Linear Programming

Linear Programming, LP Duality Theorem, LP-Relaxation



Linear Program (LP)
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= A set of linear equations/inequalities.

= Maximize or minimize a given linear objective function.

maximize cqXxXq + CaXy + - CphXy

subjectto aq1x1 + apx, + -+ a1X, < by
alel + azzxz + ‘l‘ aznxn S bz

X1,y X2, v, Xy = 0



Example

: - 5 = i ——— == -— = - =

Suppose a factory can produce two kinds
~ of products: oil and sugar.

- Profit for 1 tons of sugar: 1 maximize x; + 6x;
: 3 1 o
- Profit for 1 tons of oil: 6 Sublect o~ 200
Ao, X2 < 300
- Limited resources, can produce at most Xy + % < 400

- 200 tons of sugar |
- 300 tons of ail X1,%X = 0
- Overall weight is at most 400 tons | | -

Problem: maximize the profit



Feasible Region

j'maximize x; + 6,
subject to x; < 200

x, < 300

x1 +x, < 400

X1, Xy = 0

feasible ges
region Yl +x; = 400
; .xl = 0
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Maximizing the Objective

%21
j'maximize X1 + 6x,
subject to x; < 200
< .
o0 | - We want to
X1 + Xo < 400 | .
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Maxirﬁizing the Objective

j'maximize X1 + 6x,
subject to x; < 200

X9 < 300

X1 + Xo < 400

X1,X>p >0
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Maximizing the Objective

maximize x; + 6x,
subject to x; < 200
| x; < 300
x1 + x5 <400
X1,Xy =0

Optimum is obtained at vertex 4, where

(x1,x2) = (100,300) and ¢ = 1900.

EE———




Another Example with Three variables

EE———

=

X2

maximize x; + 6x, + 13x3 | F | E
“subjectto x; <200 | D :
x, < 300
X1+ x, +x3 <400
x; + 3x3 < 600
Sk s =0 kb




Another Example with Three variables

maximize x; + 6x, + 13x5
“subject to X1 <200
x, < 300
X1+ x, +x3 <400
X, + 3x3 < 600

X1,X2,X3 =0




Another Example with Three variables

E————

=2 A Fon, F 3=

maximize x; + 6x, + 1_35cg ' Optimum
“subject to x; < 200 v AT
X1+ x; +x3 <400 :
X9 + 3X3 < 600

X1,X2,X3 =0




Important Observations

e— . - - — | A B PRt a4

- 1. There always eX|sts an optimum x = (x, ..., x,,) at a vertex of
- the polytope. |
- - Linear objective = ¢ = ¢;x; + -+ c,x,, iS @ hyperplane

- Optlmum is obtained only when the whole feasible region is below the
hyperplane and the hyperplane “barely” intersect the reglon by a pomt.

2. The feasible region is always convex.
— Linear Constraints = feasible region is bounded by hyperplanes.

3. A local maximum is also a global maximum.
- By the convexity of the feasible region...



Simplex Method

——— = - —

« Choose an arbitrary starting vertex.

= Iteratively move to an adjacent vertex along an edge if
such movement increase the objective.

= Terminate when we reach a local maximum.



Simplex Method

maximize x; + 6x,
,sub]ect to x; < 200

| Xy < 300
X1+ x, < 400
X1,X5 = 0

Starting from vertex.0.

—
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Simplex Method

maximize x; + 6x,
subjectto x; < 200

=T e )
X1+ x, < 400
X1,X5 = 0

Moving from O to A .
~ increases the objective.
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Simplex Method

maximize x; + 6x,
subjectto x; < 200

=T e )
X1+ x, < 400
X1,X5 = 0

Moving fromAto B .
~ increases the objective.




Simplex Method

maximize x; + 6x,
subjectto x; < 200

=T e )
X1+ x, < 400
X1,X5 = 0

Moving from B to C .
~ increases the objective.




Simplex Method

~ maximize X1 + 6x;
subjectto x; < 200
=T e )
X1+ x, < 400
X1,X5 = 0

Cis alocal maximum:
Moving to either D or B
decreases the objective.




Simplex Method

maximize x; + 6x, + 13x5
“subject to X1 <200
x, < 300
X1+ x, +x3 <400
x; + 3x3 < 600

X1,X2,X3 =0




Some Details in Simplex Method
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= What exactly is a vertex?

- - Apoint at the intersection of n linearly independent hyperplanes.
- n hyperplanes intersect at exactly one point in R”

= What exactly is an edge?
- The intersection of n — 1 linearly independent hyperplanes.
- n— 1 hyperplanes intersect at a line in R™

~» How do we “move from one vertex to another adjacent
vertex along an edge”?

- Relax one of the n constraint and impose another.

- The new vertex can be computed by solving a system of n linear
equations. -



Simplex Method

maximize x; + 6x, ,
subjectto x; < 200 o ' \C
= 2300 |
X1+ x, < 400

X1,X5 = 0

Starting from vertex O:
* |ntersection of two lines
x; =0andx, =0. -

—
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Simplex Method

- . S
maximize x; + 6x, ,
' C
subject to x; < 200 | Z » \
. » X9 < 300
X1 + X9 < 400
X1,X%2 = 0
<
Moving from O to A: | ‘
* Relaxx; = 0andimposex; =200 ____ |
xy = 200 | T et 14 T
[ - >
Xy = 0 Lo S O S 1




Simplex Method

- maximize X1 + 6x;
subjectto x; < 200
= = 300
X1+ xy < 400
X1, %y =0

Moving from A to B:
* Relaxx, = 0 and impose
x1 + x5, = 400
S xl + Xy = 400
x; = 200




Simplex Method

~ maximize X1 + 6x;
subjectto x; < 200
=T e )
X1+ x, < 400
X1,X5 = 0

Moving from B to C:
* Relaxx; = 200 and impose
x, = 300
. Jx + x5, =400
- x5, =300




Missing Details not Covered in This Lecture...
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» How to find a starti‘ng vertex?

= How to find a neighbor that guarantees increment to
objective?

Xy

= Degenerated vertex: n + 1 hyperplanes “happen to”
Intersect at a single point. .
- Eg. Vertex B and D

= Unbounded feasible region...

= And many more...
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Time CompIeXity for Simplex Method

There are exponentially many vertices: (™) for m
~constraints and n variables.

Worst-case running time: exponential
- Many attempts have failed.

- e.g. choose neighbors with highest obJectlve value, choose
ne|ghbors randomly, etc.

[Teng & Spielman] Smoothed analysis

- Average case polynomial time if add random Gaussian noise to the
constraints.

Runs fast in practice, and most commonly used



Polynomial Time Algorithms for LP
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« Ellipsoid Method
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= Interior Point Method




Standard Form LP

= Maximization as objective with ”
negative varlables

maximize cqxq + CyXy + - CphXy

subjectto a;1x; + a12x; + -+ Xy < by
alel + azzxz + + aann S b2

X1, X2, v, Xy = 0

" constraints and non-

maximize c'x
subjectto Ax<b
x=0



Other Forms Reduce to Standard Form

S — = - e = = — s S TS

Minimization to Maximization
- mincyx; + -+ CpXy - max — CqXq — *** — CpXnp

>-inequalities
= a1 X1+ -Fax,2b S —aix{—r—apXn < —D

Inequality & Equality
ax; ++ax, <b

o = =
e {alxl +-+apx, =b

— X1+ tax, =b S a X1+ +ax,+s=>b

Variable with unrestricted signs
- Introduce two variables x* and x~ with standard constraints x*,x= > 0
- Replace x with x* — x~



Take-Home Message

= A linear program can be solved in a polynomial time.

= Whenever a problem can be formulated by a linear .
~_program, it'is polynomial-time solvable.



Formulation as Linear Program

e = x = = - - — Do ieSes — e s

= The maximum flow problem can be formulated by a linear
~ program. |

maximize Z fou
u:(s,u)€E 4
subjectto 0 < f;, < cyy - V(u,v) €EE

fou = Z fuw Vuel\ {S, t}

v:(v,u)€EE w:(v,w)€EE

= Ford-Fulkerson Method implements the simplex method.



Formulation as Linear Program

>, X ' V— i 5 = i ——— == -— = - =

The "highway driving” problem in Assignment 3 can be
formulated as a linear program.

Capacity of tank: €

Location and unit price of i-th station: d;, p;

Start: 0-th station Destination: n-th station |

minimize Z DiX;
- i

subjectto y,=0 _ :
Vi—Vi—1-tX1 — (dl = di—l) fori = o .n
. Xyt fori =0,1,..,n
X0, X1 i X, Y0r V1r o) Y = 0



Part Il

LP Duality



Motivation

—

- We have seen that the optimal solution for the LP below is
(%1, x3) = (100,300), with value 1900.

- Geometric argument, argument based on simplex method

Lets try to prove it by some simple observatlons from the
LP itself!

maximize x; + 6x2
subjectto x; < 200
x, < 300
x1 + x, < 400
X1,Xy =0



Motivation

et = - —e—

maximize x; + 6x,

subject to x; < 200 (i)

: x, < 300 )
X1+ x, <400 (iii)
X1,Xy =0

« Let's try adding (i) to 6 times (ii): x, + 6x, < 200 + 6 x 300 = 2000

= We know that any solution (x,, x,) cannot yield objectlve value
greater than 2000. -

= Can we combine the mequallty In a better way to show that the
objective value is at most 19007



Motivation

——— = - —e—

maximize x; + 6x,

subject to x; < 200 (i)

: x, < 300 )
X1+ x, <400 (iii)
X1,Xy =0

« Can we combine the inequality- in a better way to show that the
objective value is at most 19007

= Yes, we can:;
- Multiple (i) by 5 and add to (iii): x; + 6x, < 300 x 5+ 400 = 1900.

- = This proves that (x;,x,) = (100,300) with objective value 1900 is
- optimal!



Let's try this one...

——— = - = = - —— -~ — -

= Suppose we multiple (i) by y;, (ii) by y,, (iii) by ys, ahd

(iv) by y,. | .

= We have (y; +y3)x; + (2 + y3 + y)xz + (73 + 3ya)x3 < e '

- 200y, + 300y, + 400y + 600y,. maximize x; + 6x, + 13x3

- We need y,,y,,v3, v, = 0 to keep the inequality. subjectto x; < 200 (1)

; e ' x, < 300 (ii)

» To find an upper bound to the objective x; + 6x, + -
13x3, we need to make sure x; + 6x, + 13x3 < X1 + Xz + x3 = 400 (iii)
(y1 +y3)x1 + (v2 + y3 + ya)x, + (v3 + 3y4)x3 holds for X, 4+ 3x; <600 (iv)

every (xq,xz,x3).

: X1,X9,X3 =0 -
« Since x4, x5, x; = 0, we must have: i Sl st

- y1ty; =21

G o il S 8 A
- y3 + 3y, =13



Let's try this one...

E——

(1 +¥3)x1 + (V3 + y3 + V)% + (73 + 3y,)x5 < 200y, +

300y, + 400y; + 600Yy,.

Since x;,x,,x3 = 0, we must have:

e o R

o }’2+3’3+J’4>6
=9+ 3y5>"13

Now, we want to find the tightest possible upper-
bound to x; + 6x, + 13x;.

This'means we want to minimize 200y, + 300y, +
400y3 + 600y,.

maximize x; + 6x, + 13x3.
sub]ect to x; <200 (i)
X, < 300 (ii)
X1+ x5 + x3 < 400 (iii)
Xy 4 3x3 <600 (iv)

X1,%X2,%3 = 0



DuaI_Program. _

EE———
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- The problem of finding the tightest upper-bound can be
: formulated by another linear program!

- This linear program is called the dual program, and the
original one is called the primal program.

maximize x; + 6x, + 13x3 minimize 200y, + 300y, + 400y; + 600y, -
subject to x; < 200 | | ‘
x, < 300
X1+ x, +x3 < 400
X, + 3x3 < 600

X1,X2,x3 =0

‘subjectto y; + y3 > 1
Y2+ Y3 tYs 26
VasboVr =13
Y1, Y2, Y3, Vs = 0



DuaI_Progr‘amh

Factory Example:
maximize xl,él‘— 6x-
subjectto x; < 200

x, < 300

x1 + x5 <400

X1,Xy = 0

maximize c'x
subjectto AXx<b
x>0

Dual program for standard form:

minimize 200y; + 300y, + 400y3
subjectto y; +y; =1

Yo +y3 =6
V1,¥2,Y3 =0

minimize b'y
subjectto y'A>c'
y=0



Weak Dual‘ity Theorem
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By our motlvatlon of dual program, we obtain the
foIIowmg theorem |

= Theorem [Weak Duality Theorem] If % is a feaSIbIe solution
to (a) and ¥ is a feasible solution to (b), thenc¢'x <b'y.

maximize c¢'x . : minimize b'y
subjectto Ax<b (@) subjectto y'4>c¢T  (b)
x>0 | Vo0
Primal feasible Primal OPT ~ Dual OPT - Dualfeasible

Strong Duality Theorem: This gap is always closed!



Strong Duality Theorem

— - e - = - ——

+ Theorem [Strohg DUaIity Theorem]. Let x* be the optimal
= solutlon to (a) and y* be the optimal solution to (b) then

oL bTy* '
maximize c'x " minimize b'y
subjectto Ax<b  (d) ~ subjectto y'4=c" (b)
X= Qe | | y=0
Pitralfascibla: Primal OPT = Dual OPT ~ Dual feasible

4—.—>



Application of Strong Duality Theorem

EE———— — ——

Max—FIow—Min—Cut Theorem '

Minimax Theorem

Kc’Shig—EgerVéry Theorem

Design approximation algorithms:
- Dual fitting
- Primal-Dual Schema

" n

Economic interpretation: “resource allocation”-"resource
valuation” |



Proof of Strong Duality Theorem

S ————

. Theorem [Farkas Lemma] Exactly

one of the followings holds for ' llustration forA = [¢; ¢,]
matrix A € R™" and vector b € R™;

1. There exists x-€ R™ with x > 0 such that
- Ax-='b.

2. There exists y € R™ such that ATy > 0
and b’y < 0.

« {Ax|x = 0} is the grey area.
« 1 says that b is inside the grey area.

« 2 says that we can separate the grey

area and b by a hyperplane (defined
by the normal vector y).

e |n this case b must be outside the \ separating plane
grey area.

= —— - — —



A Co_rollary'to' Farkas Lemma

— = - = - - ——

Corollary Exactly one of the foIIowmgs holds for matrix
- A € R™"™ and vector b € R™:

-~ 1. There exists x € R" with-x = 0.such that Ax > b..
=~ 2 There exists y € R™ with y < 0 such that ATy > 0 and b’y < 0.



Case 1 of the Corollary

= {Ax | x = 0} Is the dark grey area.
= {x|x = Db} is the light grey area.

= 1 says that the two areas intersect.

— - : ——— : e e s



Case 2 of the Corollary

= {Ax |x > 0} is the dark grey T
= {x|x = b} is the light grey area.

. 2 describes that the two areas do not
Intersect.

= We can find a separating plane with
normal vectory.

- Thus, ATy >0and bTy < 0

= We must have y < 0: _
- If this fails for one entry: y; > 0
- z=(s..,652 = 1,¢ ...,¢) and y on same side

- zis in the first quadrant, and it will eventually
intersect the light grey area after extension.

- The two areas are on the same side with y.




Proof of the Corollary ‘

et = - —e—

» Define 4’ € R™*("*™) by A" = [4 —1].
* Apply Farkas Lemma on 4’ and b.

. Let P1 and P2 be 1 and 2 in Farkas Lemma; Q1 and Q2 be 1
and 2 in the corollary. |

» We aim to show P1 < P2 and Q1 & Q2.



Proof of the Corollary ‘

» Define 4’ € R™*("*™) by A" = [4 —1].

 Pleax’ e R st.x' >0and A’x’ = b.

= (by writing x' = [)_(]) s [A -1 r_(] =b (wherex >0, X > 0)
X X | |

» & Ax—X=b < A4x>Db (sincex>0)

» & Q1



Proof of the Corollary ‘

» Define 4’ € R™*("*™) by A" = [4 —1].
. P2<:>EIyEIRmstA’Ty>0andey<O.
AT
[ ]y>0 and b’y <0
» & A'ly>0, -y>0, andb'y<0
= s Q2



Now we are ready to prove strong duality
theorem...

S ——— = - — = = = ———— s — — —=

= Weak duality: ¢'x < b'y* holds for any x > 0.

= Suppose strong duality fails: ¢'x < bTy".

. There does not exist x = 0 satisfying Ax <band c'x = b'y".
_A]

= We cannot have [ ) = [b;;*] and x > 0.

= Q1 in corollary fails for matrix [;}4] and vector [b;::]

 Thus, Q2 must be true.



Now we are ready to prove strong duality
theorem...

- e —b
.- Q2 is true for‘matrlx [CT] and vector [bTy*]‘
= There exist'y € R™ and w € R such that
T N T o y A
[—A4" (] [W] >0, [-b' b'y’] [W] <0, and [W] S 0.
= After matrix multiplications,
g —A'y+wec =0

y<0
L w<J(




Proof of Stron'g Duality Theorem

et = - —e—

= —A'y+wc =0

—b'y+wb'y* <0
y<0

N\

= Suppose w < 0. We divide w on both sides:

f | .
. (X) +¢c<0
w :
] _pT (%) +bTy* >0
(1) =0
\

. (1) Is a better solution than y* in the dual LP, contradiction!

w



Proof of Stron'g Duality Theorem

E——

= —A'y+wc =0

—b'y+wb'y* <0
y<0

N\

= Let's then do the case w = 0.

. We have —A'y>0,-b'y<0,andy < 0.
= Q2 in Corollary holds for —4 and —b.

= So Q1 must be false: Zx > 0: (—4)x > —b.

= The feasible region for the primal LP is empty!



Part IlI:

LP-Relaxation | i




Integer Program

s = - —— - ———— - = = =T

= If we require each variable in a linear program is an integer,
we obtain an integer program (IP), or integer linear |
. program (ILP).

= Many problem can be formulated as IP.

» Standard form:

maximize c¢'x

subjectto AXx<b
x=>0
x €-7Z"



LP-Relaxation

et = - —e—

= Integer Programming is NP-complete, even for the zero-
~one special case Vi: x; € {0,1}.

» We can use the fact that LP is polynomial-time solvable to
design approximation algorithm.

= Relax x; € {0,1}to 0 < x; < 1.

= Then “round” the fractional solution to integral one:
- E.g., x; = 0.7 isrounded to x; = 1, x; = 0.2 is rounded to x; = 0.

« and show that the rounded solution is feasible and
achieves good approximation guarantee.



LP-Relaxation Example: Vertex Cover

— - s = - —— - ———— e e T

e leen an undlrected graph ¢ = (V,E), a subset of vertices
- S c Visavertex cover if S contains at least one endpomt of
- every vertex. -

a vertex cover not a vertex cover



LP-Relaxation Example: Vertex Cover

— - e - = - —— - —_——

. Problem [(Minimum) Vertex Cover]. Given an undirected
graph, find a vertex cover with minimum number of vertices.

= Formulation by integer program:
- x, = 1 represents u € V is selected in the cover; x,, = 0 otherwise.

‘minimize E =Xy

veV ;
subjectto x, +x, =1 V(u,v) EE

x, € {0,1} YveV



LP-Relaxation Example: Vertex Cover

— = e - = - ——

- Problem [(Miniinum) Vertex Cover]. Given an undirected
graph, find a vertex cover with minimum number of vertices.

» Relax it to a linear program below:

‘minimize E =Xy

veV ;
subjectto x, +x, =1 V(u,v) EE

0 Ywev



LP-Relaxation Example: Vertex Cover

— - : ——— : e e s

= OPT(IP) — optimal objective value ¥,y x,, for IP

~ - Thisis the obj-ective we want for vertex cover
. OPT(LP) — optimal objective value ¥, x, for LP
= OPT(IP) = OPT(LP): because LP has a larger feasible regioh.

minimize E Xy, | minimize E X5

veEV veV _
subjectto x, + x, =1 V(u,v) EE ~ subjectto x,+x,=>1 V(u,v)€E
x, € {0, 1} Vv eV =x =1 Nyel

Ihteger Program (IP) Linear Program (LP)



LP-Relaxation Example: Vertex Cover

——— = - —e—

An approximation algorithm for vertex cover:

= Formulate the problem as an integer program and obtain its LP—
relaxation.

= Solve the linear program and obtain its optimal solution (0 er.

« Return § = (v | x; =)



Correctness

—_—= < - - ———

S returned by the algorithm is vertex cover.

= Proof. Con5|der an arbitrary edge (u,v) € E.

. We have xu + x; = 1 by feasibility, which implies we have
either x;; > or e 1, or both.

. By our algorlthm,_ we have either u € S or v € S, or both.



The algorithm IS a 2—approximation.

— - e = - — - —_— e e 5

E The algorithm is'a Z—épproximation algorithm: [S| < 2 OPT(IP)

- Proof. Since we have OPT(IP) > OPT(LP), it suffices to prove
S| < 2 - OPT(LP).

The optimal solution

for vertex cover - We will prove |S| is within here.

0 OPT(LP) < OPT(IP) 20PT(LP) 2_OPT(IP)'
. £ | .
‘ |
To show 2-approximation, |S| is required to be within here.




The algorithm is @ 2-approximation.

— - = - e —

' The algorithm is a Z—approximation algorithm: |S] < 2- OPT(IP).

= Proof. Since we have OPT(IP) > OPT(LP), it suffices to prove
S| < 2 - OPT(LP).

= OPT(LP) = > = Zv_x*<1x§ oy 1xv

X <3 vxv2
2 a0 Y, =S

= which implies |S| < 2 - OPT(LP).



Today'’s Lecture

et = - —

ntroduction to Linear Programming

= LP Duallty Theorem

. LP- Relaxatlon — use LP to design approximation algorlthms



