
Linear Programming

Linear Programming, LP Duality Theorem, LP-Relaxation



Linear Program (LP)

▪ A set of linear equations/inequalities.

▪ Maximize or minimize a given linear objective function.

maximize 𝑐1𝑥1 + 𝑐2𝑥2 +⋯𝑐𝑛𝑥𝑛

subject to 𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 ≤ 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 ≤ 𝑏2

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚

⋮

𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0



Example

▪ Suppose a factory can produce two kinds 
of products: oil and sugar.

▪ Profit for 1 tons of sugar: 1

▪ Profit for 1 tons of oil: 6

▪ Limited resources, can produce at most
– 200 tons of sugar

– 300 tons of oil

– Overall weight is at most 400 tons

▪ Problem: maximize the profit

maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0



Feasible Region

𝑥1

𝑥2

maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 ≥ 0

𝑥2 ≥ 0

𝑥1 + 𝑥2 ≤ 400
feasible 
region



Maximizing the Objective

𝑥1

𝑥2

maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

𝑥1 + 6𝑥2 = 𝑐

We want to 
maximize 𝑐.



Maximizing the Objective

𝑥1

𝑥2

maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

𝑥1 + 6𝑥2 = 𝑐



Maximizing the Objective

𝑥1

𝑥2

maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

𝑥1 + 6𝑥2 = 𝑐

Optimum is obtained at vertex 𝐴, where 
𝑥1, 𝑥2 = (100, 300) and 𝑐 = 1900.

𝐴



Another Example with Three variables

maximize 𝑥1 + 6𝑥2 + 13𝑥3
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 + 𝑥3 ≤ 400

𝑥1, 𝑥2, 𝑥3 ≥ 0

𝑥2 + 3𝑥3 ≤ 600

𝑥1

𝑥3

𝑥2

𝐴
𝐵

𝐶
𝑂

𝐷

𝐸𝐹

𝐺



Another Example with Three variables

maximize 𝑥1 + 6𝑥2 + 13𝑥3
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 + 𝑥3 ≤ 400

𝑥1, 𝑥2, 𝑥3 ≥ 0

𝑥2 + 3𝑥3 ≤ 600

𝑥1

𝑥3

𝑥2

𝑥1 + 6𝑥2 + 13𝑥3 = 𝑐



Another Example with Three variables

maximize 𝑥1 + 6𝑥2 + 13𝑥3
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 + 𝑥3 ≤ 400

𝑥1, 𝑥2, 𝑥3 ≥ 0

𝑥2 + 3𝑥3 ≤ 600

𝑥1

𝑥3

𝑥2
𝑥1 + 6𝑥2 + 13𝑥3 = 𝑐

Optimum



Important Observations

1. There always exists an optimum 𝒙 = 𝑥1, … , 𝑥𝑛 at a vertex of 
the polytope.

– Linear objective ⟹ 𝑐 = 𝑐1𝑥1 +⋯+ 𝑐𝑛𝑥𝑛 is a hyperplane.

– Optimum is obtained only when the whole feasible region is below the 
hyperplane and the hyperplane “barely” intersect the region by a point.

2. The feasible region is always convex.
– Linear Constraints ⟹ feasible region is bounded by hyperplanes.

3. A local maximum is also a global maximum.
– By the convexity of the feasible region…



Simplex Method

▪ Choose an arbitrary starting vertex.

▪ Iteratively move to an adjacent vertex along an edge if 
such movement increase the objective.

▪ Terminate when we reach a local maximum.



Simplex Method

𝑥1

𝑥2
maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

𝐴

𝐵

𝐶𝐷

𝑂

Starting from vertex 𝑂.



Simplex Method

𝑥1

𝑥2
maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

𝐴

𝐵

𝐶𝐷

𝑂

Moving from 𝑂 to 𝐴
increases the objective.



Simplex Method

𝑥1

𝑥2
maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

𝐴

𝐵

𝐶𝐷

𝑂

Moving from 𝐴 to 𝐵
increases the objective.



Simplex Method

𝑥1

𝑥2
maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

𝐴

𝐵

𝐶𝐷

𝑂

Moving from 𝐵 to 𝐶
increases the objective.



Simplex Method

𝑥1

𝑥2
maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

𝐴

𝐵

𝐶

𝐷

𝑂

𝐶 is a local maximum:
Moving to either 𝐷 or 𝐵
decreases the objective.



Simplex Method

maximize 𝑥1 + 6𝑥2 + 13𝑥3
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 + 𝑥3 ≤ 400

𝑥1, 𝑥2, 𝑥3 ≥ 0

𝑥2 + 3𝑥3 ≤ 600

𝑥1

𝑥3

𝑥2

𝐴
𝐵

𝐶
𝑂

𝐷

𝐸𝐹

𝐺



Some Details in Simplex Method

▪ What exactly is a vertex?
– A point at the intersection of 𝑛 linearly independent hyperplanes.

– 𝑛 hyperplanes intersect at exactly one point in ℝ𝑛

▪ What exactly is an edge?
– The intersection of 𝑛 − 1 linearly independent hyperplanes.

– 𝑛 − 1 hyperplanes intersect at a line in ℝ𝑛

▪ How do we “move from one vertex to another adjacent 
vertex along an edge”?
– Relax one of the 𝑛 constraint and impose another.

– The new vertex can be computed by solving a system of 𝑛 linear 
equations.



Simplex Method

𝑥1

𝑥2
maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

𝐴

𝐵

𝐶𝐷

𝑂

Starting from vertex 𝑂:
• Intersection of two lines 
𝑥1 = 0 and 𝑥2 = 0.



Simplex Method

𝑥1

𝑥2
maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

𝐴

𝐵

𝐶𝐷

𝑂

Moving from 𝑂 to 𝐴:
• Relax 𝑥1 = 0 and impose 𝑥1 = 200

• ቊ
𝑥1 = 200
𝑥2 = 0



Simplex Method

𝑥1

𝑥2
maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

𝐴

𝐵

𝐶𝐷

𝑂

Moving from 𝐴 to 𝐵:
• Relax 𝑥2 = 0 and impose 
𝑥1 + 𝑥2 = 400

• ቊ
𝑥1 + 𝑥2 = 400
𝑥1 = 200



Simplex Method

𝑥1

𝑥2
maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

𝐴

𝐵

𝐶𝐷

𝑂

Moving from 𝐵 to 𝐶:
• Relax 𝑥1 = 200 and impose 
𝑥2 = 300

• ቊ
𝑥1 + 𝑥2 = 400
𝑥2 = 300



Missing Details not Covered in This Lecture…

▪ How to find a starting vertex?

▪ How to find a neighbor that guarantees increment to 
objective?

▪ Degenerated vertex: 𝑛 + 1 hyperplanes “happen to” 
intersect at a single point.
– E.g., Vertex 𝐵 and 𝐷

▪ Unbounded feasible region…

▪ And many more…
𝑥1

𝑥3

𝑥2

𝐴
𝐵

𝐶
𝑂

𝐷
𝐸𝐹

𝐺



Time Complexity for Simplex Method

▪ There are exponentially many vertices: 𝑚
𝑛

for 𝑚
constraints and 𝑛 variables.

▪ Worst-case running time: exponential
– Many attempts have failed.

– e.g., choose neighbors with highest objective value, choose 
neighbors randomly, etc.

▪ [Teng & Spielman] Smoothed analysis
– Average case polynomial time if add random Gaussian noise to the 

constraints.

▪ Runs fast in practice, and most commonly used



Polynomial Time Algorithms for LP

▪ Ellipsoid Method

▪ Interior Point Method



Standard Form LP

▪ Maximization as objective with “≤” constraints and non-
negative variables.

maximize 𝑐1𝑥1 + 𝑐2𝑥2 +⋯𝑐𝑛𝑥𝑛

subject to 𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 ≤ 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 ≤ 𝑏2

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚

⋮

𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0

maximize 𝐜⊤𝐱

subject to 𝐴𝐱 ≤ 𝐛

𝐱 ≥ 𝟎



Other Forms Reduce to Standard Form

▪ Minimization to Maximization
– min 𝑐1𝑥1 +⋯+ 𝑐𝑛𝑥𝑛 ⟺ max − 𝑐1𝑥1 −⋯− 𝑐𝑛𝑥𝑛

▪ ≥-inequalities
– 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 ≥ 𝑏 ⟺ −𝑎1𝑥1 −⋯− 𝑎𝑛𝑥𝑛 ≤ −𝑏

▪ Inequality ⟺ Equality

– 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 = 𝑏 ⟺ ቊ
𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 ≤ 𝑏
𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 ≥ 𝑏

– 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 ≤ 𝑏 ⟺ 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 + 𝑠 = 𝑏

▪ Variable with unrestricted signs
– Introduce two variables 𝑥+ and 𝑥− with standard constraints 𝑥+, 𝑥− ≥ 0

– Replace 𝑥 with 𝑥+ − 𝑥−



Take-Home Message

▪ A linear program can be solved in a polynomial time.

▪ Whenever a problem can be formulated by a linear 
program, it is polynomial-time solvable.



Formulation as Linear Program

▪ The maximum flow problem can be formulated by a linear 
program.

maximize 

𝑢: 𝑠,𝑢 ∈𝐸

𝑓𝑠𝑢

subject to 0 ≤ 𝑓𝑢𝑣 ≤ 𝑐𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝐸



𝑣: 𝑣,𝑢 ∈𝐸

𝑓𝑣𝑢 = 

𝑤: 𝑣,𝑤 ∈𝐸

𝑓𝑢𝑤 ∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡}

▪ Ford-Fulkerson Method implements the simplex method.



Formulation as Linear Program

▪ The “highway driving” problem in Assignment 3 can be 
formulated as a linear program.

▪ Capacity of tank: 𝐶

▪ Location and unit price of 𝑖-th station: 𝑑𝑖, 𝑝𝑖

▪ Start: 0-th station            Destination: 𝑛-th station

minimize 

𝑖

𝑝𝑖𝑥𝑖

subject to 𝑦0 = 0
𝑦𝑖 = 𝑦𝑖−1 + 𝑥𝑖−1 − 𝑑𝑖 − 𝑑𝑖−1 for 𝑖 = 1,… , 𝑛

𝑥0, 𝑥1… , 𝑥𝑛, 𝑦0, 𝑦1, … , 𝑦𝑛 ≥ 0
𝑥𝑖 + 𝑦𝑖 ≤ 𝐶 for 𝑖 = 0, 1,… , 𝑛



Part II:
LP Duality



Motivation

▪ We have seen that the optimal solution for the LP below is 
𝑥1, 𝑥2 = (100, 300), with value 1900.
– Geometric argument, argument based on simplex method

▪ Let’s try to prove it by some simple observations from the 
LP itself!

maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0



Motivation

▪ Let’s try adding (i) to 6 times (ii):   𝑥1 + 6𝑥2 ≤ 200 + 6 × 300 = 2000

▪ We know that any solution (𝑥1, 𝑥2) cannot yield objective value 
greater than 2000.

▪ Can we combine the inequality in a better way to show that the 
objective value is at most 1900?

maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200 (i)

𝑥2 ≤ 300 (ii)

𝑥1 + 𝑥2 ≤ 400 (iii)

𝑥1, 𝑥2 ≥ 0



Motivation

▪ Can we combine the inequality in a better way to show that the 
objective value is at most 1900?

▪ Yes, we can:
– Multiple (ii) by 5 and add to (iii):   𝑥1 + 6𝑥2 ≤ 300 × 5 + 400 = 1900.

▪ This proves that 𝑥1, 𝑥2 = (100, 300) with objective value 1900 is 
optimal!

maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200 (i)

𝑥2 ≤ 300 (ii)

𝑥1 + 𝑥2 ≤ 400 (iii)

𝑥1, 𝑥2 ≥ 0



Let’s try this one…

▪ Suppose we multiple (i) by 𝑦1, (ii) by 𝑦2, (iii) by 𝑦3, and 
(iv) by 𝑦4.

▪ We have 𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 + 𝑦4 𝑥2 + 𝑦3 + 3𝑦4 𝑥3 ≤
200𝑦1 + 300𝑦2 + 400𝑦3 + 600𝑦4.

▪ We need 𝑦1, 𝑦2, 𝑦3, 𝑦4 ≥ 0 to keep the inequality.

▪ To find an upper bound to the objective 𝑥1 + 6𝑥2 +
13𝑥3, we need to make sure 𝑥1 + 6𝑥2 + 13𝑥3 ≤
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 + 𝑦4 𝑥2 + 𝑦3 + 3𝑦4 𝑥3 holds for 

every 𝑥1, 𝑥2, 𝑥3 .

▪ Since 𝑥1, 𝑥2, 𝑥3 ≥ 0, we must have:
– 𝑦1 + 𝑦3 ≥ 1

– 𝑦2 + 𝑦3 + 𝑦4 ≥ 6

– 𝑦3 + 3𝑦4 ≥ 13

maximize 𝑥1 + 6𝑥2 + 13𝑥3
subject to 𝑥1 ≤ 200 (i)

𝑥2 ≤ 300 (ii)

𝑥1 + 𝑥2 + 𝑥3 ≤ 400 (iii)

𝑥1, 𝑥2, 𝑥3 ≥ 0

𝑥2 + 3𝑥3 ≤ 600 (iv)



Let’s try this one…

▪ 𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 + 𝑦4 𝑥2 + 𝑦3 + 3𝑦4 𝑥3 ≤ 200𝑦1 +
300𝑦2 + 400𝑦3 + 600𝑦4.

▪ Since 𝑥1, 𝑥2, 𝑥3 ≥ 0, we must have:
– 𝑦1 + 𝑦3 ≥ 1

– 𝑦2 + 𝑦3 + 𝑦4 ≥ 6

– 𝑦3 + 3𝑦4 ≥ 13

▪ Now, we want to find the tightest possible upper-
bound to 𝑥1 + 6𝑥2 + 13𝑥3.

▪ This means we want to minimize 200𝑦1 + 300𝑦2 +
400𝑦3 + 600𝑦4.

maximize 𝑥1 + 6𝑥2 + 13𝑥3
subject to 𝑥1 ≤ 200 (i)

𝑥2 ≤ 300 (ii)

𝑥1 + 𝑥2 + 𝑥3 ≤ 400 (iii)

𝑥1, 𝑥2, 𝑥3 ≥ 0

𝑥2 + 3𝑥3 ≤ 600 (iv)



Dual Program

▪ The problem of finding the tightest upper-bound can be 
formulated by another linear program!

▪ This linear program is called the dual program, and the 
original one is called the primal program.

maximize 𝑥1 + 6𝑥2 + 13𝑥3
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 + 𝑥3 ≤ 400

𝑥1, 𝑥2, 𝑥3 ≥ 0

𝑥2 + 3𝑥3 ≤ 600

minimize 200𝑦1 + 300𝑦2 + 400𝑦3 + 600𝑦4

subject to 𝑦1 + 𝑦3 ≥ 1

𝑦2 + 𝑦3 + 𝑦4 ≥ 6

𝑦3 + 3𝑦4 ≥ 13

𝑦1, 𝑦2, 𝑦3, 𝑦4 ≥ 0



Dual Program

▪ Factory Example:

▪ Dual program for standard form:

maximize 𝑥1 + 6𝑥2
subject to 𝑥1 ≤ 200

𝑥2 ≤ 300

𝑥1 + 𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

minimize 200𝑦1 + 300𝑦2 + 400𝑦3
subject to 𝑦1 + 𝑦3 ≥ 1

𝑦2 + 𝑦3 ≥ 6

𝑦1, 𝑦2, 𝑦3 ≥ 0

maximize 𝐜⊤𝐱

subject to 𝐴𝐱 ≤ 𝐛

𝐱 ≥ 𝟎

minimize 𝐛⊤𝐲

subject to 𝐲⊤𝐴 ≥ 𝐜⊤

𝐲 ≥ 𝟎



Weak Duality Theorem

▪ By our motivation of dual program, we obtain the 
following theorem.

▪ Theorem [Weak Duality Theorem]. If ො𝐱 is a feasible solution 
to (a) and ො𝐲 is a feasible solution to (b), then 𝐜⊤ ො𝐱 ≤ 𝐛⊤ ො𝐲.

maximize 𝐜⊤𝐱

subject to 𝐴𝐱 ≤ 𝐛

𝐱 ≥ 𝟎

minimize 𝐛⊤𝐲

subject to 𝐲⊤𝐴 ≥ 𝐜⊤

𝐲 ≥ 𝟎

(a) (b)

Primal OPT Dual OPTPrimal feasible Dual feasible

Strong Duality Theorem: This gap is always closed!



Strong Duality Theorem

▪ Theorem [Strong Duality Theorem]. Let 𝐱∗ be the optimal 
solution to (a) and 𝐲∗ be the optimal solution to (b), then 
𝐜⊤𝐱∗ = 𝐛⊤𝐲∗.

maximize 𝐜⊤𝐱

subject to 𝐴𝐱 ≤ 𝐛

𝐱 ≥ 𝟎

minimize 𝐛⊤𝐲

subject to 𝐲⊤𝐴 ≥ 𝐜⊤

𝐲 ≥ 𝟎

(a) (b)

Primal OPT = Dual OPTPrimal feasible Dual feasible



Application of Strong Duality Theorem

▪ Max-Flow-Min-Cut Theorem

▪ Minimax Theorem

▪ Kőnig-Egerváry Theorem

▪ Design approximation algorithms:
– Dual fitting

– Primal-Dual Schema

▪ Economic interpretation: “resource allocation”-”resource 
valuation”



Proof of Strong Duality Theorem

▪ Theorem [Farkas Lemma]. Exactly 
one of the followings holds for 
matrix 𝐴 ∈ ℝ𝑚×𝑛 and vector 𝐛 ∈ ℝ𝑚:
1. There exists 𝐱 ∈ ℝ𝑛 with 𝐱 ≥ 𝟎 such that 

𝐴𝐱 = 𝐛.

2. There exists 𝐲 ∈ ℝ𝑚 such that 𝐴⊤𝐲 ≥ 𝟎
and 𝐛⊤𝐲 < 0.

Illustration for 𝐴 = [𝒄1 𝒄2]

• 𝐴𝐱 | 𝐱 ≥ 𝟎 is the grey area.

• 1 says that 𝐛 is inside the grey area.

• 2 says that we can separate the grey 
area and 𝐛 by a hyperplane (defined 
by the normal vector 𝐲).
• In this case 𝐛 must be outside the 

grey area.



A Corollary to Farkas Lemma

▪ Corollary. Exactly one of the followings holds for matrix 
𝐴 ∈ ℝ𝑚×𝑛 and vector 𝐛 ∈ ℝ𝑚:
1. There exists 𝐱 ∈ ℝ𝑛 with 𝐱 ≥ 𝟎 such that 𝐴𝐱 ≥ 𝐛.

2. There exists 𝐲 ∈ ℝ𝑚 with 𝐲 ≤ 𝟎 such that 𝐴⊤𝐲 ≥ 𝟎 and 𝒃⊤𝐲 < 0.



Case 1 of the Corollary

▪ 𝐴𝐱 | 𝐱 ≥ 𝟎 is the dark grey area.

▪ 𝐱 | 𝐱 ≥ 𝐛 is the light grey area.

▪ 1 says that the two areas intersect.



Case 2 of the Corollary

▪ 𝐴𝐱 | 𝐱 ≥ 𝟎 is the dark grey area.

▪ 𝐱 | 𝐱 ≥ 𝐛 is the light grey area.

▪ 2 describes that the two areas do not 
intersect.

▪ We can find a separating plane with 
normal vector 𝐲.
– Thus, 𝐴⊤𝐲 ≥ 0 and 𝐛⊤𝐲 < 0

▪ We must have 𝐲 ≤ 𝟎:
– If this fails for one entry: 𝑦𝑖 > 0

– 𝐳 = (𝜀, … , 𝜀, 𝑧𝑖 = 1, 𝜀, … , 𝜀) and 𝒚 on same side

– 𝐳 is in the first quadrant, and it will eventually 
intersect the light grey area after extension.

– The two areas are on the same side with 𝐲.



Proof of the Corollary

▪ Define 𝐴′ ∈ ℝ𝑚×(𝑛+𝑚) by 𝐴′ = [𝐴 − 𝐼]. 

▪ Apply Farkas Lemma on 𝐴′ and 𝐛.

▪ Let P1 and P2 be 1 and 2 in Farkas Lemma; Q1 and Q2 be 1 
and 2 in the corollary.

▪ We aim to show P1 ⟺ P2 and Q1 ⟺ Q2.



Proof of the Corollary

▪ Define 𝐴′ ∈ ℝ𝑚×(𝑛+𝑚) by 𝐴′ = [𝐴 − 𝐼]. 

▪ P1 ⇔ ∃𝐱′ ∈ ℝ𝑛+𝑚 s.t. 𝐱′ ≥ 𝟎 and 𝐴′𝐱′ = 𝐛.

▪ (by writing 𝐱′ =
𝐱
ത𝐱

)  ⟺ 𝐴 − 𝐼
𝐱
ത𝐱
= 𝐛 (where 𝐱 ≥ 𝟎, ത𝐱 ≥ 𝟎)

▪ ⟺ 𝐴𝐱 − ത𝐱 = 𝐛 ⟺ 𝐴𝐱 ≥ 𝐛 (since ത𝐱 ≥ 𝟎)

▪ ⟺ Q1



Proof of the Corollary

▪ Define 𝐴′ ∈ ℝ𝑚×(𝑛+𝑚) by 𝐴′ = [𝐴 − 𝐼]. 

▪ P2 ⇔ ∃𝐲 ∈ ℝ𝑚 s.t. 𝐴′⊤𝐲 ≥ 𝟎 and 𝐛⊤𝐲 < 0.

▪ ⟺ 𝐴⊤

−𝐼
𝐲 ≥ 𝟎 and   𝐛⊤𝐲 < 0

▪ ⟺ 𝐴⊤𝐲 ≥ 𝟎,    −𝐲 ≥ 0, and 𝐛⊤𝐲 < 0

▪ ⟺ Q2



Now we are ready to prove strong duality 
theorem…

▪ Weak duality: 𝐜⊤𝐱 ≤ 𝐛⊤𝐲∗ holds for any 𝐱 ≥ 𝟎.

▪ Suppose strong duality fails: 𝐜⊤𝐱 < 𝐛⊤𝐲∗.

▪ There does not exist 𝐱 ≥ 𝟎 satisfying 𝐴𝐱 ≤ 𝐛 and 𝐜⊤𝐱 ≥ 𝐛⊤𝐲∗.

▪ We cannot have 
−𝐴
𝐜⊤

𝐱 ≥
−𝐛
𝐛⊤𝐲∗

and 𝐱 ≥ 𝟎.

▪ Q1 in corollary fails for matrix 
−𝐴
𝐜⊤

and vector 
−𝐛
𝐛⊤𝐲∗

.

▪ Thus, Q2 must be true.



Now we are ready to prove strong duality 
theorem…

▪ Q2 is true for matrix 
−𝐴
𝐜⊤

and vector 
−𝐛
𝐛⊤𝐲∗

.

▪ There exist 𝐲 ∈ ℝ𝑚 and 𝑤 ∈ ℝ such that

−𝐴⊤ 𝐜
𝐲
𝑤

≥ 𝟎,   −𝐛⊤ 𝐛⊤𝐲∗
𝐲
𝑤

< 0,   and   
𝐲
𝑤

≤ 𝟎.

▪ After matrix multiplications,

−𝐴⊤𝐲 + 𝑤𝐜 ≥ 𝟎

−𝐛⊤𝐲 + 𝑤𝐛⊤𝐲∗ < 0
𝐲 ≤ 𝟎
𝑤 ≤ 0



Proof of Strong Duality Theorem

▪ Suppose 𝑤 < 0. We divide 𝑤 on both sides:

−𝐴⊤𝐲 + 𝑤𝒄 ≥ 𝟎

−𝐛⊤𝐲 + 𝑤𝐛⊤𝐲∗ < 0
𝐲 ≤ 𝟎
𝑤 ≤ 0

−𝐴⊤
𝐲

𝑤
+ 𝐜 ≤ 𝟎

−𝐛⊤
𝐲

𝑤
+ 𝐛⊤𝐲∗ > 0

𝐲

𝑤
≥ 𝟎

▪
𝐲

𝑤
is a better solution than 𝐲∗ in the dual LP, contradiction!



Proof of Strong Duality Theorem

▪ Let’s then do the case 𝑤 = 0. 

▪ We have −𝐴⊤𝐲 ≥ 𝟎, −𝐛⊤𝐲 < 0, and 𝐲 ≤ 𝟎.

▪ Q2 in Corollary holds for −𝐴 and −𝐛.

▪ So Q1 must be false: ∄𝐱 ≥ 0: −𝐴 𝐱 ≥ −𝐛.

▪ The feasible region for the primal LP is empty!

−𝐴⊤𝐲 + 𝑤𝐜 ≥ 𝟎

−𝒃⊤𝐲 + 𝑤𝐛⊤𝐲∗ < 0
𝐲 ≤ 𝟎
𝑤 ≤ 0



Part III:
LP-Relaxation



Integer Program

▪ If we require each variable in a linear program is an integer, 
we obtain an integer program (IP), or integer linear 
program (ILP).

▪ Many problem can be formulated as IP.

▪ Standard form:

maximize 𝐜⊤𝐱

subject to 𝐴𝐱 ≤ 𝐛

𝐱 ≥ 𝟎

𝐱 ∈ ℤ𝑛



LP-Relaxation

▪ Integer Programming is NP-complete, even for the zero-
one special case ∀𝑖: 𝑥𝑖 ∈ {0, 1}.

▪ We can use the fact that LP is polynomial-time solvable to 
design approximation algorithm.

▪ Relax 𝑥𝑖 ∈ {0,1} to 0 ≤ 𝑥𝑖 ≤ 1.

▪ Then “round” the fractional solution to integral one:
– E.g., 𝑥𝑖 = 0.7 is rounded to 𝑥𝑖 = 1, 𝑥𝑖 = 0.2 is rounded to 𝑥𝑖 = 0.

▪ and show that the rounded solution is feasible and 
achieves good approximation guarantee.



LP-Relaxation Example: Vertex Cover

▪ Given an undirected graph 𝐺 = (𝑉, 𝐸), a subset of vertices 
𝑆 ⊆ 𝑉 is a vertex cover if 𝑆 contains at least one endpoint of 
every vertex.

a vertex cover not a vertex cover



LP-Relaxation Example: Vertex Cover

Problem [(Minimum) Vertex Cover]. Given an undirected 
graph, find a vertex cover with minimum number of vertices.

▪ Formulation by integer program:
– 𝑥𝑢 = 1 represents 𝑢 ∈ 𝑉 is selected in the cover; 𝑥𝑢 = 0 otherwise.

minimize 

𝑣∈𝑉

𝑥𝑣

subject to 𝑥𝑢 + 𝑥𝑣 ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥𝑣 ∈ 0, 1 ∀𝑣 ∈ 𝑉



LP-Relaxation Example: Vertex Cover

Problem [(Minimum) Vertex Cover]. Given an undirected 
graph, find a vertex cover with minimum number of vertices.

▪ Relax it to a linear program below:

minimize 

𝑣∈𝑉

𝑥𝑣

subject to 𝑥𝑢 + 𝑥𝑣 ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸

0 ≤ 𝑥𝑣 ≤ 1 ∀𝑣 ∈ 𝑉



LP-Relaxation Example: Vertex Cover

▪ OPT(IP) – optimal objective value σ𝑣∈𝑉 𝑥𝑣 for IP
– This is the objective we want for vertex cover

▪ OPT(LP) – optimal objective value σ𝑣∈𝑉 𝑥𝑣 for LP

▪ OPT(IP) ≥ OPT(LP): because LP has a larger feasible region.

minimize 

𝑣∈𝑉

𝑥𝑣

subject to 𝑥𝑢 + 𝑥𝑣 ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸

0 ≤ 𝑥𝑣 ≤ 1 ∀𝑣 ∈ 𝑉

minimize 

𝑣∈𝑉

𝑥𝑣

subject to 𝑥𝑢 + 𝑥𝑣 ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥𝑣 ∈ 0, 1 ∀𝑣 ∈ 𝑉

Integer Program (IP) Linear Program (LP)



LP-Relaxation Example: Vertex Cover

An approximation algorithm for vertex cover:

▪ Formulate the problem as an integer program and obtain its LP-
relaxation.

▪ Solve the linear program and obtain its optimal solution 𝑥𝑣
∗
𝑣∈𝑉.

▪ Return 𝑆 = 𝑣 𝑥𝑣
∗ ≥

1

2
}



Correctness

𝑆 returned by the algorithm is vertex cover.

▪ Proof. Consider an arbitrary edge 𝑢, 𝑣 ∈ 𝐸.

▪ We have 𝑥𝑢
∗ + 𝑥𝑣

∗ ≥ 1 by feasibility, which implies we have 
either 𝑥𝑢

∗ ≥
1

2
or 𝑥𝑣

∗ ≥
1

2
, or both.

▪ By our algorithm, we have either 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆, or both.



The algorithm is a 2-approximation.

The algorithm is a 2-approximation algorithm: 𝑆 ≤ 2 ⋅ OPT(IP).

▪ Proof. Since we have OPT(IP) ≥ OPT(LP), it suffices to prove 
𝑆 ≤ 2 ⋅ OPT(LP).

0 OPT(LP)   ≤ OPT(IP)            2OPT(LP)         2OPT(IP)

We will prove 𝑆 is within here. 
The optimal solution 
for vertex cover

To show 2-approximation, 𝑆 is required to be within here.



The algorithm is a 2-approximation.

The algorithm is a 2-approximation algorithm: 𝑆 ≤ 2 ⋅ OPT(IP).

▪ Proof. Since we have OPT(IP) ≥ OPT(LP), it suffices to prove 
𝑆 ≤ 2 ⋅ OPT(LP).

▪ OPT LP = σ𝑣∈𝑉 𝑥𝑣
∗ = σ

𝑣:𝑥𝑣
∗<

1

2

𝑥𝑣
∗ +σ

𝑣:𝑥𝑣
∗≥

1

2

𝑥𝑣
∗

▪ ≥ σ
𝑣:𝑥𝑣

∗<
1

2

0 + σ
𝑣:𝑥𝑣

∗≥
1

2

1

2
=

1

2
⋅ |𝑆|

▪ which implies 𝑆 ≤ 2 ⋅ OPT(LP).



Today’s Lecture

▪ Introduction to Linear Programming

▪ LP Duality Theorem

▪ LP-Relaxation – use LP to design approximation algorithms


