Appllcatlons of LP-
Duallty '

Max-Flow-Min-Cut Theorem Revisit, von Neumann'’s Minimax S

Theorem



Strong Duality Theorem

— - s = - ==

+ Theorem [Strohg DUaIity Theorem]. Let x* be the optimal
solutlon to (a) and y* be the optimal solution to (b), then ‘

e bTy* '
maximize c'x " minimize b'y
subjectto Ax<b  (a) ~ subjectto ATy =c (b)
X= Qoeert | _ y=0
Pitralfascibla: Primal OPT = Dual OPT ~ Dual feasible

———————————— ) e———————————————————————————



Part I: Max-Flow-Min-Cut
Theorem Revisited




Strong LP—DuaIity — I\/‘Iax—FIow—Min—Cut'

o X e K — ————— = — — S

Use Strong Duallty Theorem to prove max-flow-min-cut

theorem

= Step 1: Write down the

= Step 2: Show that the ©
version of the min-cut

LP for max-flow problem.

ual program describes the fractional
problem.

= Step 3: Show that the c
optimum.

ual program always have integral

~ So that the dual optimum is indeed the size of min-cut.

= Step 4: apply Strong Duality Theorem to show max-flow = l

min-cut



The Maximum Flow Problem

s = - —— - ——— - — — -

“« The maximum flow problem can be formulated by a linear
~ program. |

maximize Z fou
THERIS ) 4
subjectto 0 < f;, < ¢y A V(u,v) €EE

fou = Z fuw Vu € V \ {S,t}

v:(v,u)€EE w:(v,w)€EE



Let's Write It in Standard Form |

e = x = = - — — Aah s SLTRS e 7

maximize T
u:(s,u)€eE

subjectto  f,, < cup V(u,v) EE

fvu_ 2 fuw <0 ’VUEV\{SJt}

v:(v,u)€E w:(u,Ww)EE .
— ) fut ) fw<0 VuEV\[58}
v:(v,u)€E w:(u,w)€EE :

fur =0 V(u,v) €EE



Compute Its Dual Program

—_—= < - - ———

- minimize E Ciiv Vit

| (UV)EE
| ~subject to - ( VYou + 2, =1 vu: (s, u) €E
Yot — Zp 2 0 Vu: (1) € E
Vil e e ' V(u,v) EE,u+s,v+t
 Yuw >0 | - Y(uv)EE

- We aim to show the LP above describes the min-cut problem.

= Let OPTy,4 be its optimal objective value. We need to show
~ OPTyya IS the size of the min-cut.



Some Intuitions

| minimize
| (u,v)EE
~subjectto - yg, +7, =1
VYor — Zp =0
Yuv — Zy + Zy
 Yuw 20

=y, describes if edge (u,v) is cut:

if (u, v) is cut

ek
yu'.) = {O otherwise

vu: (s,u) € E
Vv:(v,t) EE
V(u,v) EE,u+s,v+t

V(u,v) EE

= 7z, describes u’'s “side”:
e o if u is on the s — side
Y 0 if u is on the t — side



Turn ,Intuiti‘ons to Formal Proof |

e = = = — — Aah s SLTRS e 7

- y,» describes if edge (u,v) iIscut: - zl; describes u's “side":

=l if (u, v) is cut 5 S 1 if u is on the s — side
5= 1) ~ otherwise by if u is on the t — side

To turn our intuitions to a formal proof, we will show

= There is an optimal solution with y,,,,, z, € Z,
- A common method: total unimodularity

= and furthermore, there is an optimal solution with Y &
{0, 1}. |
- If y,,, =2 for some (u,v) € E, then the solution cannot be optimal.

= The optimal integral solution exactly gives a min-cut.



Totally Unimodular Matrix

N . — - ——

Definition. A matrix 4 is totally unimodular if every square
submatrix has determinant 0, 1 or —1.

. Theorem. If-4 € R™¥" s totally unimodular and b is an integer
vector, then the polytope P = {x: Ax < b} has integer vertices.

Proof. If ve R" is a vertex of P. Then there exists an invertible
square submatrix A’ of A such that A’v = b’ for some sub-vector
b’ of b. -

det(A'|b’ S o
dc(et(ill;) ), where (4;|b) is the

matrix with i-th column replaced by b'.

By Cramer’s Rule, we have v; =

det(4}) = +1 and det(4;|b") € Z. Thus, v is integral.



Some Simple Observations -

— = e = - e ————— —

= If A is totally unlmodular then so are A", [I 4],[4 11,[}] and [4]. If
~any of AT, [I AL[A I],[}], and [] is totally unimodular, then so is 4.

+ Proof. Just expand the determinant and you will see it...

= The determinant of [A I] equals to +1 times the determinant of
some square submatrix of A. .

Consider this submatrix Expand on this column Expand on this column



Corollary on Integrality of LP

— = e - = - e ————— —_————

= Theorem. If 4 € R™*7 js totally unimodular and b is an

_integer vector, then the polytope P = {x: Ax < b} has mteger
—vertices=s==

- Since there always exists optimum at a vertex of the
feasible region of LP, we have the following corollary.

. Corollary. If 4 is unimodular, then the optimal solution to
LP (a) is integral when b Is integral, and the optimal
solution to.LP (b) Is integral when c is integral.
maximize c'x - minimize b'y |
subjectto AXx<b €) ~ subjectto ATy =c (b)

x=>0 y=0



Proving Integrality of y,,, z,

:-‘ = - 7_ —

minimize E Ciiv Vit

(u,v)EE
~subject to - | VYou 2, =1 Vu:(s,u) € E
Yot = Zy 2 0 Yv:(v,t) EE
Vil e e ' Viu,v) EE,u#s,v#t
Y 20 - Y(uwv)€EE

- Now, we show that the matrix describing the first three rows of
the constraints is totally unimodular.



Proving Integrality of y,,, z,

= - = ' —

 » The matrix can be written below:

e 14
P ] A
o sy e
= v 0 1 (s,u)
[El % |E] 5 |
|E| = identity : ‘1 Y
matrix
Y- Z

= Let the matrix be [V Z]. Y is the identity matrix. We only
need to show Z is totally unimodular.



Proving Z is tOtaIIy unimodular by Induction...

S —— = — = - — ——— = — = e

= Base Step: Each- cell of Z belongs to {0,1,—1}.

= Inductive Step':' SuppoSe every k x k submatrix of Z has
determinant belongs to {0,1,—1}. Consider any (k+ 1) X (k + 1)
submatrix Z'.

= Case 1: If arow of Z' is all-zero, then det(Z") = 0.

- Case 2: If a row of Z' contains only one non-zero entry, then
det(Z') equals to +1 times the determinant of a k x k submatrix.
det(Z') € {0,1, —1} by induction hypothesis.

= Case 3: If every row of Z' has two non-zero entries (one of them 3
iIs —1 and the other is 1), then det(Z’) = 0:

- Adding all the column vectors, we get a zero vector.



Proving Integrality of y,,, z,

minimize

-subject to

EE———

z CuvYuv

(u,v)EE

VYou + 2, =1

yvt_ZvZO

vu: (s,u) € E
Yv:(v,t) EE
Vi, v) EE,u #s,v %t

V(u,v) EE

 Now, we conclude that there exists an optimal solution with

SR



Some Intuitions

e = x = = - — — Aah s SLTRS e £

= Consider an arbitrary s-t path s —v; —v, — - —v,_; — t.
= Sum up all the constraints for the edges on the path:
e - =
(ysvl + ZU1) 5= (yvf—ﬂ = ZW—1) 5 Z(yuiui+1 __Zui + Zui+1) =1
i
e =t Yvp_qt t z Yujuipq =1
i=1

Conclusion: We must have y,,,, = 1 for at least one edge
(u,v) on the path.

Removing {(u, v):.yuv > 1} disconnects t from s.



OPT,,, is an upper-bound to min-cut.

—— = - = = - —— o — — -

= Lemma 1. OPTg4, i‘s.an upper-bound to min-cut.
= Proof. Let (y*,z*) be an integral optimal solution.

. Let C = {(u,v) € E:y;, = 1}. We have shown removing C
disconnect t from s.

= Let L € V be the vertices reachable from s after removing ¢, and
R =V\L. Then {L,R} is an s-t cut.

= For min-cut {L*, R*}, we have | |
FERISCGRE Y ks ) GV OPTi

- (u,v)EE:UEL,VER (u,v)EE:uEL,VER



OPTy,4 IS also a lower-bound to min-cut.

— - : ——— : e e T s :

Lemma 2. OPTy,, IS a lower-bound to min-cut.

Proof. Let {L*, R*} be a min-cut. We construct a LP solution:

11 ifuel’veR” cid T ifuel”
S — {O otherwise ANt L {O ifu € R*
+ It is easy to verify that the solution is feasible...
« Then, | v f f
OPTgual = z CuvYur = 2 Cuv = (L, RY)

(u,v)EE (u,v)EE:uEL*, vER*



Now we conclude Max-Flow-Min-Cut Théorem

=, : - V— p— 4 —_— i ———— — -

= By the two lemmas, OPTy,, equals to the size of min-cut.

= By the strong duality theorem, OPTy,,; equals to the size of
max-flow.

= Thus, the size of min-cut equals the size of max-flow.



A Framework for Proving Theorems Using
Strong Duality

—— = . —

= Write down the primal and dual LPs.

= Justify that the primal and dual LPs describe the
corresponding problems.

= If the problem described is discrete, prove that the
caorresponding LP always gives mtegral solution.

- Total Unimodularity

= Apply strong duality theorem.



Revisiting I'ntegrality Theorem for Max-Flow

. Theorem. If the capacities are all
Integers, then there exists an
mtegral maximum flow.

We have seen that “A” in the LP
Is totally unimodular

- For dual program, we have proved
AT is totally unimodular.

If all ¢, are integers, then vector
“b" in the LP is integral, and the
LP has an integral optimal
solution. -

S ——— = - e = —— e — — e 5

maximize E e

u:(s,u)€EE

subjectto  f,, < cuv

=) faso

| v:(v,u)EE » w: (u W)EE
S 2 fvu + z fuw —
v:(V,u)€EE w:(u,w)€EE

fuv —



"Part llI: von Neumann'’s
Minimax Theorem




Zero-Sum Game

Two players: A and B

Each player has a set of actions that (s)he can play.
- Set of actions 4 can play: a = {a;, a, ..., a;,}
- Set of actions B can play: b = {b, b,, ..., b,,}

For each pair of actions (a;, b;) that two players -play, an utility
is assigned to each player: u,(d;, b;), ug(a;, b)).

A game is a zero-sum game if Vx;, y;: us(a;, bj) + ug(a;, b;) = 0.

Payoff Matrix G € R™*", where G; ; is the utility gain for 4, or |
the utility loss for B, when (a;, b)) is played.



Example

, - x ——

' The payoff matrix for the Rock-Scissors-Paper game:

Player B
Rock Scissors Paper
Rock 0 ‘1 =i
plaver A | Scissors -1 O 1
Paper 1 -1 o




Strategy

— = - — . e

Set of actions A can play: a = {a;, a3, ..., an}

A strategy for A4 is a probability distribution of x.

A pure strategy specifies one of a4, a,, ..., a,, with probability 1.
- In other words, a pure strategy is an action. ‘

Otherwise, it is a mixed strategy.

- In other words, a mixed strategy specify at least two actions with non-
zero probability.

Fix A's strategy, the best response for B is the strategy that
maximizes B’s utility.



Rock-Scissors-Paper Example

i < - V— p— 4 —_— i ————

= A plays (R,S,P) = (1,0,0):
-~ Itis a pure strategy that always plays “rock”.
- The best response for B is (0,0, 1), with utility 1.

4 o e |

= A plays (R S, P) = (E'Z'Z):
- It is a mixed strategy. |
- The best response for B is (0,0, 1), with expected ut|I|ty X 1 + X 0 + X0 ==

113

= Aplays (RS, P) = (5,5,5):
- It is a mixed strategy.
- Any strategy for B, pure or mixed, is a best response, with expected utility 0.



Expected Utility

et = - ——

= Lletx ={x,,..,x,} and y = {y,, ..., v, } be the strategies
- played by the two players.
. The expected utility for Player 4 is
Us(x,y) = X' Gy = Z Gi jXiYj
; L,j
- The expected utility for Player B is

Up(x,y) = —X' Gy = —2 Gi jXiYj
L,j



Does it matter who chooses strategy first?

EE————— ~ —

| Do ==
Rock-Scissors-Paper: G=|—-1 0 1
o =122

Suppose A chooses a strategy first.

- Given that B will always play the best response
1

- The optimal strategy for A is G%g)

- Expected utility for both players is 0

Suppose B chooses a strategy first.
- Similar analysis, expected utility for both players is 0

Same outcome regardless who chooses strategy first.

Does it always hold for any zero-sum game?

Yes! This is von Neumann’s Minimax Theorem.



Minimax Theorem

e— - ' —_— . e e e T s %

= Suppose A chooses strategy first. Knowing that B will play
the best response, 4 will choose an optimal strategy x that
-~ maximizes his/her utility:
B B plays the best response given A’s strategy Xx.

i a AIUT

Pt ey
max minz Gi jXiY;
X N :

< L] . >

—_——

Given B plays the best response, A choose a
strategy maximizing the utility.

= Suppose B chooses strategy first. Similarly, the ut|I|ty for Ais
mln maxz Gi jXiY;



Minimax Theorem

= Minimax Theorem:

max niin E G; jx;y; = min max E Gi jXiY;
S e Y. X Lo
L] L,]

- Who chooses strategy first doesn’'t matter!



Pure Strategy Best Response

S — < = - ———

» Lemma. Fix A’s strategy x = {x,, ..., x,,}, there exists a best
-~ response for B that is a pure strategy.. |

: Proof. Lety = {y,, ...,yn} be B's strategy.
= The utility for B is given by

= ‘ .
! 2 Gl 1xl Y2 Z Gl le — Vn 2 Gi,nxi

= Clearly, this is maximized if we set y; = 1 where Vi has
smallest coefficient.



LP fo_rmulatioh

= The lemma implies
max min E G; jx;yj = max min E Gi jXi
XoE oy e X J=L..n Lo
i,J i

= Let z be the utility for Player A. The following LP formulates
the max-min expression: .
maximize Z
subjectto X; G; jx; =z i i, ., N
Xg e, =

xl, ...,xm 2 O



Standard Form...

maximize zt —z~

SUbjeCt tO — Zi Gi,jxi A

Xt tx, =<1
==

X 2ty ()



It's dual program is...

minimize w' —w~
subject to —X;G;;yi+wt—w™ =0
Y T |

=V =

e
Vi, s VoW ,w™ =0



Simplify it, we get...

minimize w
subjectto Y, G;;jy; S w Vi=1,..,m
Wt e )

Vi rreer V2o
= This is exactly

min maxz: Gi jxiyj = mln ,max Z Gi jy;
y X £
l

= Strong duality theorem = Minimax Theorem.



