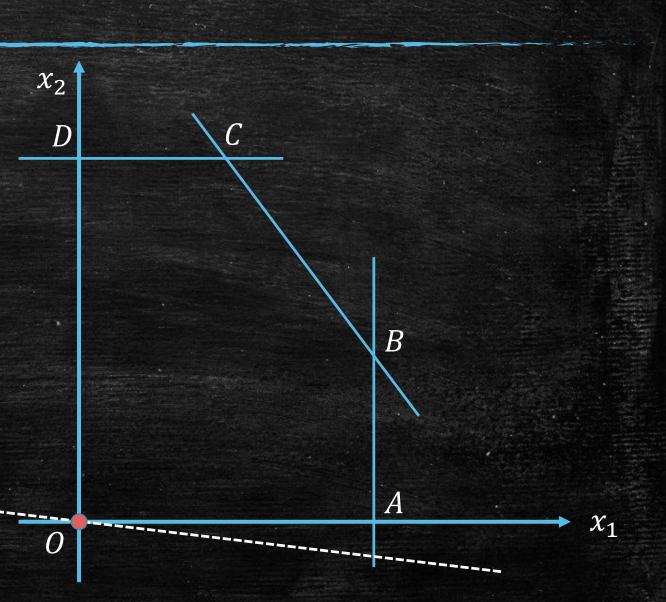
Important Observations

- 1. There always exists an optimum $x = (x_1, ..., x_n)$ at a vertex of the polytope.
 - Linear objective $\Rightarrow c = c_1 x_1 + \dots + c_n x_n$ is a hyperplane.
 - Optimum is obtained only when the whole feasible region is below the hyperplane and the hyperplane "barely" intersect the region by a point.
- 2. The feasible region is always convex.
 - Linear Constraints \Rightarrow feasible region is bounded by hyperplanes.
- 3. A local maximum is also a global maximum.
 - By the convexity of the feasible region...

- Choose an arbitrary starting vertex.
- Iteratively move to an adjacent vertex along an edge if such movement increase the objective.
- Terminate when we reach a local maximum.

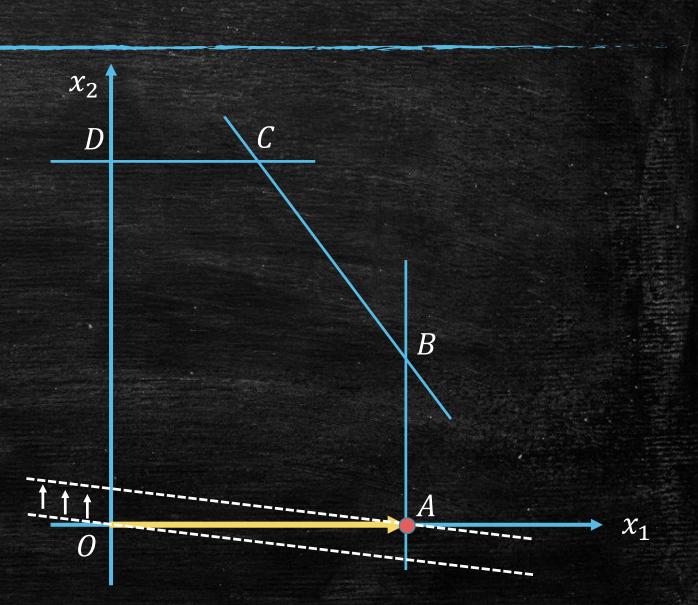
maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

Starting from vertex *O*.



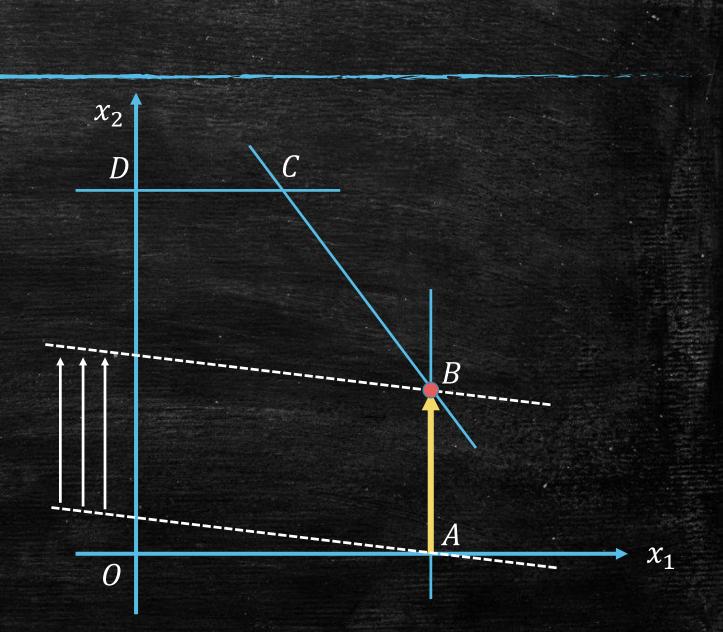
maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

Moving from *O* to *A* increases the objective.



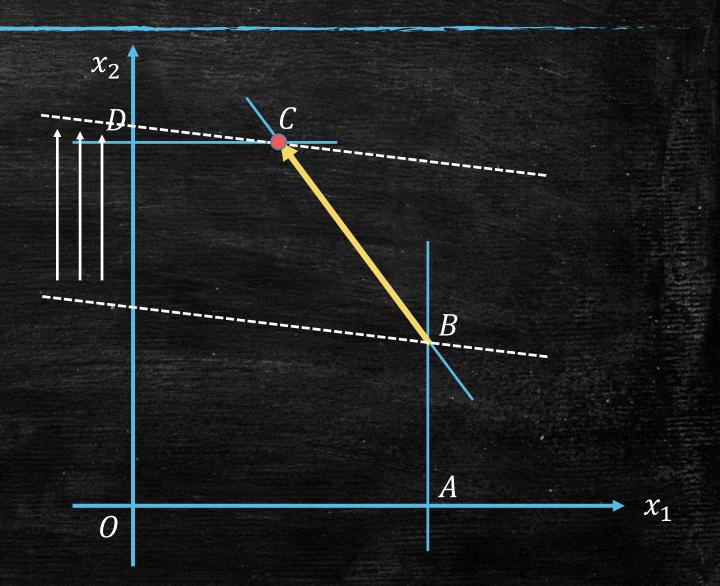
maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

Moving from A to B increases the objective.



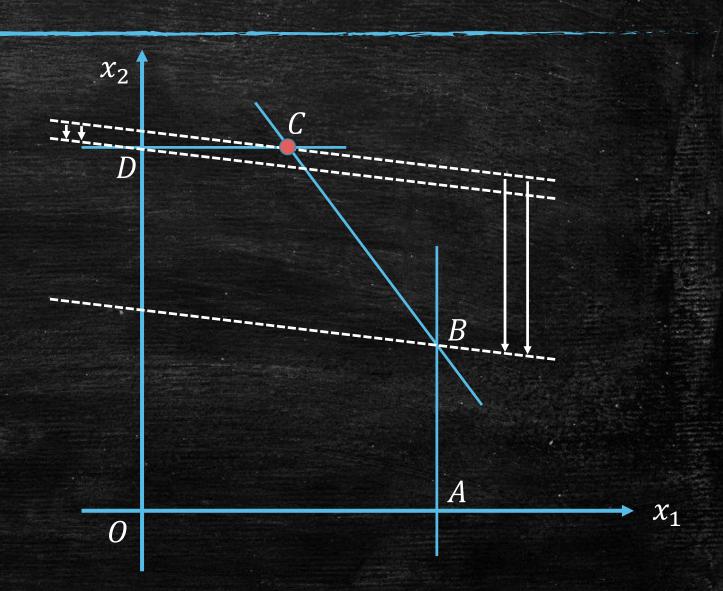
maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

Moving from *B* to *C* increases the objective.



maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

C is a local maximum: Moving to either *D* or *B* decreases the objective.



 x_2

E

G

 x_1

F

0

B

D

A

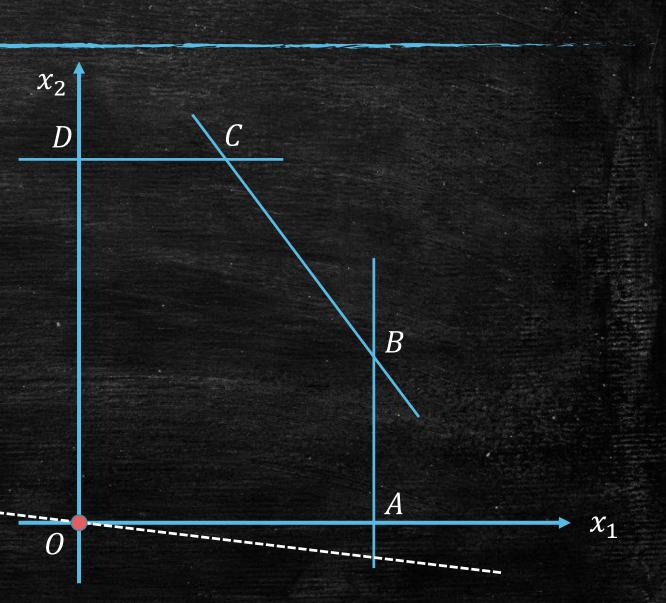
 x_3

Some Details in Simplex Method

- What exactly is a vertex?
 - A point at the intersection of n linearly independent hyperplanes.
 - *n* hyperplanes intersect at exactly one point in \mathbb{R}^n
- What exactly is an edge?
 - The intersection of n 1 linearly independent hyperplanes.
 - n-1 hyperplanes intersect at a line in \mathbb{R}^n
- How do we "move from one vertex to another adjacent vertex along an edge"?
 - Relax one of the *n* constraint and impose another.
 - The new vertex can be computed by solving a system of n linear equations.

maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

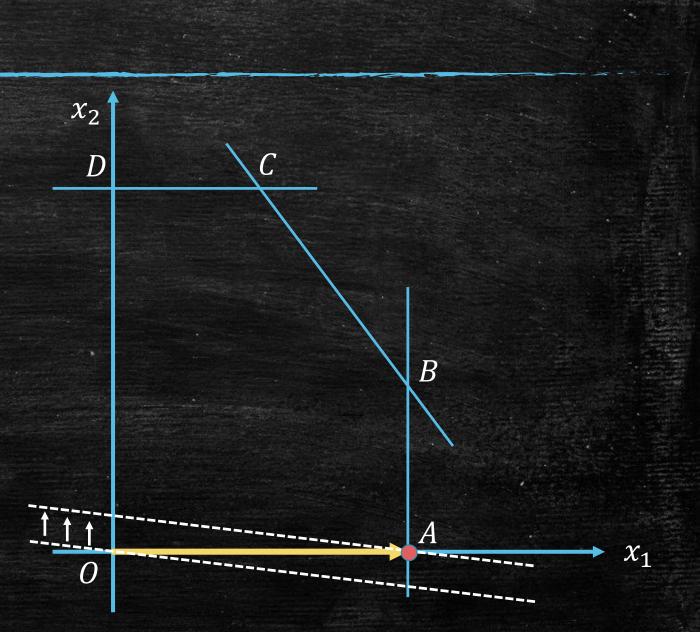
Starting from vertex 0: • Intersection of two lines $x_1 = 0$ and $x_2 = 0$.



maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

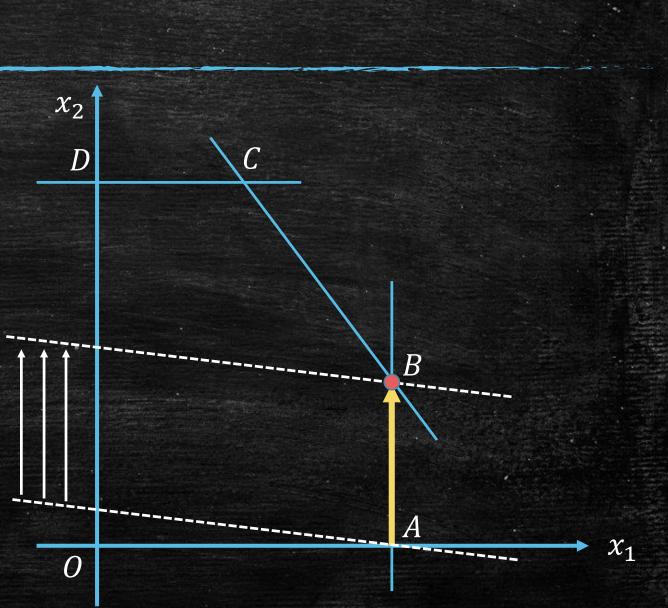
Moving from *O* to *A*:

• Relax $x_1 = 0$ and impose $x_1 = 200$ • $\begin{cases} x_1 = 200 \\ x_2 = 0 \end{cases}$



maximize $x_1 + 6x_2$ subject to $x_1 \leq 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$ Moving from *A* to *B*: • Relax $x_2 = 0$ and impose $x_1 + x_2 = 400$ $\begin{cases} x_1 + x_2 = 400 \\ x_1 = 200 \end{cases}$

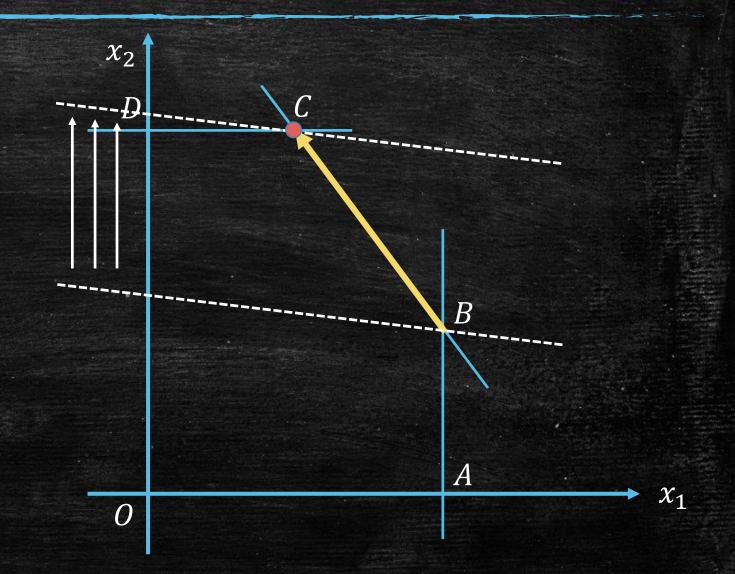
•



maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

Moving from B to C:

• Relax $x_1 = 200$ and impose $x_2 = 300$ • $\begin{cases} x_1 + x_2 = 400 \\ x_2 = 300 \end{cases}$



Missing Details not Covered in This Lecture...

- How to find a starting vertex?
- How to find a neighbor that guarantees increment to objective?
- Degenerated vertex: n + 1 hyperplanes "happen to" intersect at a single point.

 x_2

 x_3

G

 χ_1

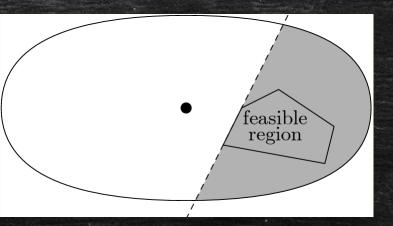
- E.g., Vertex *B* and *D*
- Unbounded feasible region...
- And many more...

Time Complexity for Simplex Method

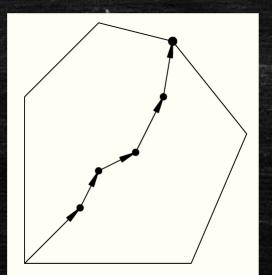
- There are exponentially many vertices: ^(m)/_n for m constraints and n variables.
- Worst-case running time: exponential
 - Many attempts have failed.
 - e.g., choose neighbors with highest objective value, choose neighbors randomly, etc.
- [Teng & Spielman] Smoothed analysis
 - Average case polynomial time if add random Gaussian noise to the constraints.
- Runs fast in practice, and most commonly used

Polynomial Time Algorithms for LP

Ellipsoid Method



Interior Point Method



Standard Form LP

 Maximization as objective with "≤" constraints and nonnegative variables.

maximize $c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$ subject to $a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n \le b_1$ $a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n \le b_2$ maximize $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ $\mathbf{x} \geq \mathbf{0}$

 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$ $x_1, x_2, \dots, x_n \ge 0$

Other Forms Reduce to Standard Form

- Minimization to Maximization
 - $-\min c_1 x_1 + \dots + c_n x_n \quad \Longleftrightarrow \quad \max c_1 x_1 \dots c_n x_n$
- \geq -inequalities
 - $-a_1x_1 + \dots + a_nx_n \ge b \quad \iff \quad -a_1x_1 \dots a_nx_n \le -b$
- Inequality \Leftrightarrow Equality
 - $-a_1x_1 + \dots + a_nx_n = b \quad \Leftrightarrow \quad \begin{cases} a_1x_1 + \dots + a_nx_n \le b \\ a_1x_1 + \dots + a_nx_n \ge b \end{cases}$
 - $-a_1x_1 + \dots + a_nx_n \le b \quad \Longleftrightarrow \quad a_1x_1 + \dots + a_nx_n + s = b$
- Variable with unrestricted signs
 - Introduce two variables x^+ and x^- with standard constraints $x^+, x^- \ge 0$
 - Replace x with $x^+ x^-$

Take-Home Message

A linear program can be solved in a polynomial time.
Whenever a problem can be formulated by a linear program, it is polynomial-time solvable.

Formulation as Linear Program

The maximum flow problem can be formulated by a linear program.

 $\begin{array}{ll} \text{maximize} & \sum_{u:(s,u)\in E} f_{su} \\ \text{subject to} & 0 \leq f_{uv} \leq c_{uv} \\ & \quad \forall (u,v) \in E \\ & \sum_{v:(v,u)\in E} f_{vu} = \sum_{w:(v,w)\in E} f_{uw} \quad \forall u \in V \setminus \{s,t\} \end{array}$

Ford-Fulkerson Method implements the simplex method.

Formulation as Linear Program

- The "highway driving" problem in Assignment 3 can be formulated as a linear program.
- Capacity of tank: C
- Location and unit price of *i*-th station: *d_i*, *p_i*
- Start: 0-th station Destination: *n*-th station

minimize $\sum p_i x_i$

subject to

 $y_0 = 0$ $y_i = y_{i-1} + x_{i-1} - (d_i - d_{i-1})$ $x_i + y_i \leq C$ $x_0, x_1, \dots, x_n, y_0, y_1, \dots, y_n \ge 0$

for $i = 1, \dots, n$ for i = 0, 1, ..., n

Part II: LP Duality

Motivation

- We have seen that the optimal solution for the LP below is $(x_1, x_2) = (100, 300)$, with value 1900.
 - Geometric argument, argument based on simplex method
- Let's try to prove it by some simple observations from the LP itself!

Motivation

- Let's try adding (i) to 6 times (ii): $x_1 + 6x_2 \le 200 + 6 \times 300 = 2000$
- We know that any solution (x₁, x₂) cannot yield objective value greater than 2000.
- Can we combine the inequality in a better way to show that the objective value is at most 1900?

Motivation

- Can we combine the inequality in a better way to show that the objective value is at most 1900?
- Yes, we can:
 - Multiple (ii) by 5 and add to (iii): $x_1 + 6x_2 \le 300 \times 5 + 400 = 1900$.
- This proves that $(x_1, x_2) = (100, 300)$ with objective value 1900 is optimal!

Let's try this one...

- Suppose we multiple (i) by y₁, (ii) by y₂, (iii) by y₃, and (iv) by y₄.
- We have $(y_1 + y_3)x_1 + (y_2 + y_3 + y_4)x_2 + (y_3 + 3y_4)x_3 \le 200y_1 + 300y_2 + 400y_3 + 600y_4.$
- We need $y_1, y_2, y_3, y_4 \ge 0$ to keep the inequality.
- To find an upper bound to the objective $x_1 + 6x_2 + 13x_3$, we need to make sure $x_1 + 6x_2 + 13x_3 \le (y_1 + y_3)x_1 + (y_2 + y_3 + y_4)x_2 + (y_3 + 3y_4)x_3$ holds for every (x_1, x_2, x_3) .
- Since $x_1, x_2, x_3 \ge 0$, we must have:
 - $y_1 + y_3 \ge 1$
 - $y_2 + y_3 + y_4 \ge 6$
 - $-y_3 + 3y_4 \ge 13$

Let's try this one...

- $(y_1 + y_3)x_1 + (y_2 + y_3 + y_4)x_2 + (y_3 + 3y_4)x_3 \le 200y_1 + 300y_2 + 400y_3 + 600y_4.$
- Since $x_1, x_2, x_3 \ge 0$, we must have:
 - $y_1 + y_3 \ge 1$
 - $y_2 + y_3 + y_4 \ge 6$
 - $-y_3 + 3y_4 \ge 13$
- Now, we want to find the tightest possible upperbound to $x_1 + 6x_2 + 13x_3$.
- This means we want to minimize $200y_1 + 300y_2 + 400y_3 + 600y_4$.

maximize $x_1 + 6x_2 + 13x_3$ subject to $x_1 \le 200$ (i) $x_2 \le 300$ (ii) $x_1 + x_2 + x_3 \le 400$ (iii) $x_2 + 3x_3 \le 600$ (iv) $x_1, x_2, x_3 \ge 0$

Dual Program

 The problem of finding the tightest upper-bound can be formulated by another linear program!

 This linear program is called the dual program, and the original one is called the primal program.

maximize $x_1 + 6x_2 + 13x_3$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 + x_3 \le 400$ $x_2 + 3x_3 \le 600$ $x_1, x_2, x_3 \ge 0$

minimize $200y_1 + 300y_2 + 400y_3 + 600y_4$ subject to $y_1 + y_3 \ge 1$ $y_2 + y_3 + y_4 \ge 6$ $y_3 + 3y_4 \ge 13$ $y_1, y_2, y_3, y_4 \ge 0$

Dual Program

• Factory Example: maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

minimize $200y_1 + 300y_2 + 400y_3$ subject to $y_1 + y_3 \ge 1$ $y_2 + y_3 \ge 6$ $y_1, y_2, y_3 \ge 0$

Dual program for standard form:
 maximize $\mathbf{c}^{\top}\mathbf{x}$ minimizes subject to $A\mathbf{x} \leq \mathbf{b}$ subject to $\mathbf{x} \geq \mathbf{0}$

minimize $\mathbf{b}^{\mathsf{T}}\mathbf{y}$ subject to $\mathbf{y}^{\mathsf{T}}A \ge \mathbf{c}^{\mathsf{T}}$ $\mathbf{y} \ge \mathbf{0}$

Weak Duality Theorem

By our motivation of dual program, we obtain the following theorem.

• Theorem [Weak Duality Theorem]. If $\hat{\mathbf{x}}$ is a feasible solution to (a) and $\hat{\mathbf{y}}$ is a feasible solution to (b), then $\mathbf{c}^{\top}\hat{\mathbf{x}} \leq \mathbf{b}^{\top}\hat{\mathbf{y}}$.

maximize $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ minimize $\mathbf{b}^{\mathsf{T}}\mathbf{y}$ subject to $A\mathbf{x} \leq \mathbf{b}$ (a)subject to $\mathbf{y}^{\mathsf{T}}A \geq \mathbf{c}^{\mathsf{T}}$ (b) $\mathbf{x} \geq \mathbf{0}$ $\mathbf{y} \geq \mathbf{0}$ $\mathbf{y} \geq \mathbf{0}$ Primal feasiblePrimal OPTDual OPTDual feasible

Strong Duality Theorem: This gap is always closed!

Strong Duality Theorem

Theorem [Strong Duality Theorem]. Let x* be the optimal solution to (a) and y* be the optimal solution to (b), then c^Tx* = b^Ty*.

maximize $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ (a) $\mathbf{x} \geq \mathbf{0}$

minimize $\mathbf{b}^{\mathsf{T}}\mathbf{y}$ subject to $\mathbf{y}^{\mathsf{T}}A \ge \mathbf{c}^{\mathsf{T}}$ (b) $\mathbf{y} \ge \mathbf{0}$

Dual feasible

Primal OPT = Dual OPT

Primal feasible

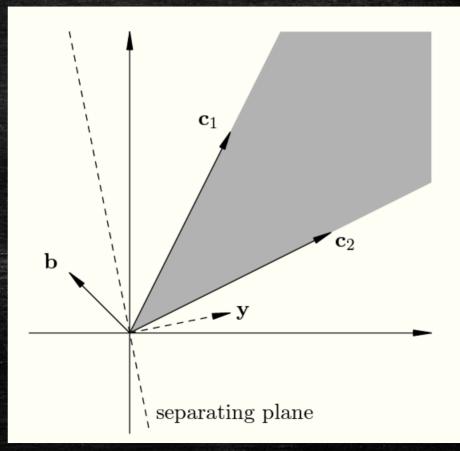
Application of Strong Duality Theorem

- Max-Flow-Min-Cut Theorem
- Minimax Theorem
- Kőnig-Egerváry Theorem
- Design approximation algorithms:
 - Dual fitting
 - Primal-Dual Schema
- Economic interpretation: "resource allocation"-"resource valuation"

Proof of Strong Duality Theorem

- Theorem [Farkas Lemma]. Exactly one of the followings holds for matrix $A \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^{m}$:
 - 1. There exists $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \ge \mathbf{0}$ such that $A\mathbf{x} = \mathbf{b}$.
 - 2. There exists $\mathbf{y} \in \mathbb{R}^m$ such that $A^{\mathsf{T}}\mathbf{y} \ge \mathbf{0}$ and $\mathbf{b}^{\mathsf{T}}\mathbf{y} < 0$.
- $\{A\mathbf{x} \mid \mathbf{x} \ge \mathbf{0}\}$ is the grey area.
- 1 says that **b** is inside the grey area.
- 2 says that we can separate the grey area and b by a hyperplane (defined by the normal vector y).
 - In this case **b** must be outside the grey area.

Illustration for $A = [c_1 \ c_2]$

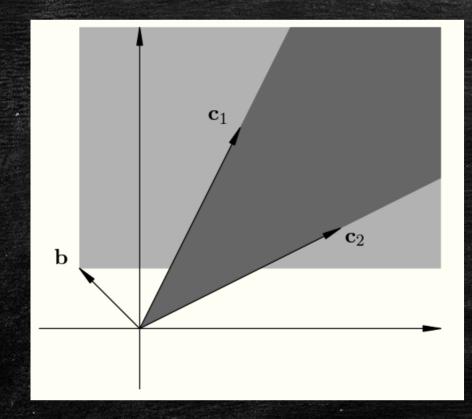


A Corollary to Farkas Lemma

• **Corollary**. Exactly one of the followings holds for matrix $A \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^{m}$:

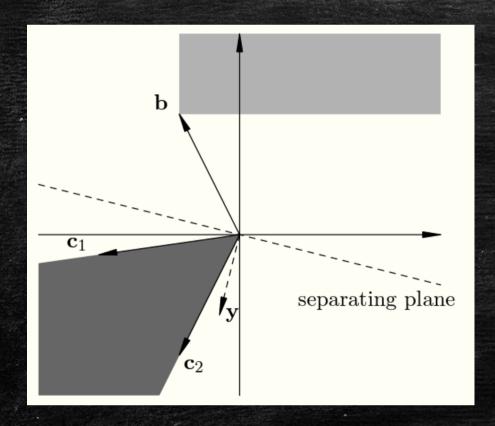
- 1. There exists $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \ge \mathbf{0}$ such that $A\mathbf{x} \ge \mathbf{b}$.
- 2. There exists $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y} \leq \mathbf{0}$ such that $A^{\mathsf{T}}\mathbf{y} \geq \mathbf{0}$ and $\mathbf{b}^{\mathsf{T}}\mathbf{y} < 0$.

Case 1 of the Corollary



{Ax | x ≥ 0} is the dark grey area.
{x | x ≥ b} is the light grey area.
1 says that the two areas intersect.

Case 2 of the Corollary



- $\{A\mathbf{x} \mid \mathbf{x} \ge \mathbf{0}\}$ is the dark grey area.
- $\{x \mid x \ge b\}$ is the light grey area.
- 2 describes that the two areas do not intersect.
- We can find a separating plane with normal vector y.
 - Thus, $A^{\mathsf{T}}\mathbf{y} \ge 0$ and $\mathbf{b}^{\mathsf{T}}\mathbf{y} < 0$
- We must have $y \leq 0$:
 - If this fails for one entry: $y_i > 0$
 - $\mathbf{z} = (\varepsilon, ..., \varepsilon, z_i = 1, \varepsilon, ..., \varepsilon)$ and \mathbf{y} on same side
 - z is in the first quadrant, and it will eventually intersect the light grey area after extension.
 - The two areas are on the same side with y.

Proof of the Corollary

- Define $A' \in \mathbb{R}^{m \times (n+m)}$ by A' = [A I].
- Apply Farkas Lemma on A' and b.
- Let P1 and P2 be 1 and 2 in Farkas Lemma; Q1 and Q2 be 1 and 2 in the corollary.
- We aim to show P1 \Leftrightarrow P2 and Q1 \Leftrightarrow Q2.

Proof of the Corollary

- Define $A' \in \mathbb{R}^{m \times (n+m)}$ by A' = [A I].
- P1 $\Leftrightarrow \exists \mathbf{x}' \in \mathbb{R}^{n+m}$ s.t. $\mathbf{x}' \ge \mathbf{0}$ and $A'\mathbf{x}' = \mathbf{b}$.
- (by writing $\mathbf{x}' = \begin{vmatrix} \mathbf{x} \\ \overline{\mathbf{x}} \end{vmatrix}$) $\Leftrightarrow [A I] \begin{vmatrix} \mathbf{x} \\ \overline{\mathbf{x}} \end{vmatrix} = \mathbf{b}$ (where $\mathbf{x} \ge \mathbf{0}$, $\overline{\mathbf{x}} \ge \mathbf{0}$)
- \Leftrightarrow $A\mathbf{x} \overline{\mathbf{x}} = \mathbf{b} \iff A\mathbf{x} \ge \mathbf{b}$ (since $\overline{\mathbf{x}} \ge \mathbf{0}$)
- ⇔ Q1

Proof of the Corollary

• Define $A' \in \mathbb{R}^{m \times (n+m)}$ by A' = [A - I]. • P2 $\Leftrightarrow \exists \mathbf{y} \in \mathbb{R}^m$ s.t. $A'^{\mathsf{T}}\mathbf{y} \ge \mathbf{0}$ and $\mathbf{b}^{\mathsf{T}}\mathbf{y} < 0$. • $\Leftrightarrow \begin{bmatrix} A^{\mathsf{T}} \\ -I \end{bmatrix} \mathbf{y} \ge \mathbf{0}$ and $\mathbf{b}^{\mathsf{T}}\mathbf{y} < 0$ • $\Leftrightarrow A^{\mathsf{T}}\mathbf{y} \ge \mathbf{0}$, $-\mathbf{y} \ge 0$, and $\mathbf{b}^{\mathsf{T}}\mathbf{y} < 0$ • $\Leftrightarrow A^{\mathsf{T}}\mathbf{y} \ge \mathbf{0}$, $-\mathbf{y} \ge 0$, $-\mathbf{y} \ge 0$, $-\mathbf{y} < 0$

Now we are ready to prove strong duality theorem...

- Weak duality: $\mathbf{c}^{\mathsf{T}}\mathbf{x} \leq \mathbf{b}^{\mathsf{T}}\mathbf{y}^*$ holds for any $\mathbf{x} \geq \mathbf{0}$.
- Suppose strong duality fails: $\mathbf{c}^{\top}\mathbf{x} < \mathbf{b}^{\top}\mathbf{y}^*$.
- There does not exist $\mathbf{x} \ge \mathbf{0}$ satisfying $A\mathbf{x} \le \mathbf{b}$ and $\mathbf{c}^{\top}\mathbf{x} \ge \mathbf{b}^{\top}\mathbf{y}^*$.
- We cannot have $\begin{bmatrix} -A \\ \mathbf{c}^{\top} \end{bmatrix} \mathbf{x} \ge \begin{bmatrix} -\mathbf{b} \\ \mathbf{b}^{\top} \mathbf{y}^* \end{bmatrix}$ and $\mathbf{x} \ge \mathbf{0}$.
- Q1 in corollary fails for matrix $\begin{bmatrix} -A \\ c^T \end{bmatrix}$ and vector $\begin{bmatrix} -b \\ b^T v^* \end{bmatrix}$.
- Thus, Q2 must be true.

Now we are ready to prove strong duality theorem...

Q2 is true for matrix ^{-A}_{c^T} and vector ^{-b}_{b^Ty^{*}}.
There exist y ∈ ℝ^m and w ∈ ℝ such that

[-A^T c] ^y_w ≥ 0, [-b^T b^Ty^{*}] ^y_w < 0, and ^y_w ≤ 0.
After matrix multiplications,

 $\begin{cases} -A^{\mathsf{T}}\mathbf{y} + w\mathbf{c} \ge \mathbf{0} \\ -\mathbf{b}^{\mathsf{T}}\mathbf{y} + w\mathbf{b}^{\mathsf{T}}\mathbf{y}^* < 0 \\ \mathbf{y} \le \mathbf{0} \\ w \le 0 \end{cases}$

Proof of Strong Duality Theorem

 $\begin{cases} -A^{\mathsf{T}}\mathbf{y} + w\mathbf{c} \ge \mathbf{0} \\ -\mathbf{b}^{\mathsf{T}}\mathbf{y} + w\mathbf{b}^{\mathsf{T}}\mathbf{y}^* < 0 \\ \mathbf{y} \le \mathbf{0} \\ w \le 0 \end{cases}$

Suppose w < 0. We divide w on both sides:</p>

$$\begin{cases} -A^{\top} \left(\frac{\mathbf{y}}{w} \right) + \mathbf{c} \leq \mathbf{0} \\ -\mathbf{b}^{\top} \left(\frac{\mathbf{y}}{w} \right) + \mathbf{b}^{\top} \mathbf{y}^{*} > 0 \\ \left(\frac{\mathbf{y}}{w} \right) \geq \mathbf{0} \end{cases}$$

• $\left(\frac{\mathbf{y}}{w}\right)$ is a better solution than \mathbf{y}^* in the dual LP, contradiction!

Proof of Strong Duality Theorem

 $\begin{cases} -A^{\mathsf{T}}\mathbf{y} + w\mathbf{c} \ge \mathbf{0} \\ -\mathbf{b}^{\mathsf{T}}\mathbf{y} + w\mathbf{b}^{\mathsf{T}}\mathbf{y}^* < 0 \\ \mathbf{y} \le \mathbf{0} \\ w \le 0 \end{cases}$

- Let's then do the case w = 0.
- We have $-A^{\top}y \ge 0$, $-b^{\top}y < 0$, and $y \le 0$.
- Q2 in Corollary holds for −*A* and −**b**.
- So Q1 must be false: $\exists \mathbf{x} \ge 0: (-A)\mathbf{x} \ge -\mathbf{b}$.
- The feasible region for the primal LP is empty!

Part III: LP-Relaxation

Integer Program

- If we require each variable in a linear program is an integer, we obtain an integer program (IP), or integer linear program (ILP).
- Many problem can be formulated as IP.
- Standard form:

maximize $\mathbf{c}^{\top} \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ $\mathbf{x} \geq \mathbf{0}$ $\mathbf{x} \in \mathbb{Z}^n$

LP-Relaxation

- Integer Programming is NP-complete, even for the zeroone special case $\forall i: x_i \in \{0, 1\}$.
- We can use the fact that LP is polynomial-time solvable to design approximation algorithm.
- Relax $x_i \in \{0,1\}$ to $0 \le x_i \le 1$.
- Then "round" the fractional solution to integral one:
 - E.g., $x_i = 0.7$ is rounded to $x_i = 1$, $x_i = 0.2$ is rounded to $x_i = 0$.
- and show that the rounded solution is feasible and achieves good approximation guarantee.

• Given an undirected graph G = (V, E), a subset of vertices $S \subseteq V$ is a vertex cover if S contains at least one endpoint of every vertex.

not a vertex cover

Problem [(Minimum) Vertex Cover]. Given an undirected graph, find a vertex cover with minimum number of vertices.

Formulation by integer program:

- $x_u = 1$ represents $u \in V$ is selected in the cover; $x_u = 0$ otherwise.

minimize
$$\sum_{v \in V} x_v$$
subject to $x_u + x_v \ge 1$ $\forall (u, v) \in E$ $x_v \in \{0, 1\}$ $\forall v \in V$

Problem [(Minimum) Vertex Cover]. Given an undirected graph, find a vertex cover with minimum number of vertices.
Relax it to a linear program below:

minimize
$$\sum_{v \in V} x_v$$
subject to $x_u + x_v \ge 1$ $\forall (u, v) \in E$ $0 \le x_v \le 1$ $\forall v \in V$

• OPT(IP) – optimal objective value $\sum_{v \in V} x_v$ for IP

- This is the objective we want for vertex cover
- OPT(LP) optimal objective value $\sum_{v \in V} x_v$ for LP
- OPT(IP) ≥ OPT(LP): because LP has a larger feasible region.

minimize $\sum_{v \in V} x_v$ minimize $\sum_{v \in V} x_v$ subject to $x_u + x_v \ge 1$ $\forall (u, v) \in E$ subject to $x_u + x_v \ge 1$ $\forall (u, v) \in E$ $x_v \in \{0, 1\}$ $\forall v \in V$ $0 \le x_v \le 1$ $\forall v \in V$ Integer Program (IP)Linear Program (LP)

An approximation algorithm for vertex cover:

- Formulate the problem as an integer program and obtain its LPrelaxation.
- Solve the linear program and obtain its optimal solution $\{x_v^*\}_{v \in V}$.

• Return $S = \{v \mid x_v^* \ge \frac{1}{2}\}$

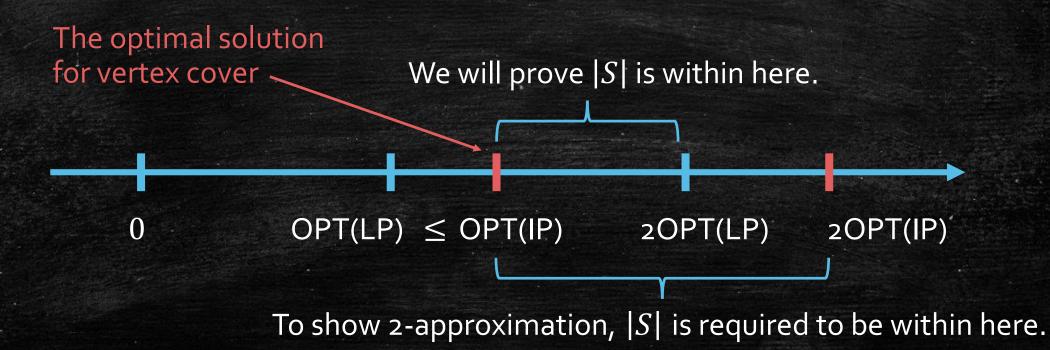
Correctness

S returned by the algorithm is vertex cover.

- Proof. Consider an arbitrary edge $(u, v) \in E$.
- We have $x_u^* + x_v^* \ge 1$ by feasibility, which implies we have either $x_u^* \ge \frac{1}{2}$ or $x_v^* \ge \frac{1}{2}$, or both.
- By our algorithm, we have either $u \in S$ or $v \in S$, or both.

The algorithm is a 2-approximation.

The algorithm is a 2-approximation algorithm: $|S| \le 2 \cdot OPT(IP)$. • Proof. Since we have $OPT(IP) \ge OPT(LP)$, it suffices to prove $|S| \le 2 \cdot OPT(LP)$.



The algorithm is a 2-approximation.

The algorithm is a 2-approximation algorithm: $|S| \leq 2 \cdot OPT(IP)$.

- Proof. Since we have $OPT(IP) \ge OPT(LP)$, it suffices to prove $|S| \le 2 \cdot OPT(LP)$.
- OPT(LP) = $\sum_{v \in V} x_v^* = \sum_{v:x_v^* < \frac{1}{2}} x_v^* + \sum_{v:x_v^* \ge \frac{1}{2}} x_v^*$ = $\sum_{v:x_v^* < \frac{1}{2}} 0 + \sum_{v:x_v^* \ge \frac{1}{2}} \frac{1}{2} = \frac{1}{2} \cdot |S|$

• which implies $|S| \leq 2 \cdot OPT(LP)$.

Today's Lecture

- Introduction to Linear Programming
- LP Duality Theorem
- LP-Relaxation use LP to design approximation algorithms