
Applications of LP-
Duality

Max-Flow-Min-Cut Theorem Revisit, von Neumann’s Minimax 
Theorem



Strong Duality Theorem

▪ Theorem [Strong Duality Theorem]. Let 𝐱∗ be the optimal 
solution to (a) and 𝐲∗ be the optimal solution to (b), then 
𝐜⊤𝐱∗ = 𝐛⊤𝐲∗.

maximize 𝐜⊤𝐱

subject to 𝐴𝐱 ≤ 𝐛

𝐱 ≥ 𝟎

minimize 𝐛⊤𝐲

subject to 𝐴⊤𝐲 ≥ 𝐜

𝐲 ≥ 𝟎

(a) (b)

Primal OPT = Dual OPTPrimal feasible Dual feasible



Part I: Max-Flow-Min-Cut 
Theorem Revisited



Strong LP-Duality ⟹ Max-Flow-Min-Cut

Use Strong Duality Theorem to prove max-flow-min-cut 
theorem:

▪ Step 1: Write down the LP for max-flow problem.

▪ Step 2: Show that the dual program describes the fractional 
version of the min-cut problem.

▪ Step 3: Show that the dual program always have integral 
optimum.
– So that the dual optimum is indeed the size of min-cut.

▪ Step 4: apply Strong Duality Theorem to show max-flow = 
min-cut



The Maximum Flow Problem

▪ The maximum flow problem can be formulated by a linear 
program.

maximize ෍

𝑢: 𝑠,𝑢 ∈𝐸

𝑓𝑠𝑢

subject to 0 ≤ 𝑓𝑢𝑣 ≤ 𝑐𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝐸

෍

𝑣: 𝑣,𝑢 ∈𝐸

𝑓𝑣𝑢 = ෍

𝑤: 𝑣,𝑤 ∈𝐸

𝑓𝑢𝑤 ∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡}



Let’s Write It in Standard Form

maximize ෍

𝑢: 𝑠,𝑢 ∈𝐸

𝑓𝑠𝑢

subject to 𝑓𝑢𝑣 ≤ 𝑐𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝐸

෍

𝑣: 𝑣,𝑢 ∈𝐸

𝑓𝑣𝑢 − ෍

𝑤: 𝑢,𝑤 ∈𝐸

𝑓𝑢𝑤 ≤ 0 ∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡}

− ෍

𝑣: 𝑣,𝑢 ∈𝐸

𝑓𝑣𝑢 + ෍

𝑤: 𝑢,𝑤 ∈𝐸

𝑓𝑢𝑤 ≤ 0 ∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡}

𝑓𝑢𝑣 ≥ 0 ∀ 𝑢, 𝑣 ∈ 𝐸



Compute Its Dual Program

minimize ෍

𝑢,𝑣 ∈𝐸

𝑐𝑢𝑣𝑦𝑢𝑣

subject to 𝑦𝑠𝑢 + 𝑧𝑢 ≥ 1 ∀𝑢: 𝑠, 𝑢 ∈ 𝐸

𝑦𝑣𝑡 − 𝑧𝑣 ≥ 0 ∀𝑣: 𝑣, 𝑡 ∈ 𝐸

𝑦𝑢𝑣 − 𝑧𝑢 + 𝑧𝑣 ≥ 0 ∀ 𝑢, 𝑣 ∈ 𝐸, 𝑢 ≠ 𝑠, 𝑣 ≠ 𝑡

𝑦𝑢𝑣 ≥ 0 ∀ 𝑢, 𝑣 ∈ 𝐸

▪ We aim to show the LP above describes the min-cut problem.

▪ Let OPTdual be its optimal objective value. We need to show 
OPTdual is the size of the min-cut.



Some Intuitions

▪ 𝑦𝑢𝑣 describes if edge (𝑢, 𝑣) is cut:

𝑦𝑢𝑣 = ቊ
1 if 𝑢, 𝑣 is cut
0 otherwise

minimize ෍

𝑢,𝑣 ∈𝐸

𝑐𝑢𝑣𝑦𝑢𝑣

subject to 𝑦𝑠𝑢 + 𝑧𝑢 ≥ 1 ∀𝑢: 𝑠, 𝑢 ∈ 𝐸

𝑦𝑣𝑡 − 𝑧𝑣 ≥ 0 ∀𝑣: 𝑣, 𝑡 ∈ 𝐸

𝑦𝑢𝑣 − 𝑧𝑢 + 𝑧𝑣 ≥ 0 ∀ 𝑢, 𝑣 ∈ 𝐸, 𝑢 ≠ 𝑠, 𝑣 ≠ 𝑡

𝑦𝑢𝑣 ≥ 0 ∀ 𝑢, 𝑣 ∈ 𝐸

▪ 𝑧𝑢 describes 𝑢’s “side”:

𝑧𝑢 = ቊ
1 if 𝑢 is on the 𝑠 − side
0 if 𝑢 is on the 𝑡 − side



Turn Intuitions to Formal Proof

To turn our intuitions to a formal proof, we will show

▪ There is an optimal solution with 𝑦𝑢𝑣 , 𝑧𝑢 ∈ ℤ,
– A common method: total unimodularity

▪ and furthermore, there is an optimal solution with 𝑦𝑢𝑣 ∈
0, 1 .
– If 𝑦𝑢𝑣 ≥ 2 for some 𝑢, 𝑣 ∈ 𝐸, then the solution cannot be optimal.

▪ The optimal integral solution exactly gives a min-cut.

▪ 𝑦𝑢𝑣 describes if edge (𝑢, 𝑣) is cut:

𝑦𝑢𝑣 = ቊ
1 if 𝑢, 𝑣 is cut
0 otherwise

▪ 𝑧𝑢 describes 𝑢’s “side”:

𝑧𝑢 = ቊ
1 if 𝑢 is on the 𝑠 − side
0 if 𝑢 is on the 𝑡 − side



Totally Unimodular Matrix

▪ Definition. A matrix 𝐴 is totally unimodular if every square 
submatrix has determinant 0, 1 or −1.

▪ Theorem. If 𝐴 ∈ ℝ𝑚×𝑛 is totally unimodular and 𝐛 is an integer 
vector, then the polytope 𝑃 = 𝐱: 𝐴𝐱 ≤ 𝐛 has integer vertices.

▪ Proof. If 𝐯 ∈ ℝ𝑛 is a vertex of 𝑃. Then there exists an invertible 
square submatrix 𝐴′ of 𝐴 such that 𝐴′𝐯 = 𝐛′ for some sub-vector 
𝐛′ of 𝐛.

▪ By Cramer’s Rule, we have 𝑣𝑖 =
det 𝐴𝑖

′ 𝐛′

det 𝐴𝑖
′ , where 𝐴𝑖

′ 𝐛′ is the 

matrix with 𝑖-th column replaced by 𝐛′.

▪ det 𝐴𝑖
′ = ±1 and det 𝐴𝑖

′ 𝐛′ ∈ ℤ. Thus, 𝐯 is integral.



Some Simple Observations

▪ If 𝐴 is totally unimodular, then so are 𝐴⊤, 𝐼 𝐴 , 𝐴 𝐼 , 𝐼
𝐴

, and 𝐴
𝐼

. If 
any of 𝐴⊤, 𝐼 𝐴 , 𝐴 𝐼 , 𝐼

𝐴
, and 𝐴

𝐼
is totally unimodular, then so is 𝐴.

▪ Proof. Just expand the determinant and you will see it…

▪ The determinant of 𝐴 𝐼 equals to ±1 times the determinant of 
some square submatrix of 𝐴.

𝐴

1
1
1

1
⋱

Consider this submatrix

1
1

Expand on this column

1

Expand on this column



Corollary on Integrality of LP

▪ Theorem. If 𝐴 ∈ ℝ𝑚×𝑛 is totally unimodular and 𝐛 is an 
integer vector, then the polytope 𝑃 = 𝐱: 𝐴𝐱 ≤ 𝐛 has integer 
vertices.

▪ Since there always exists optimum at a vertex of the 
feasible region of LP, we have the following corollary.

▪ Corollary. If 𝐴 is unimodular, then the optimal solution to 
LP (a) is integral when 𝐛 is integral, and the optimal 
solution to LP (b) is integral when 𝐜 is integral.

maximize 𝐜⊤𝐱

subject to 𝐴𝐱 ≤ 𝐛

𝐱 ≥ 𝟎

minimize 𝐛⊤𝐲

subject to 𝐴⊤𝐲 ≥ 𝐜

𝐲 ≥ 𝟎

(b)(a)



Proving Integrality of 𝑦𝑢𝑣, 𝑧𝑢

minimize ෍

𝑢,𝑣 ∈𝐸

𝑐𝑢𝑣𝑦𝑢𝑣

subject to 𝑦𝑠𝑢 + 𝑧𝑢 ≥ 1 ∀𝑢: 𝑠, 𝑢 ∈ 𝐸

𝑦𝑣𝑡 − 𝑧𝑣 ≥ 0 ∀𝑣: 𝑣, 𝑡 ∈ 𝐸

𝑦𝑢𝑣 − 𝑧𝑢 + 𝑧𝑣 ≥ 0 ∀ 𝑢, 𝑣 ∈ 𝐸, 𝑢 ≠ 𝑠, 𝑣 ≠ 𝑡

𝑦𝑢𝑣 ≥ 0 ∀ 𝑢, 𝑣 ∈ 𝐸

▪ Now, we show that the matrix describing the first three rows of 
the constraints is totally unimodular.



Proving Integrality of 𝑦𝑢𝑣, 𝑧𝑢

▪ The matrix can be written below:

▪ Let the matrix be 𝑌 𝑍 . 𝑌 is the identity matrix. We only 
need to show 𝑍 is totally unimodular.

|𝐸|

|𝐸|

𝐸 × |𝐸|
identity 
matrix

|𝑉|

𝑌 𝑍

𝑠 𝑡𝑢 𝑣
(𝑠, 𝑢)

(𝑢, 𝑣)

(𝑣, 𝑡)

0 1

1−1

−1 0



Proving 𝑍 is totally unimodular by Induction…

▪ Base Step: Each cell of 𝑍 belongs to {0, 1, −1}.

▪ Inductive Step: Suppose every 𝑘 × 𝑘 submatrix of 𝑍 has 
determinant belongs to {0, 1, −1}. Consider any (𝑘 + 1) × (𝑘 + 1)
submatrix 𝑍’.

▪ Case 1: If a row of 𝑍’ is all-zero, then det 𝑍′ = 0.

▪ Case 2: If a row of 𝑍’ contains only one non-zero entry, then 
det 𝑍′ equals to ±1 times the determinant of a 𝑘 × 𝑘 submatrix. 
det 𝑍′ ∈ 0, 1, −1 by induction hypothesis.

▪ Case 3: If every row of 𝑍’ has two non-zero entries (one of them 
is −1 and the other is 1), then det 𝑍′ = 0:
– Adding all the column vectors, we get a zero vector.



Proving Integrality of 𝑦𝑢𝑣, 𝑧𝑢

minimize ෍

𝑢,𝑣 ∈𝐸

𝑐𝑢𝑣𝑦𝑢𝑣

subject to 𝑦𝑠𝑢 + 𝑧𝑢 ≥ 1 ∀𝑢: 𝑠, 𝑢 ∈ 𝐸

𝑦𝑣𝑡 − 𝑧𝑣 ≥ 0 ∀𝑣: 𝑣, 𝑡 ∈ 𝐸

𝑦𝑢𝑣 − 𝑧𝑢 + 𝑧𝑣 ≥ 0 ∀ 𝑢, 𝑣 ∈ 𝐸, 𝑢 ≠ 𝑠, 𝑣 ≠ 𝑡

𝑦𝑢𝑣 ≥ 0 ∀ 𝑢, 𝑣 ∈ 𝐸

▪ Now, we conclude that there exists an optimal solution with 
𝑦𝑢𝑣 , 𝑧𝑢 ∈ ℤ.  



Some Intuitions

▪ Consider an arbitrary 𝑠-𝑡 path 𝑠 − 𝑣1 − 𝑣2 −⋯− 𝑣ℓ−1 − 𝑡.

▪ Sum up all the constraints for the edges on the path:

𝑦𝑠𝑣1 + 𝑧𝑣1 + 𝑦𝑣ℓ−1𝑡 − 𝑧𝑣ℓ−1 +෍

𝑖=1

ℓ−2

𝑦𝑢𝑖𝑢𝑖+1 − 𝑧𝑢𝑖 + 𝑧𝑢𝑖+1 ≥ 1

⟹ 𝑦𝑠𝑣1 + 𝑦𝑣ℓ−1𝑡 +෍

𝑖=1

ℓ−2

𝑦𝑢𝑖𝑢𝑖+1 ≥ 1

▪ Conclusion: We must have 𝑦𝑢𝑣 ≥ 1 for at least one edge 
(𝑢, 𝑣) on the path.

▪ Removing { 𝑢, 𝑣 : 𝑦𝑢𝑣 ≥ 1} disconnects 𝑡 from 𝑠.



OPTdual is an upper-bound to min-cut.

▪ Lemma 1. OPTdual is an upper-bound to min-cut.

▪ Proof. Let 𝐲∗, 𝐳∗ be an integral optimal solution.

▪ Let 𝐶 = { 𝑢, 𝑣 ∈ 𝐸: 𝑦𝑢𝑣
∗ ≥ 1}. We have shown removing 𝐶

disconnect 𝑡 from 𝑠.

▪ Let 𝐿 ⊆ 𝑉 be the vertices reachable from 𝑠 after removing 𝐶, and 
𝑅 = 𝑉 ∖ 𝐿. Then 𝐿, 𝑅 is an 𝑠-𝑡 cut.

▪ For min-cut 𝐿∗, 𝑅∗ , we have

𝑐 𝐿∗, 𝑅∗ ≤ 𝑐 𝐿, 𝑅 = ෍

𝑢,𝑣 ∈𝐸:𝑢∈𝐿,𝑣∈𝑅

𝑐𝑢𝑣 ≤ ෍

𝑢,𝑣 ∈𝐸:𝑢∈𝐿,𝑣∈𝑅

𝑐𝑢𝑣𝑦𝑢𝑣
∗ = OPTdual



OPTdual is also a lower-bound to min-cut.

▪ Lemma 2. OPTdual is a lower-bound to min-cut.

▪ Proof. Let 𝐿∗, 𝑅∗ be a min-cut. We construct a LP solution:

▪ 𝑦𝑢𝑣 = ቊ
1 if 𝑢 ∈ 𝐿∗, 𝑣 ∈ 𝑅∗

0 otherwise
and     𝑧𝑢 = ቊ

1 if 𝑢 ∈ 𝐿∗

0 if 𝑢 ∈ 𝑅∗

▪ It is easy to verify that the solution is feasible…

▪ Then,

OPTdual ≤ ෍

𝑢,𝑣 ∈𝐸

𝑐𝑢𝑣𝑦𝑢𝑣 = ෍

𝑢,𝑣 ∈𝐸:𝑢∈𝐿∗,𝑣∈𝑅∗

𝑐𝑢𝑣 = 𝑐 𝐿∗, 𝑅∗



Now we conclude Max-Flow-Min-Cut Theorem

▪ By the two lemmas, OPTdual equals to the size of min-cut.

▪ By the strong duality theorem, OPTdual equals to the size of 
max-flow.

▪ Thus, the size of min-cut equals the size of max-flow.



A Framework for Proving Theorems Using 
Strong Duality

▪ Write down the primal and dual LPs.

▪ Justify that the primal and dual LPs describe the 
corresponding problems.

▪ If the problem described is discrete, prove that the 
corresponding LP always gives integral solution.
– Total Unimodularity

▪ Apply strong duality theorem. 



Revisiting Integrality Theorem for Max-Flow

▪ Theorem. If the capacities are all 
integers, then there exists an 
integral maximum flow.

▪ We have seen that “𝐴” in the LP 
is totally unimodular
– For dual program, we have proved 
𝐴⊤ is totally unimodular.

▪ If all 𝑐𝑢𝑣 are integers, then vector 
“𝐛” in the LP is integral, and the 
LP has an integral optimal 
solution.

maximize ෍

𝑢: 𝑠,𝑢 ∈𝐸

𝑓𝑠𝑢

subject to 𝑓𝑢𝑣 ≤ 𝑐𝑢𝑣

෍

𝑣: 𝑣,𝑢 ∈𝐸

𝑓𝑣𝑢 − ෍

𝑤: 𝑢,𝑤 ∈𝐸

𝑓𝑢𝑤 ≤ 0

− ෍

𝑣: 𝑣,𝑢 ∈𝐸

𝑓𝑣𝑢 + ෍

𝑤: 𝑢,𝑤 ∈𝐸

𝑓𝑢𝑤 ≤ 0

𝑓𝑢𝑣 ≥ 0



Part II: von Neumann’s 
Minimax Theorem



Zero-Sum Game

▪ Two players: 𝐴 and 𝐵

▪ Each player has a set of actions that (s)he can play.
– Set of actions 𝐴 can play: 𝐚 = 𝑎1, 𝑎2, … , 𝑎𝑚
– Set of actions 𝐵 can play: 𝐛 = {𝑏1, 𝑏2, … , 𝑏𝑛}

▪ For each pair of actions (𝑎𝑖 , 𝑏𝑗) that two players play, an utility
is assigned to each player: 𝑢𝐴 𝑎𝑖 , 𝑏𝑗 , 𝑢𝐵(𝑎𝑖 , 𝑏𝑗).

▪ A game is a zero-sum game if ∀𝑥𝑖 , 𝑦𝑗: 𝑢𝐴 𝑎𝑖 , 𝑏𝑗 + 𝑢𝐵 𝑎𝑖 , 𝑏𝑗 = 0.

▪ Payoff Matrix 𝐺 ∈ ℝ𝑚×𝑛, where 𝐺𝑖,𝑗 is the utility gain for 𝐴, or 
the utility loss for 𝐵, when (𝑎𝑖 , 𝑏𝑗) is played.



Example

▪ The payoff matrix for the Rock-Scissors-Paper game:

Player 𝐵

Rock Scissors Paper

Player 𝐴

Rock 0 1 -1

Scissors -1 0 1

Paper 1 -1 0



Strategy

▪ Set of actions 𝐴 can play: 𝐚 = 𝑎1, 𝑎2, … , 𝑎𝑚

▪ A strategy for 𝐴 is a probability distribution of 𝐱.

▪ A pure strategy specifies one of 𝑎1, 𝑎2, … , 𝑎𝑚 with probability 1.
– In other words, a pure strategy is an action.

▪ Otherwise, it is a mixed strategy.
– In other words, a mixed strategy specify at least two actions with non-

zero probability.

▪ Fix 𝐴’s strategy, the best response for 𝐵 is the strategy that 
maximizes 𝐵’s utility.



Rock-Scissors-Paper Example

▪ 𝐴 plays 𝑅, 𝑆, 𝑃 = (1, 0, 0):
– It is a pure strategy that always plays “rock”.

– The best response for 𝐵 is (0, 0, 1), with utility 1.

▪ 𝐴 plays 𝑅, 𝑆, 𝑃 =
1

2
,
1

4
,
1

4
:

– It is a mixed strategy.

– The best response for 𝐵 is (0, 0, 1), with expected utility 
1

2
× 1 +

1

4
× 0 +

1

4
× 0 =

1

2
.

▪ 𝐴 plays 𝑅, 𝑆, 𝑃 =
1

3
,
1

3
,
1

3
:

– It is a mixed strategy.

– Any strategy for 𝐵, pure or mixed, is a best response, with expected utility 0.



Expected Utility

▪ Let 𝐱 = 𝑥1, … , 𝑥𝑚 and 𝐲 = 𝑦1, … , 𝑦𝑛 be the strategies 
played by the two players.

▪ The expected utility for Player 𝐴 is

𝑈𝐴 𝐱, 𝐲 = 𝐱⊤𝐺𝐲 =෍

𝑖,𝑗

𝐺𝑖,𝑗𝑥𝑖𝑦𝑗

▪ The expected utility for Player 𝐵 is

𝑈𝐵 𝐱, 𝐲 = −𝐱⊤𝐺𝐲 = −෍

𝑖,𝑗

𝐺𝑖,𝑗𝑥𝑖𝑦𝑗



Does it matter who chooses strategy first?

▪ Suppose 𝐴 chooses a strategy first.
– Given that 𝐵 will always play the best response

– The optimal strategy for 𝐴 is 
1

3
,
1

3
,
1

3

– Expected utility for both players is 0

▪ Suppose 𝐵 chooses a strategy first.
– Similar analysis, expected utility for both players is 0

▪ Same outcome regardless who chooses strategy first.

▪ Does it always hold for any zero-sum game?

▪ Yes! This is von Neumann’s Minimax Theorem.

𝐺 =
0 1 −1
−1 0 1
1 −1 0

Rock-Scissors-Paper:



Minimax Theorem

▪ Suppose 𝐵 chooses strategy first. Similarly, the utility for 𝐴 is

min
𝐲

max
𝐱

෍

𝑖,𝑗

𝐺𝑖,𝑗𝑥𝑖𝑦𝑗

▪ Suppose 𝐴 chooses strategy first. Knowing that 𝐵 will play 
the best response, 𝐴 will choose an optimal strategy 𝐱 that 
maximizes his/her utility:

max
𝐱

min
𝐲

෍

𝑖,𝑗

𝐺𝑖,𝑗𝑥𝑖𝑦𝑗

𝐵 plays the best response given 𝐴’s strategy 𝐱.

Given 𝐵 plays the best response, 𝐴 choose a 
strategy  maximizing the utility. 



Minimax Theorem

▪ Minimax Theorem:

max
𝐱

min
𝐲

෍

𝑖,𝑗

𝐺𝑖,𝑗𝑥𝑖𝑦𝑗 = min
𝐲

max
𝐱

෍

𝑖,𝑗

𝐺𝑖,𝑗𝑥𝑖𝑦𝑗

▪ Who chooses strategy first doesn’t matter!



Pure Strategy Best Response

▪ Lemma. Fix 𝐴’s strategy 𝐱 = 𝑥1, … , 𝑥𝑚 , there exists a best 
response for 𝐵 that is a pure strategy.

▪ Proof. Let 𝐲 = 𝑦1, … , 𝑦𝑛 be 𝐵’s strategy.

▪ The utility for 𝐵 is given by

−𝑦1෍

𝑖=1

𝑚

𝐺𝑖,1𝑥𝑖 − 𝑦2෍

𝑖=1

𝑚

𝐺𝑖,2𝑥𝑖 −⋯− 𝑦𝑛෍

𝑖=1

𝑚

𝐺𝑖,𝑛𝑥𝑖

▪ Clearly, this is maximized if we set 𝑦𝑖 = 1 where 𝑦𝑖 has 
smallest coefficient.



LP formulation

▪ The lemma implies

max
𝐱

min
𝐲

෍

𝑖,𝑗

𝐺𝑖,𝑗𝑥𝑖𝑦𝑗 = max
𝐱

min
𝑗=1,…,𝑛

෍

𝑖

𝐺𝑖,𝑗𝑥𝑖

▪ Let 𝑧 be the utility for Player 𝐴. The following LP formulates 
the max-min expression:

maximize 𝑧

subject to σ𝑖𝐺𝑖,𝑗𝑥𝑖 ≥ 𝑧 ∀𝑗 = 1,… , 𝑛

𝑥1 +⋯+ 𝑥𝑚 = 1

𝑥1, … , 𝑥𝑚 ≥ 0



Standard Form…

maximize 𝑧+ − 𝑧−

subject to − σ𝑖𝐺𝑖,𝑗𝑥𝑖 + 𝑧+ − 𝑧− ≤ 0 ∀𝑗 = 1,… , 𝑛

𝑥1 +⋯+ 𝑥𝑚 ≤ 1

−𝑥1 −⋯− 𝑥𝑚 ≤ −1

𝑥1, … , 𝑥𝑚, 𝑧
+, 𝑧− ≥ 0



It’s dual program is…

minimize 𝑤+ − 𝑤−

subject to − σ𝑗 𝐺𝑖,𝑗𝑦𝑖 + 𝑤+ −𝑤− ≥ 0 ∀𝑖 = 1,… ,𝑚

𝑦1 +⋯+ 𝑦𝑛 ≥ 1

−𝑦1 −⋯− 𝑦𝑛 ≥ −1

𝑦1, … , 𝑦𝑛, 𝑤
+, 𝑤− ≥ 0



Simplify it, we get…

minimize 𝑤

subject to σ𝑗 𝐺𝑖,𝑗𝑦𝑖 ≤ 𝑤 ∀𝑖 = 1,… ,𝑚

𝑦1 +⋯+ 𝑦𝑛 = 1

𝑦1, … , 𝑦𝑛 ≥ 0

▪ This is exactly
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▪ Strong duality theorem ⟹ Minimax Theorem.


