# P, NP, NP-Completeness

P, NP, NP-Completeness, and Reductions

#### Introduction

Some problems can be solved in polynomial time.

- as most of the problems we have seen in the previous lectures
- You've heard some other problems are "NP-hard" or "NPcomplete".
- This lecture:
  - Learn what exactly do we mean by NP-hardness, or NP-completeness.
  - Understand why people believe these problems are hard.

## Let's first see some famous NP-hard problems

#### SAT

- Vertex Cover
- Independent Set
- Subset Sum
- Hamiltonian Path

#### SAT (Boolean Satisfiability Problem)

 A Boolean formula is built from variables, operators AND (∧), OR (∨), NOT (¬), and parentheses.

- Example:  $(x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2)$ 

- A Boolean formula is in conjunctive normal form (CNF) if it is an "AND" of many clauses:
  - Each clause contains "OR" of literals:
    - A literal is a variable  $x_i$  or its negation  $\neg x_i$
  - The example is in CNF; it has three clauses:  $(x_1 \lor x_3 \lor \neg x_4)$ ,  $(x_2 \lor \neg x_3)$ and  $(\neg x_1 \lor \neg x_2)$
- [SAT Problem] Given a CNF formula φ, decide if there is a value assignment to the variables to make φ true.
  - This is true for the example above:  $x_1 = \text{true}, x_2 = \text{false}, x_3 = \text{false}.$

#### Vertex Cover

• Given an undirected graph G = (V, E), a subset of vertices  $S \subseteq V$  is a vertex cover if S contains at least one endpoint of every vertex.

not a vertex cover

#### Vertex Cover Problem

• [Vertex Cover Problem] Given an undirected graph G = (V, E) and  $k \in \mathbb{Z}^+$ , decide if the graph has a vertex cover of size k.

For this graph and k = 4, the output should be yes.

#### Independent Set

• Given an undirected graph G = (V, E), a subset of vertices  $S \subseteq V$  is an independent set if there is no edge between any two vertices in S.

an independent set

not an independent set

## Independent Set Problem

• [Independent Set Problem] Given an undirected graph G = (V, E) and  $k \in \mathbb{Z}^+$ , decide if the graph has an independent set of size k.

For this graph and k = 4, the output should be yes.

#### Subset Sum Problem

- [Subset Sum Problem] Given a collection of integers  $S = \{a_1, ..., a_n\}$  and  $k \in \mathbb{Z}^+$ , decide if there is a sub-collection  $T \subseteq S$  such that  $\sum_{a_i \in T} a_i = k$ .
- The output should be yes for S = {1,1,6,13,27} and k = 21, as 1+1+6+13 = 21.
- The output should be no for  $S = \{1, 1, 6, 13, 27\}$  and k = 22.

#### Hamiltonian Path Problem

- Given an undirected graph G = (V, E), a Hamiltonian path is a path containing each vertex exactly once.
- [Hamiltonian Path Problem] Given an undirected graph G = (V, E), decide if it contains a Hamiltonian path.

Output should be yes

#### In this lecture, we will only focus on...

- Decision Problems: those with output yes or no.
- Polynomial Time vs Not Polynomial Time
  - E.g., we will not care about O(n) or  $O(n^2)$
  - "Easy" Problems: those can be solved in polynomial time
  - "Hard" problems: those for which people believe cannot be solved in polynomial time

#### **Decision Problem – Formal Definition**

- A decision problem is a function  $f: \Sigma^* \rightarrow \{0, 1\}$
- $\Sigma$  set of alphabets: for example, binary alphabets  $\Sigma = \{0, 1\}$
- $\Sigma^n$  set of strings using alphabets in  $\Sigma$  with length n
- $\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$  set of all strings with any lengths
- $x \in \Sigma^*$  an instance
- f(x) = 1: x is a yes instance
  - E.g., x encodes G and k where G has a k-vertex cover
- f(x) = 0: x is a no instance
  - E.g., x encodes G and k where G does not have a k-vertex cover
  - Or x is not a valid encoding of G and k

#### **Problems That Are "Easy"**

- A decision problem  $f: \Sigma^* \to \{0, 1\}$  is "easy" if there is a polynomial time algorithm  $\mathcal{A}$  that computes it.
- That is,  $\mathcal{A}(x) = f(x)$  always holds.
- Polynomial time:  $\mathcal{A}(x)$  terminates in  $|x|^{O(1)}$  steps.
- But wait! What exactly is an algorithm??

# Turing Machine (TM)

- An abstract machine that is a prototype of modern computers.
- A Turing Machine is a triple  $(Q, \Sigma, \delta)$ 
  - one tape: contains infinitely many cells
    - Each cell can store an alphabet
  - A moving head pointing at a cell of the tape
  - $\Sigma$ : set of alphabets
  - Q: set of states, each state specifying "the current step"

 $0 \rightarrow 1$ 

q<sub>acc</sub>

1

1

0

 $0 \rightarrow 1$ ,

1, R

 $q_2$ 

 $q_{\rm rej}$ 

1

0

0

0

0

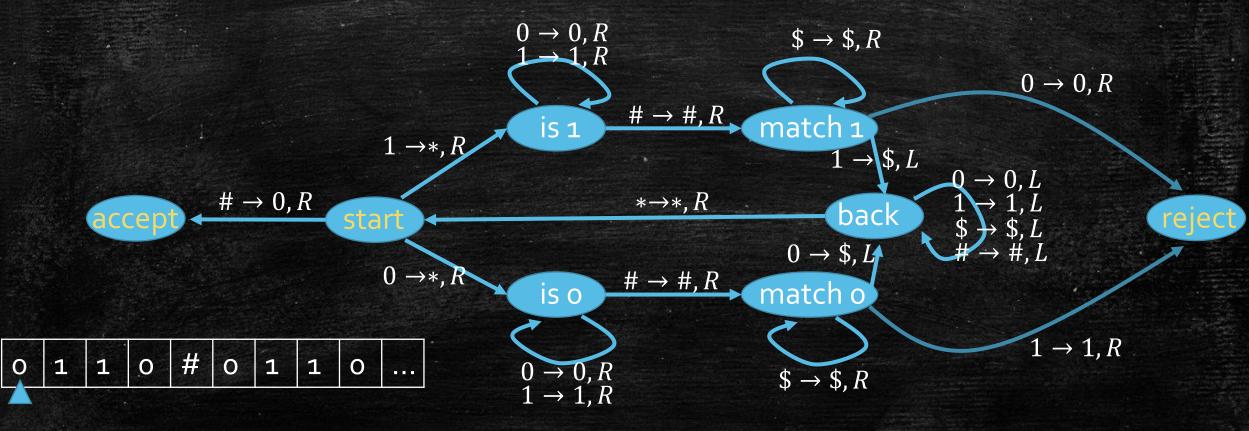
- Transition function  $\delta: Q \times \Sigma \to Q \times \Sigma \times \{L, R\}$ 
  - instructions on how to move to the next step
  - Input: current state, current alphabet the head is reading
  - Output: next state, new alphabet written on the current position of the head, move to left (L) or right (R) by one cell

#### **Turing Machine: Start and Terminate**

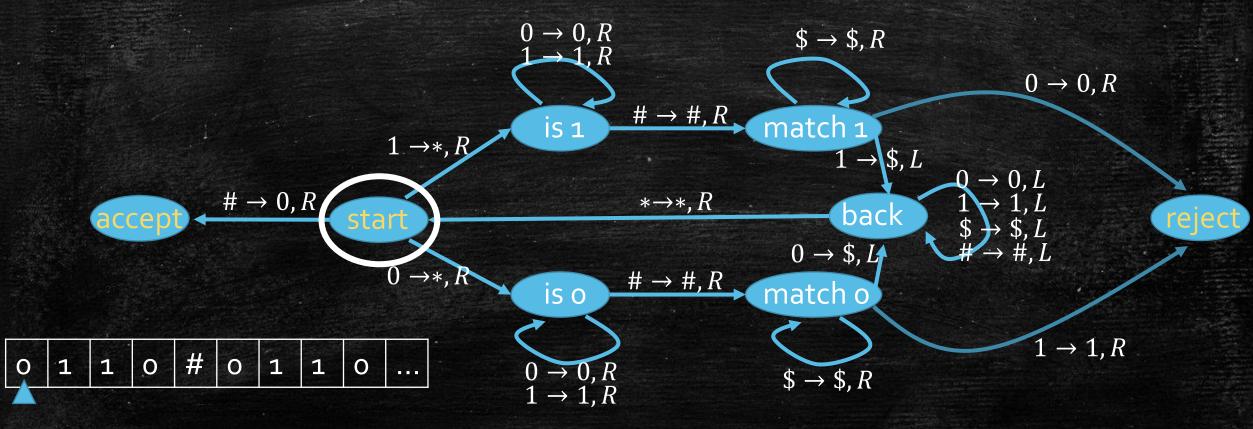
#### Start:

- At a special state called starting state:  $q_{\text{start}} \in Q$
- Input is loaded to the tape
- Moving Head is pointing at the first cell
- Terminate:
  - Two special state called halting states:  $q_{acc}$  and  $q_{rej}$
  - TM terminates when reaching a halting state
  - TM accepts a string if  $q_{acc}$  is reached
  - TM rejects a string if  $q_{rej}$  is reached
  - TM's output is the content on the tape when TM terminates

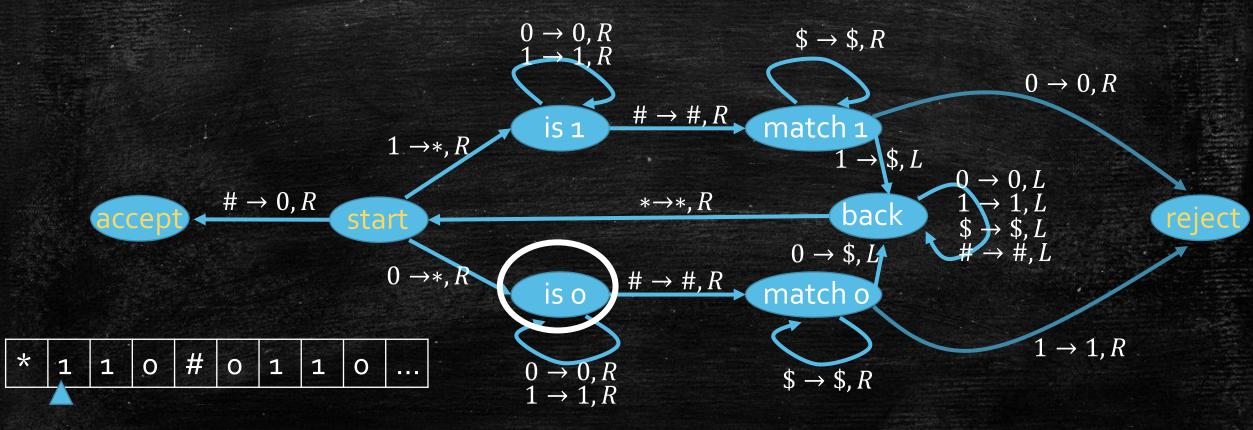
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



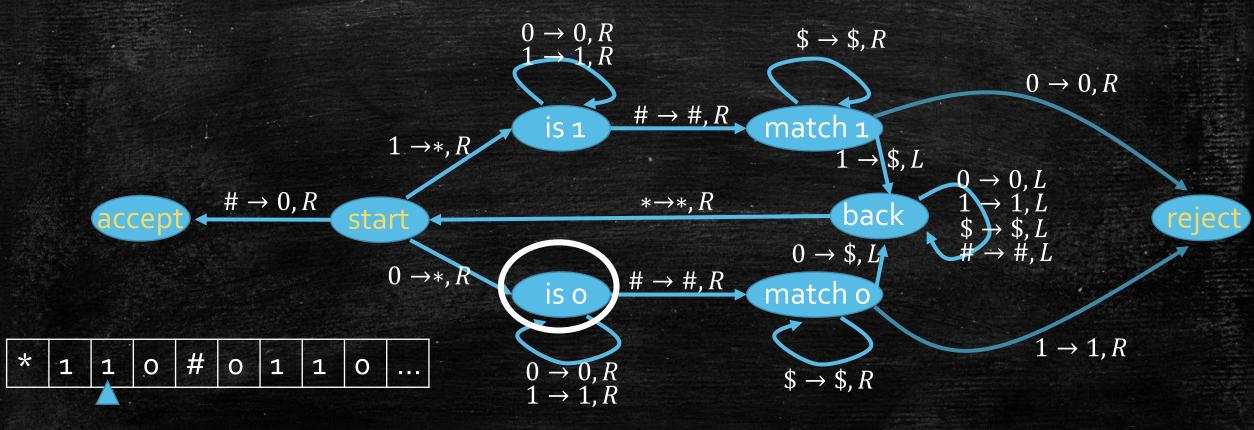
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



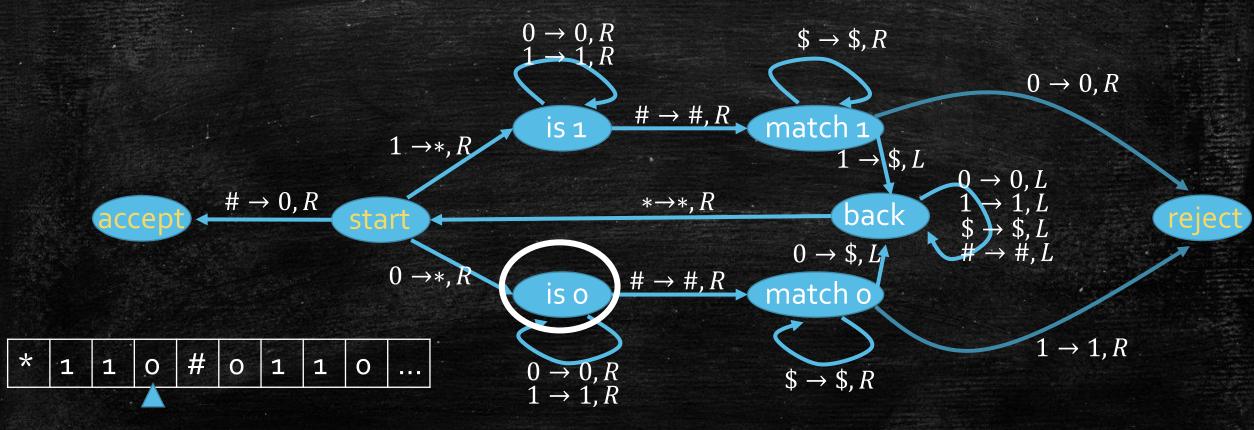
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



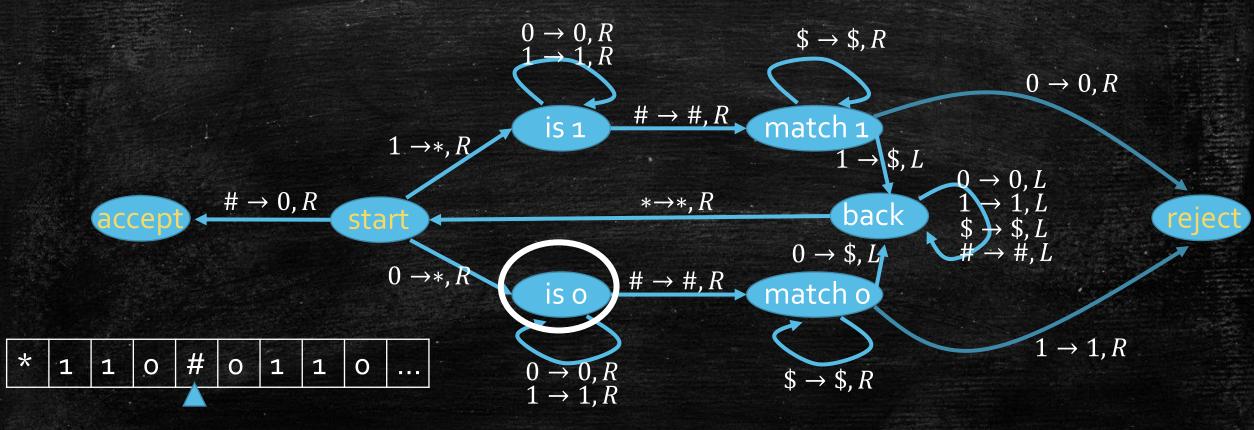
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



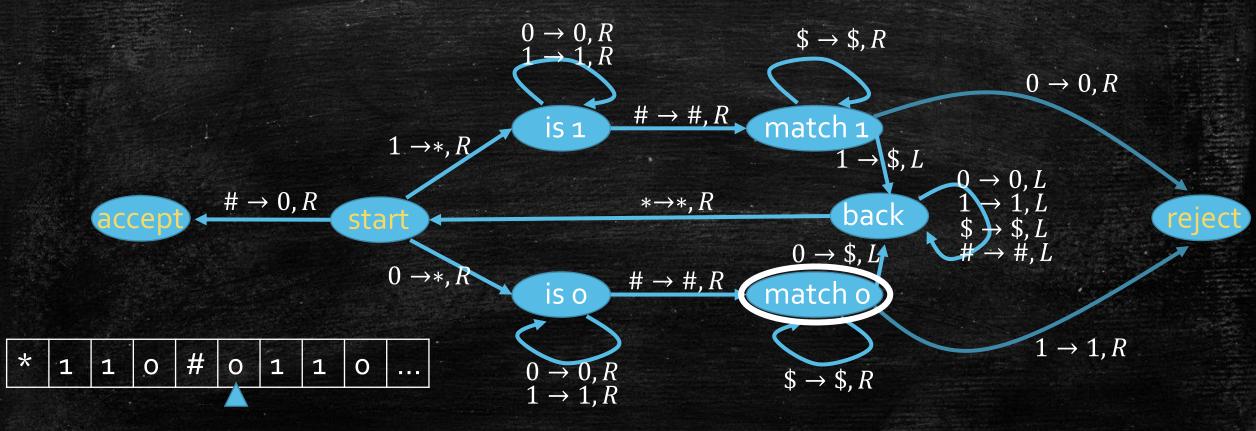
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



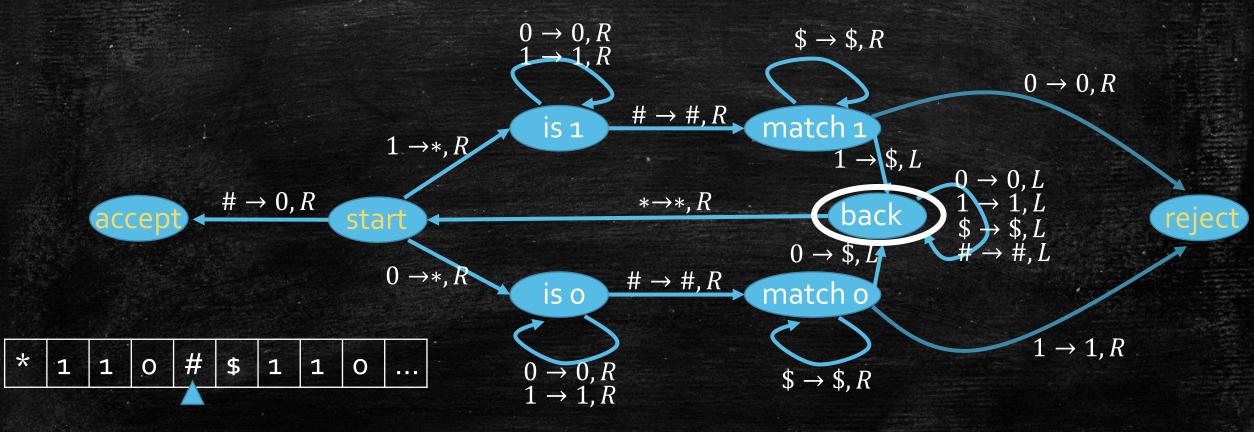
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



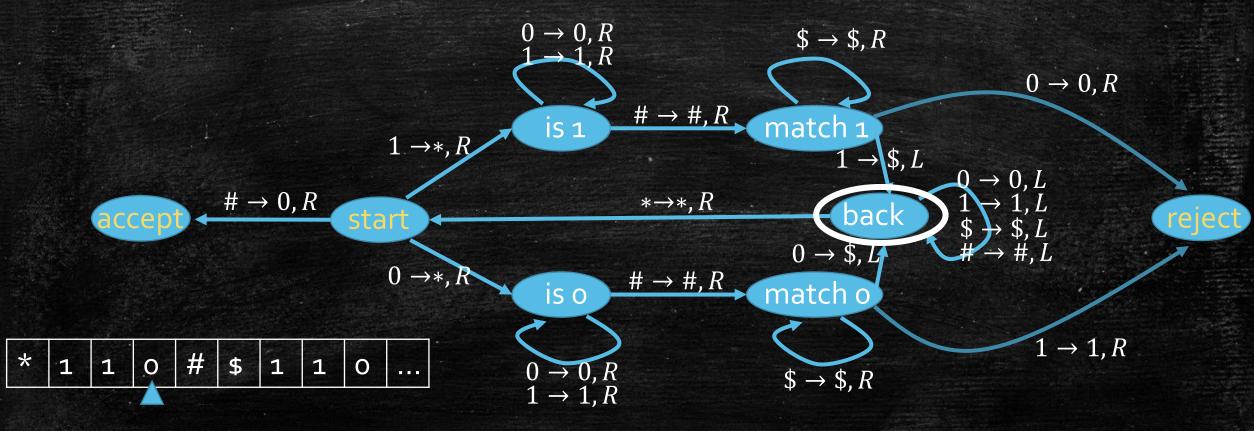
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



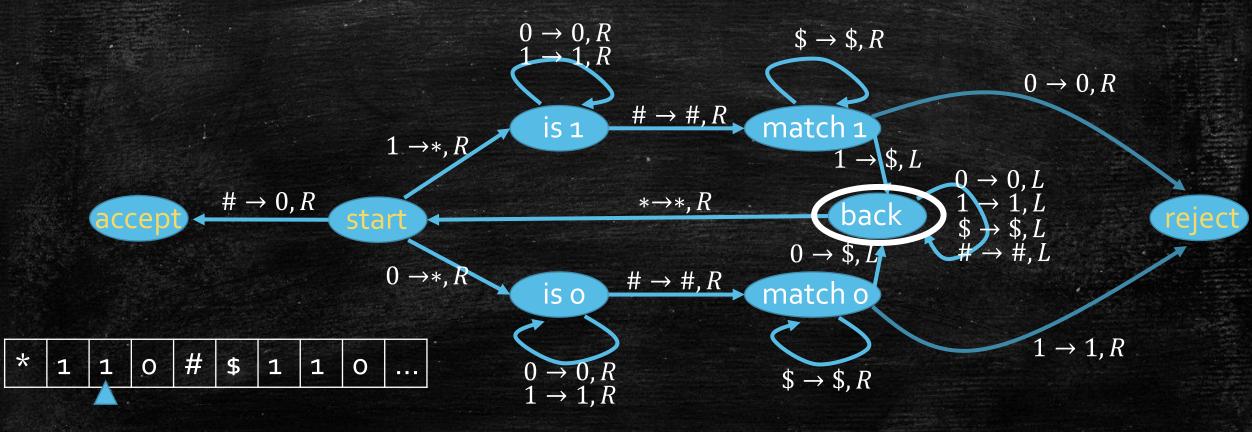
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



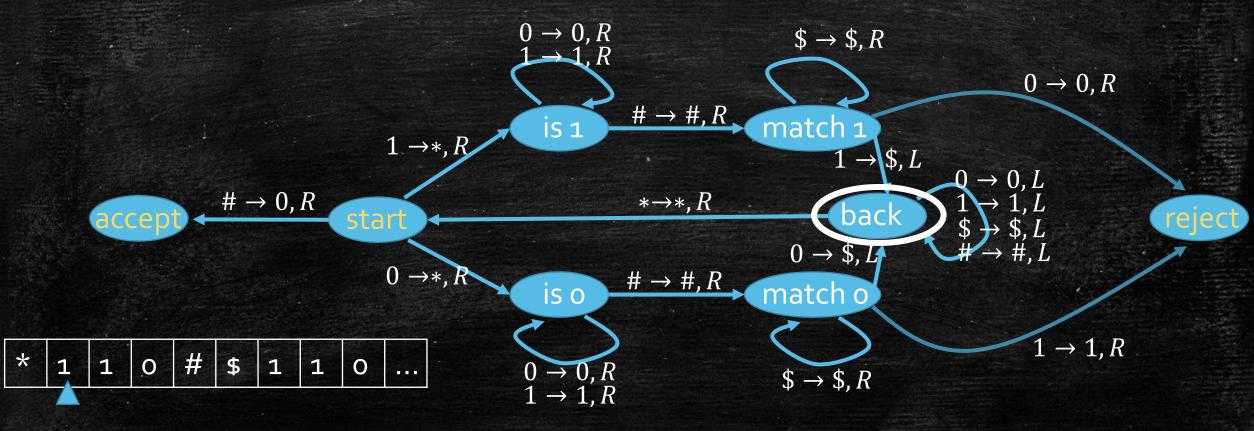
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



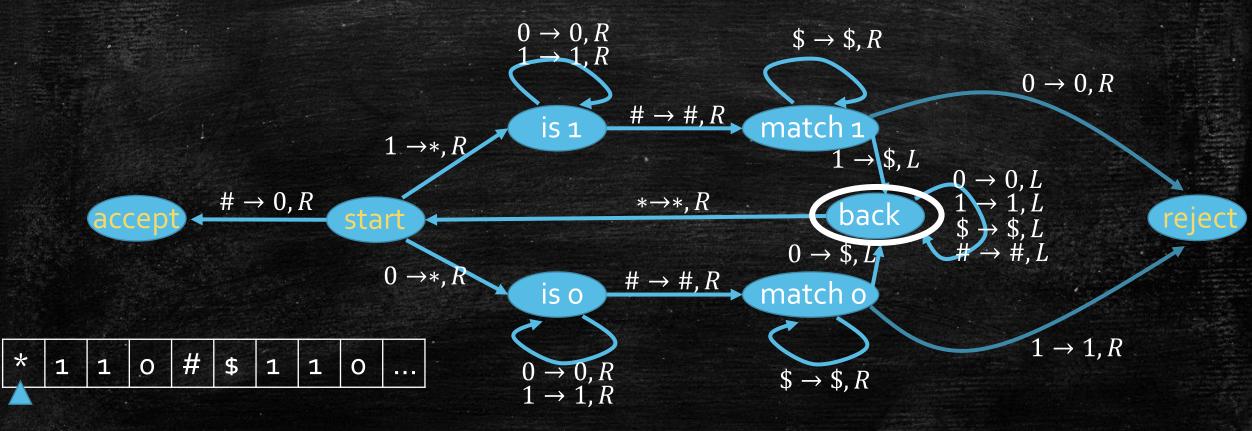
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



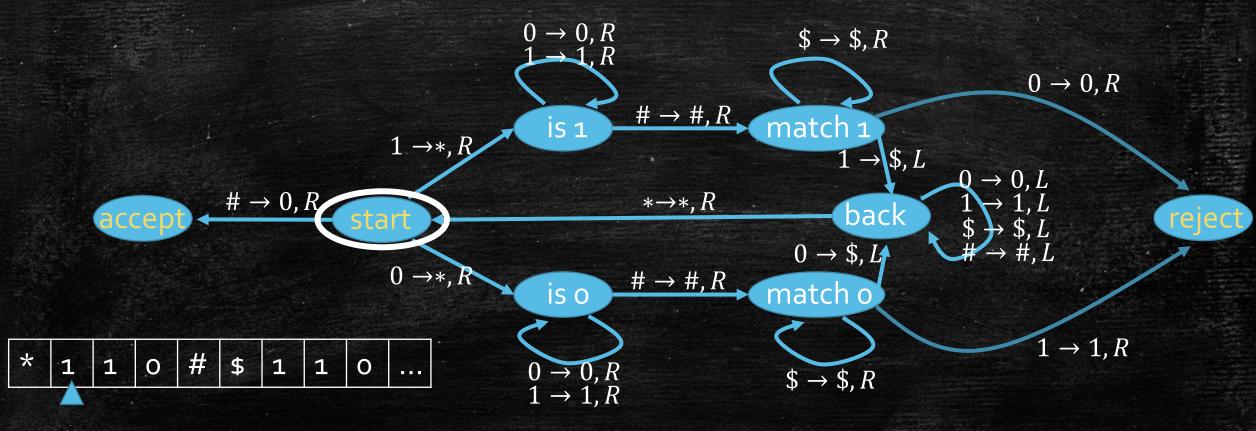
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



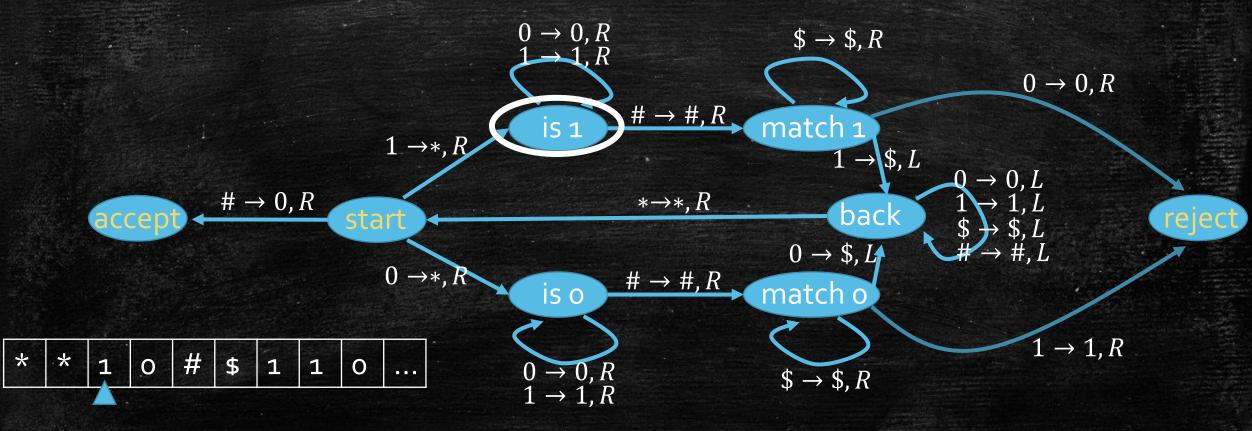
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



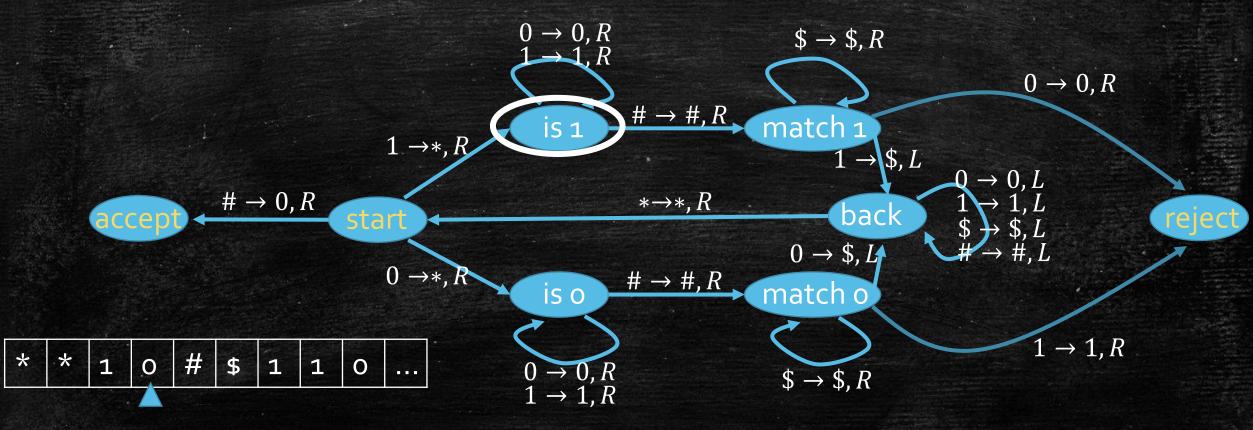
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



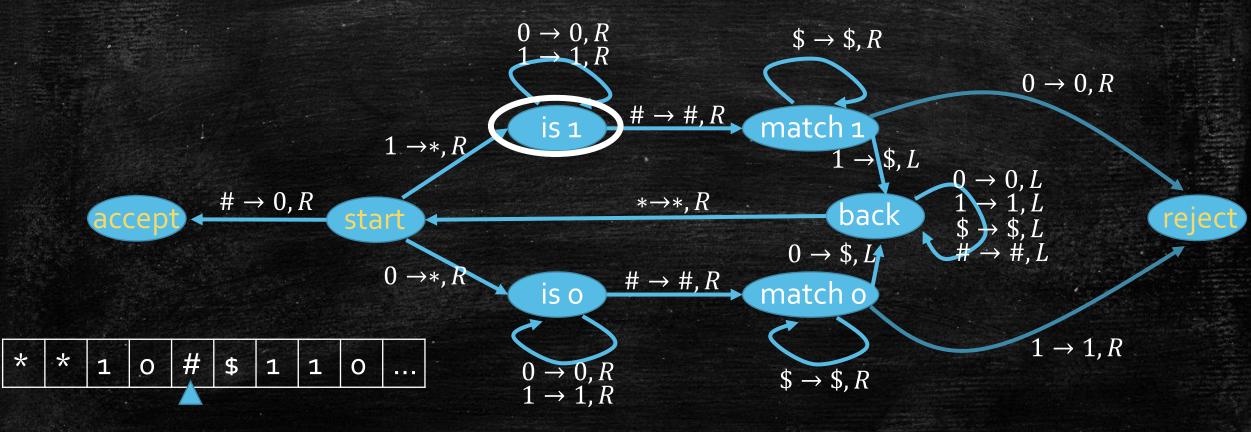
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



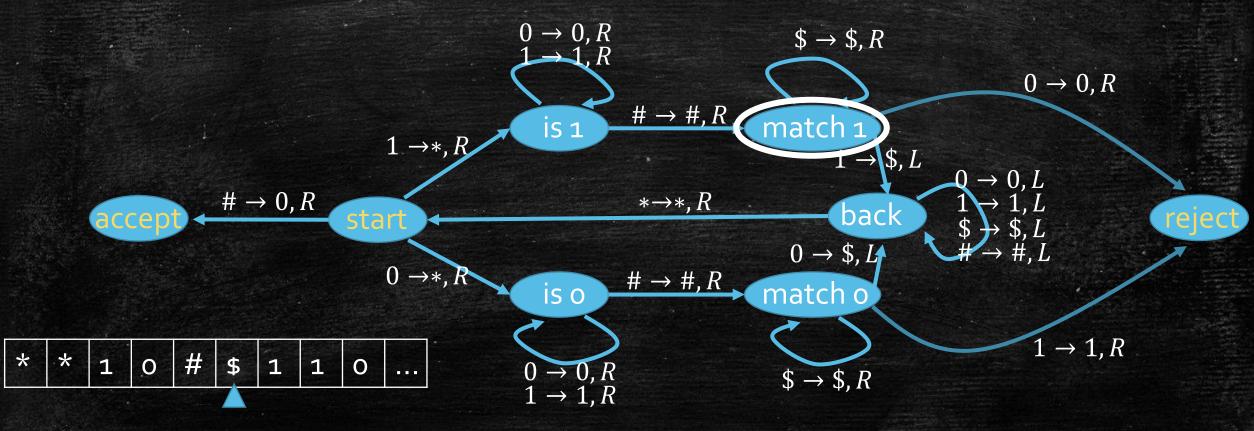
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



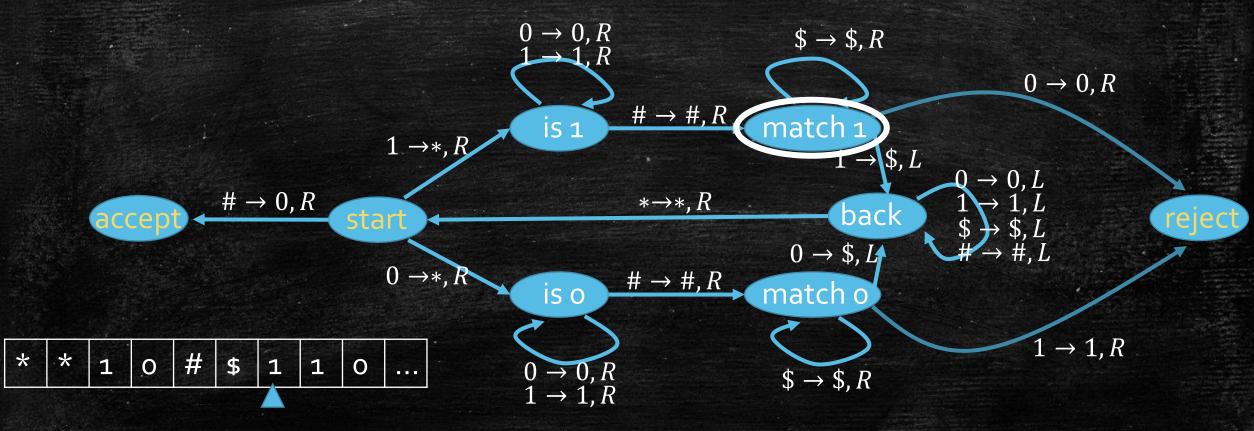
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



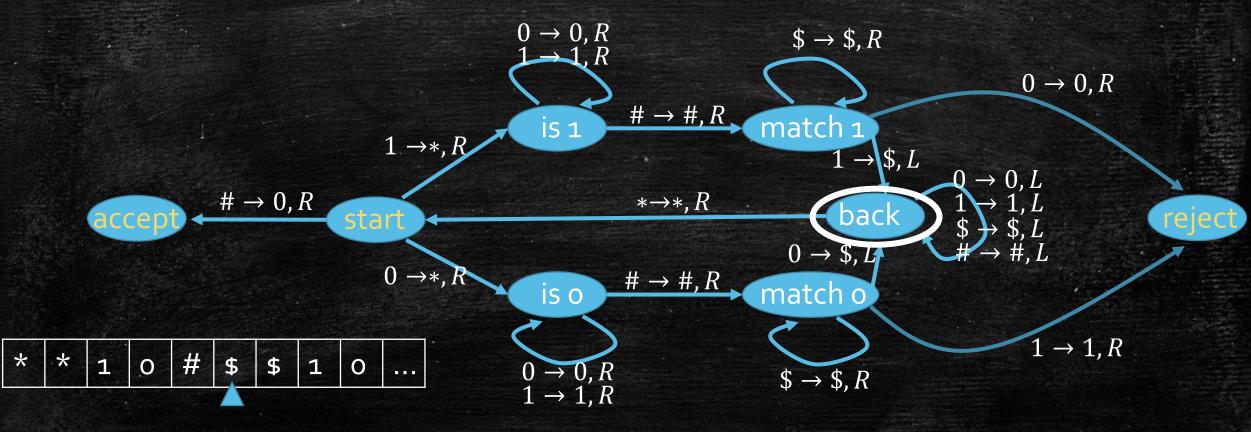
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



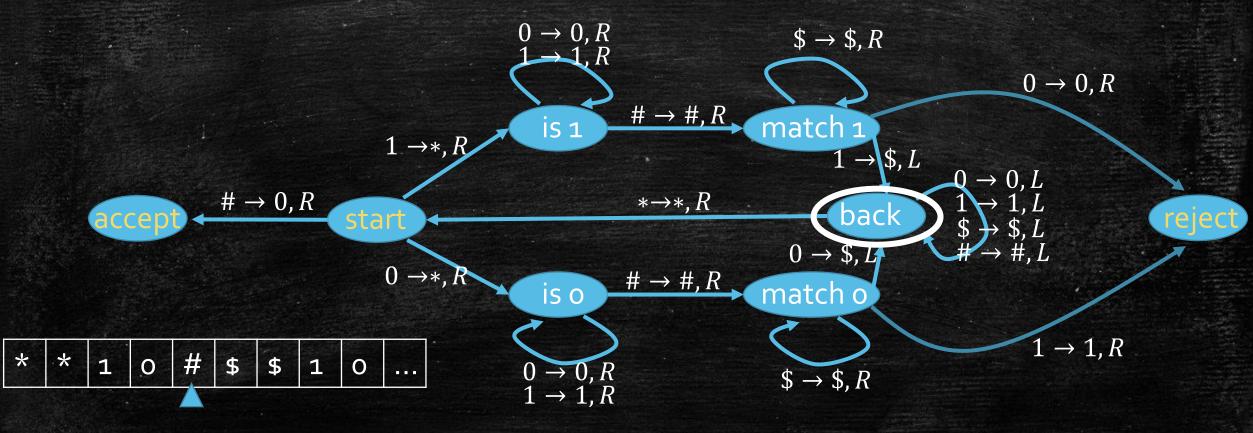
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



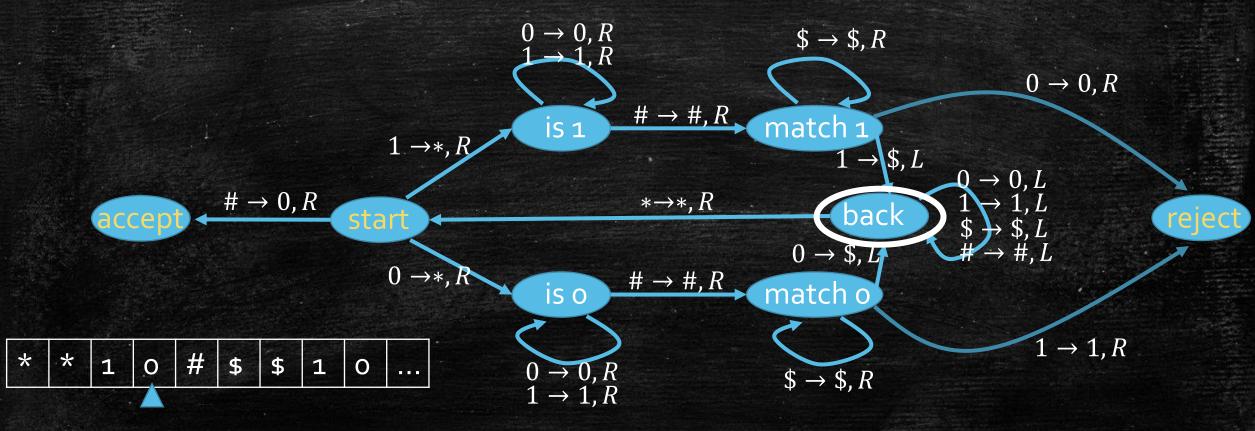
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



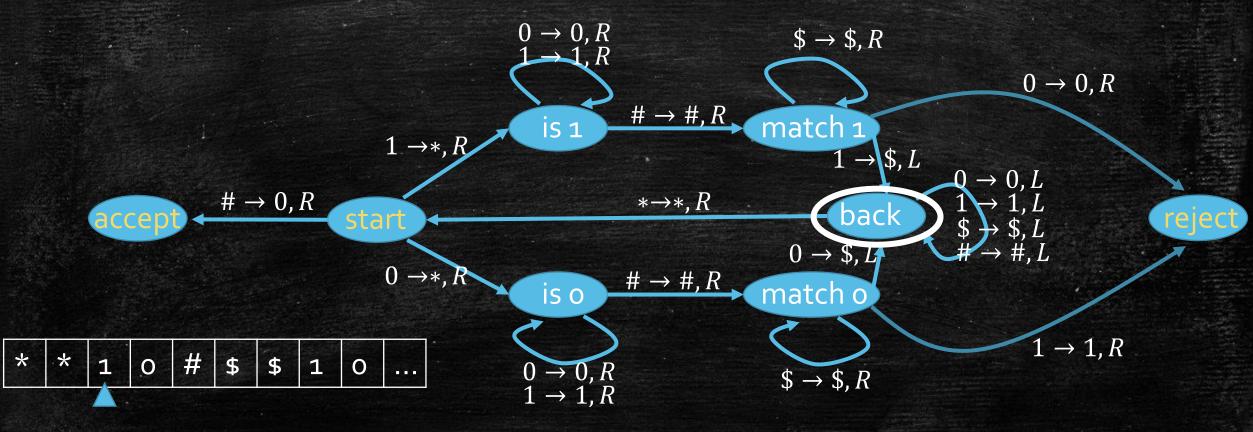
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



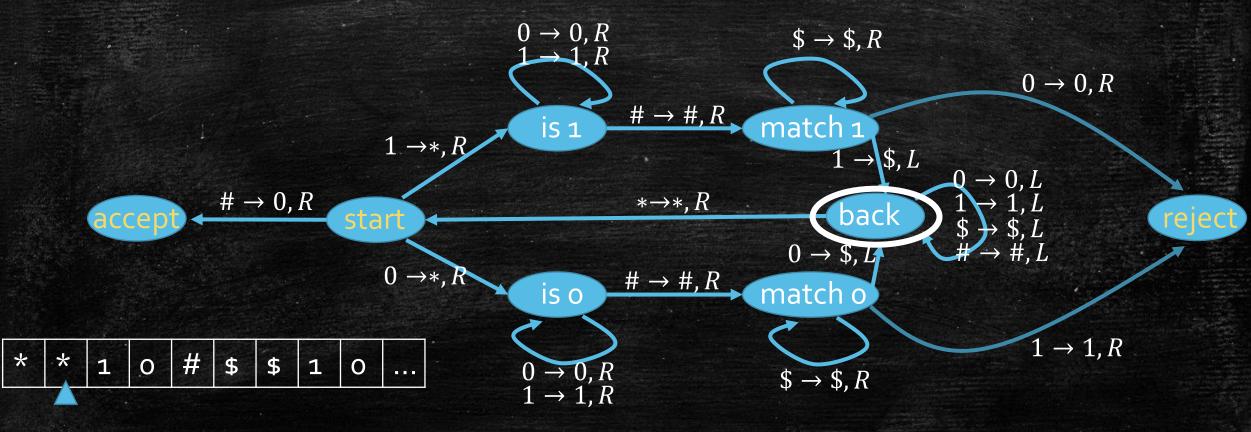
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



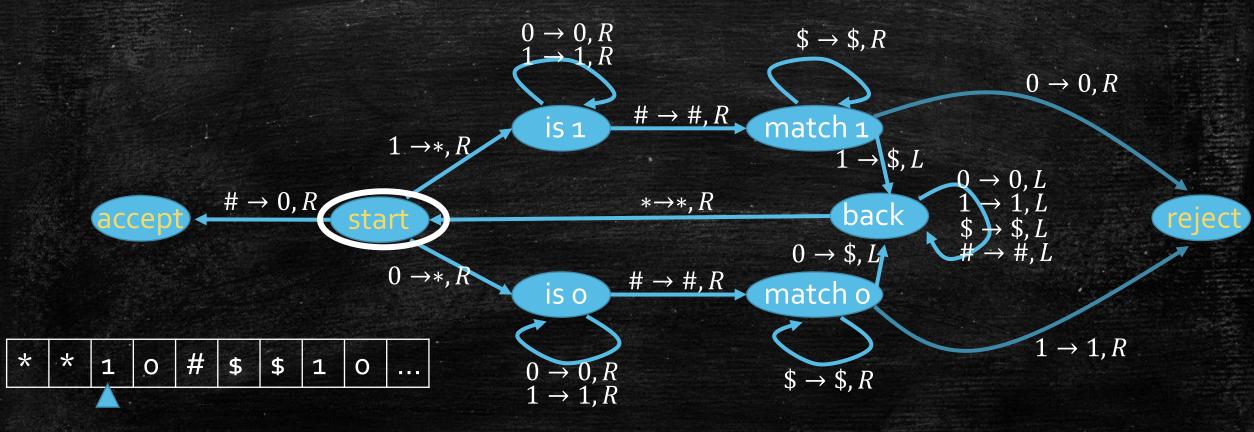
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



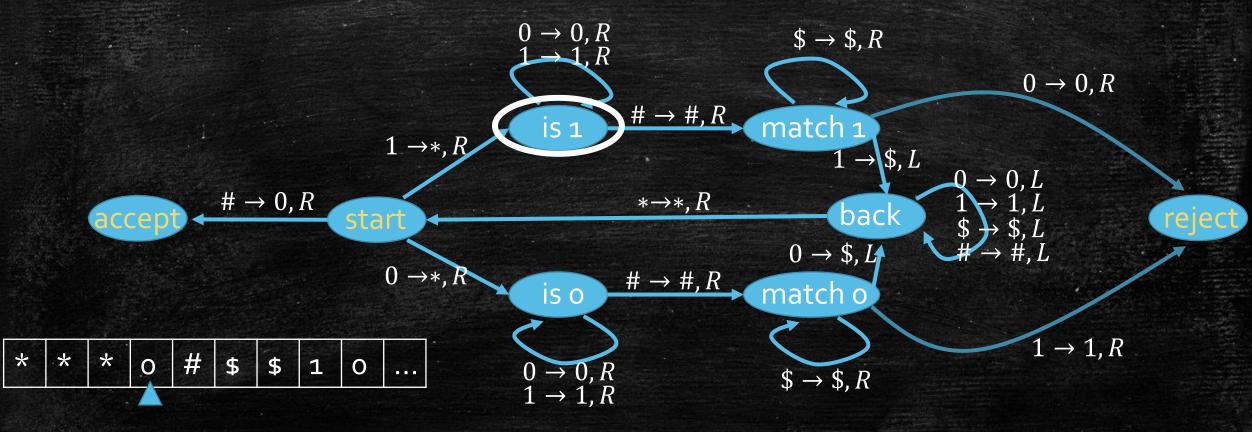
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



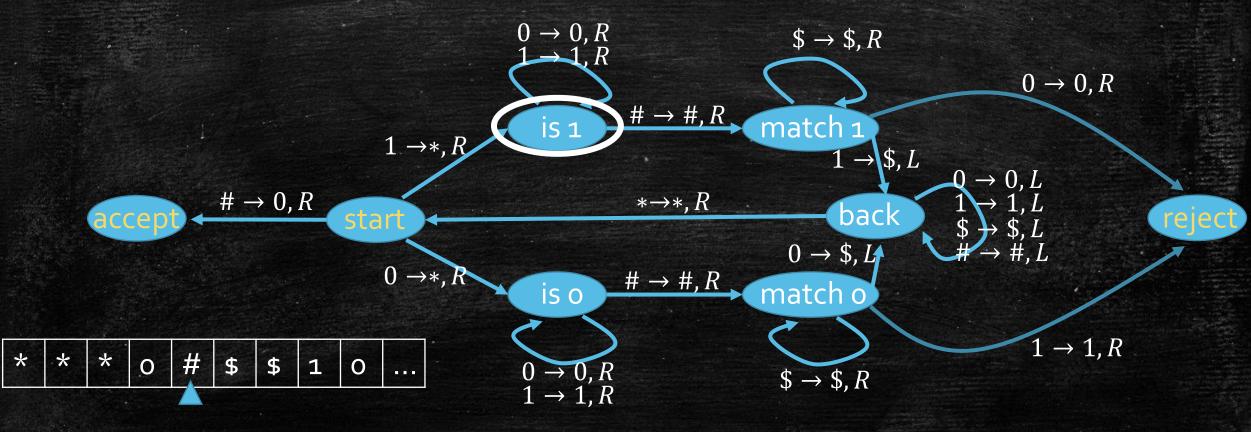
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



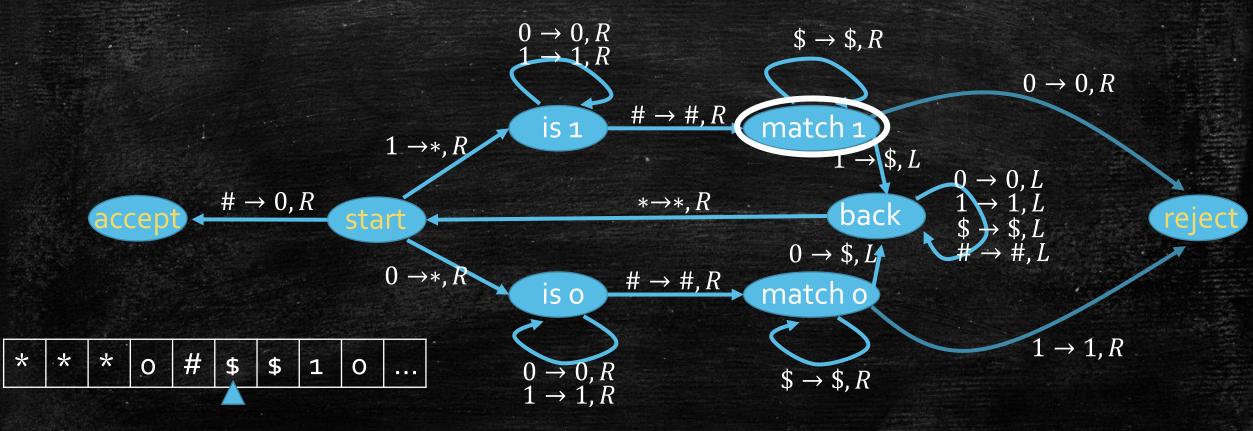
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



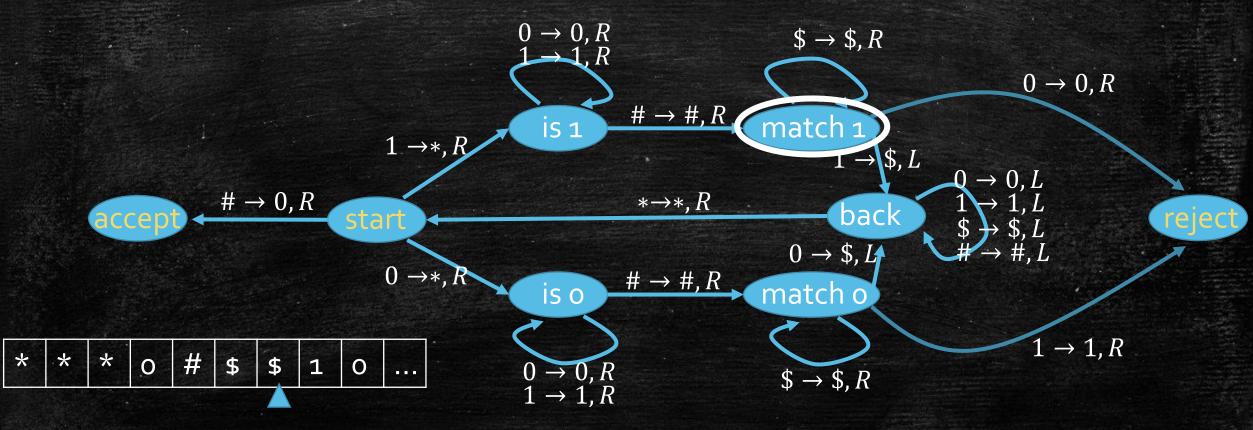
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



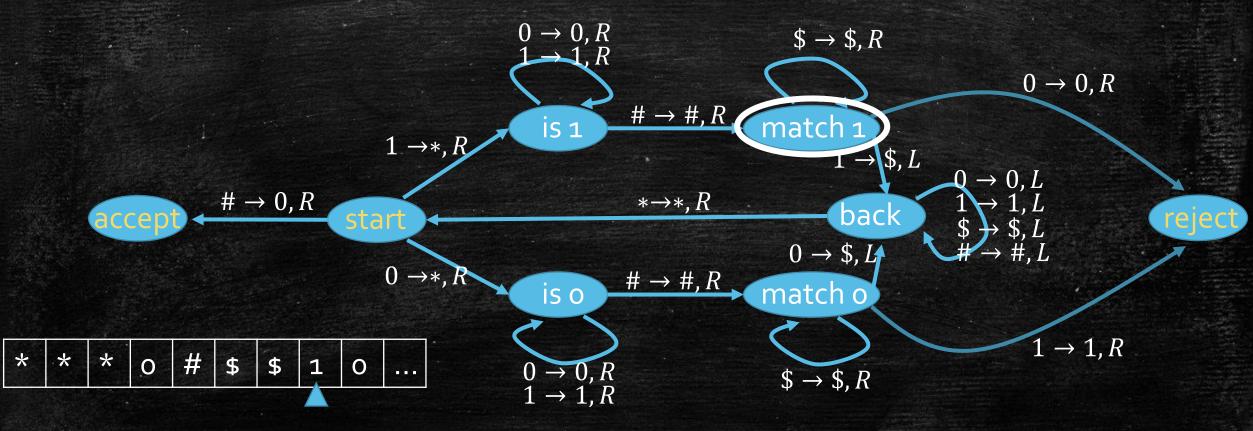
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



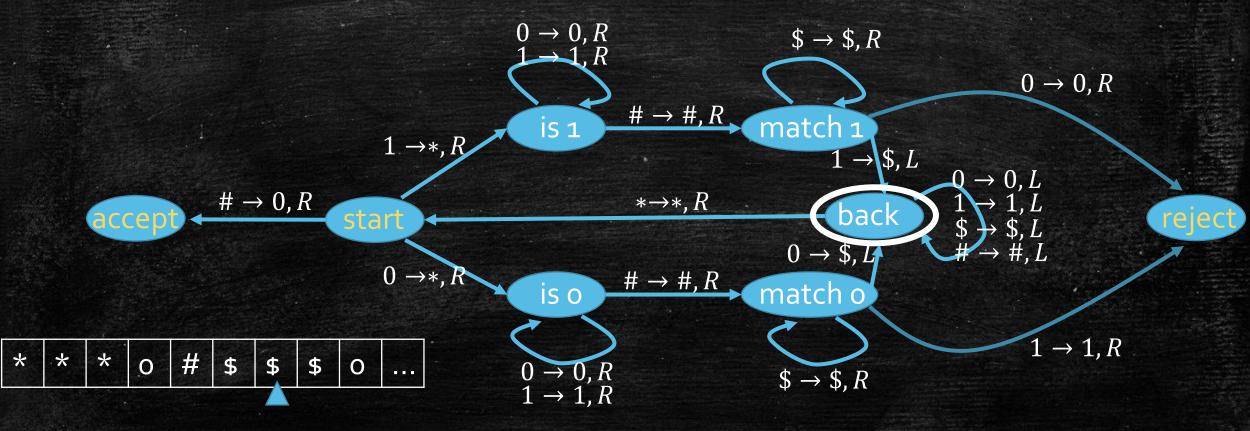
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



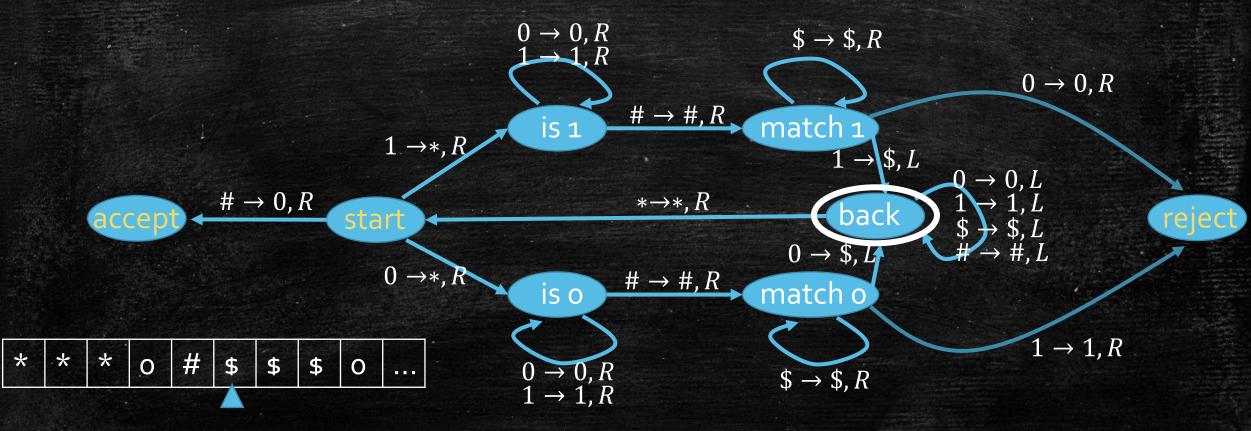
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



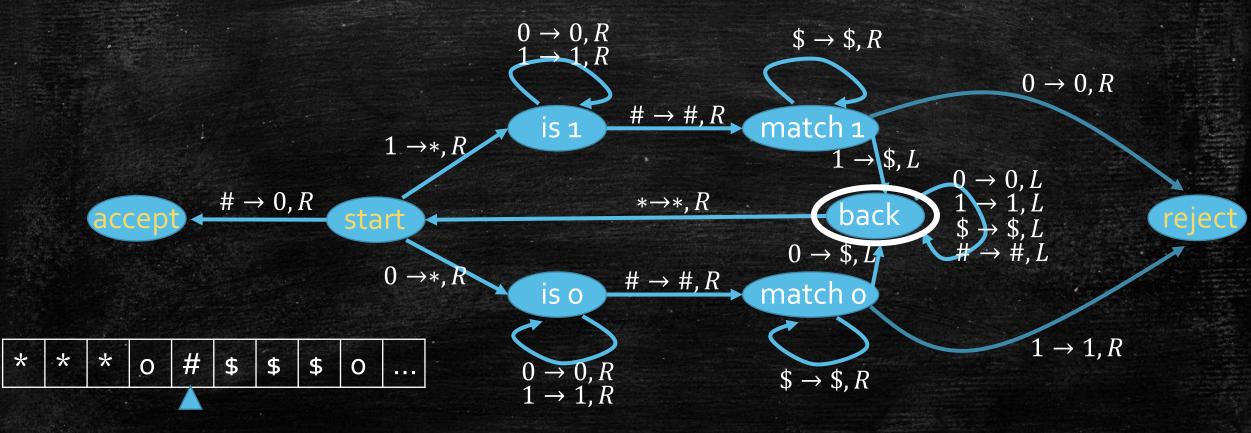
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



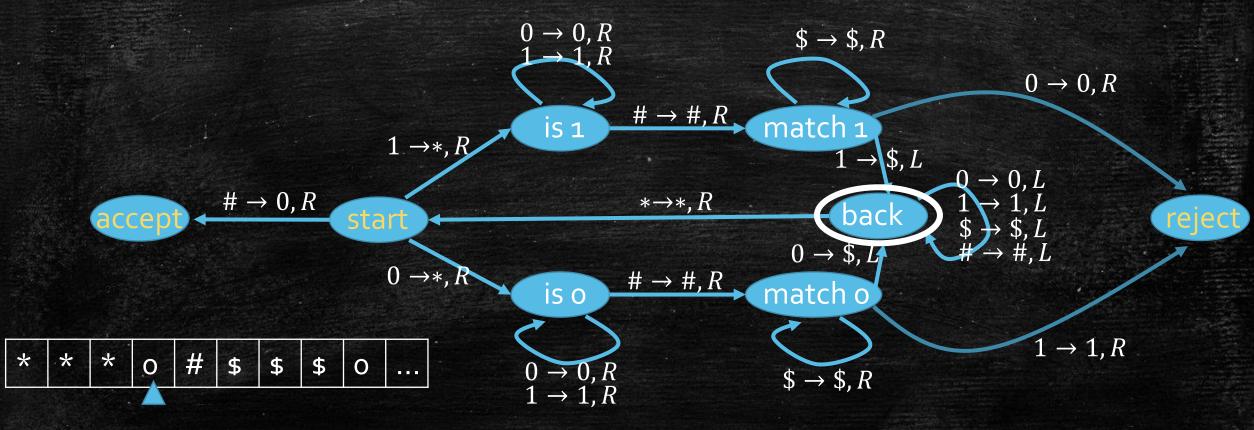
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



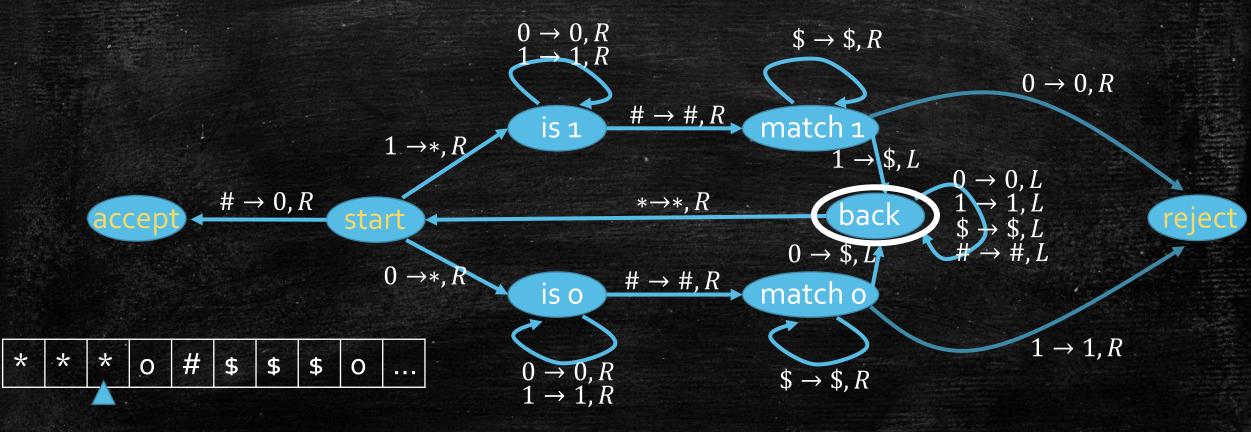
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



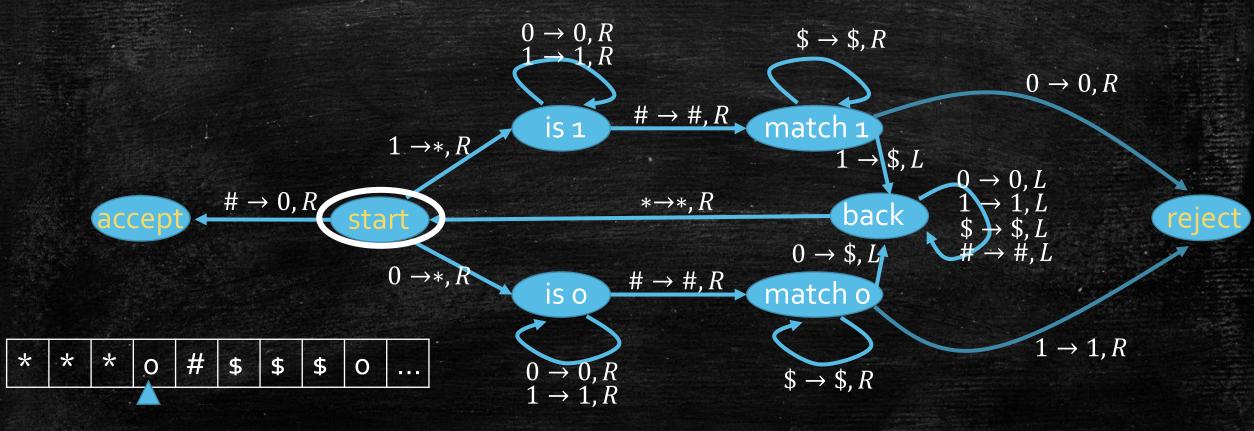
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



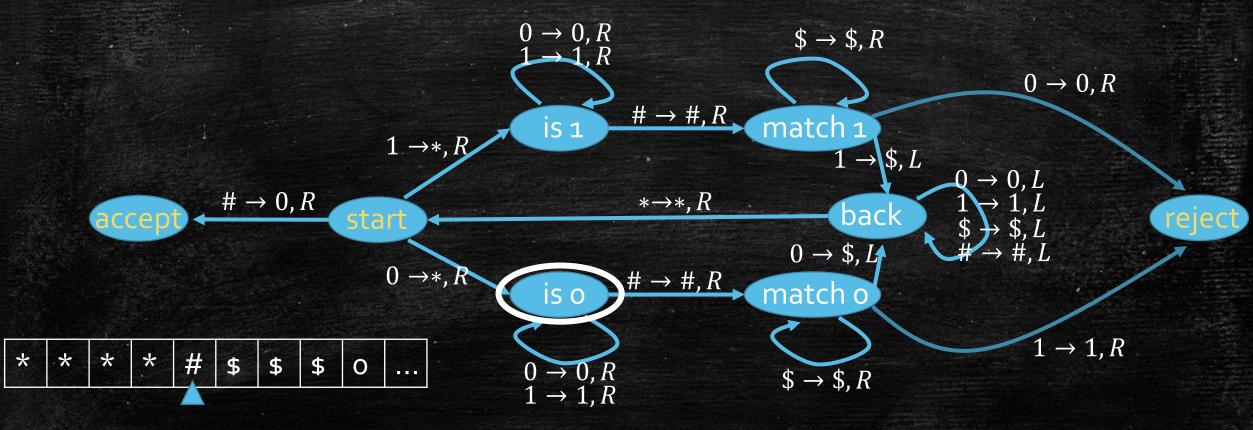
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



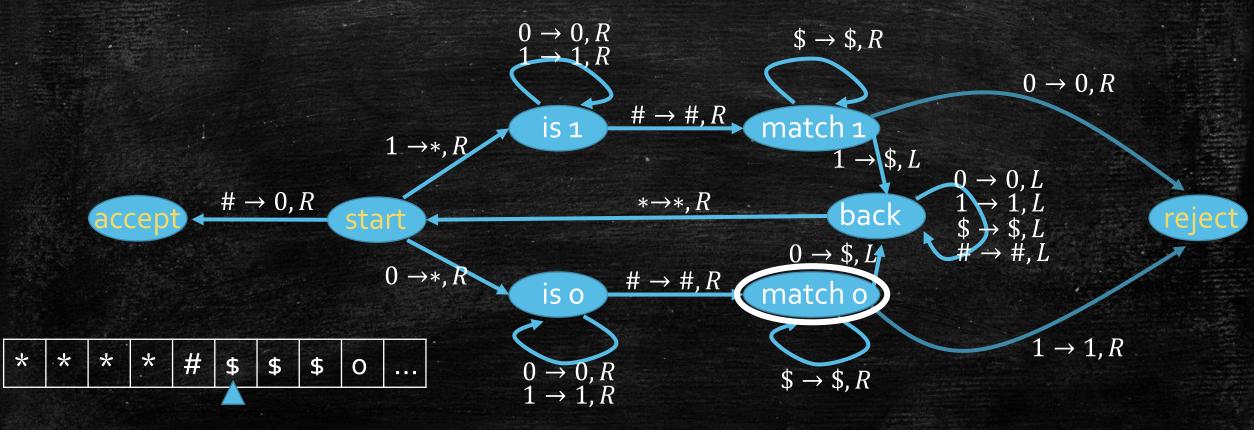
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



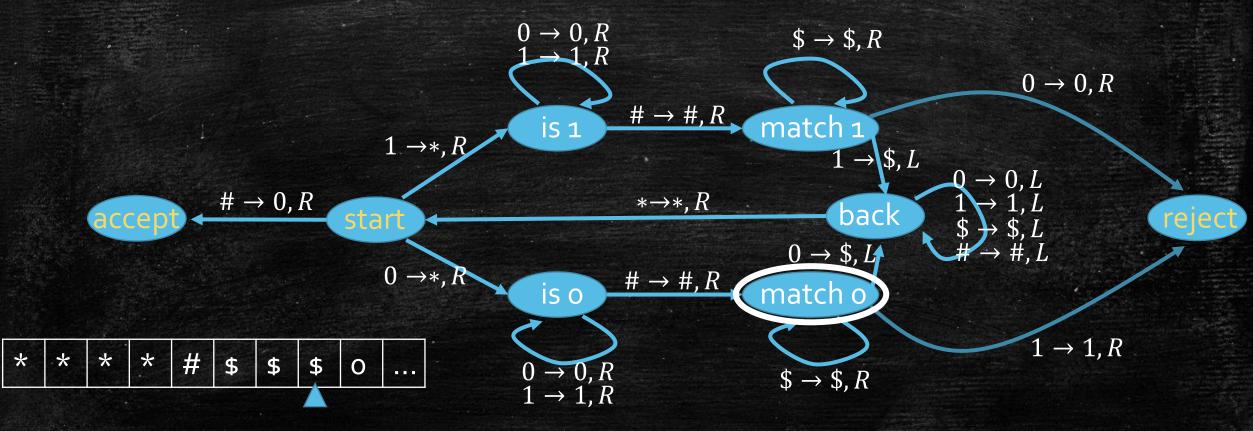
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



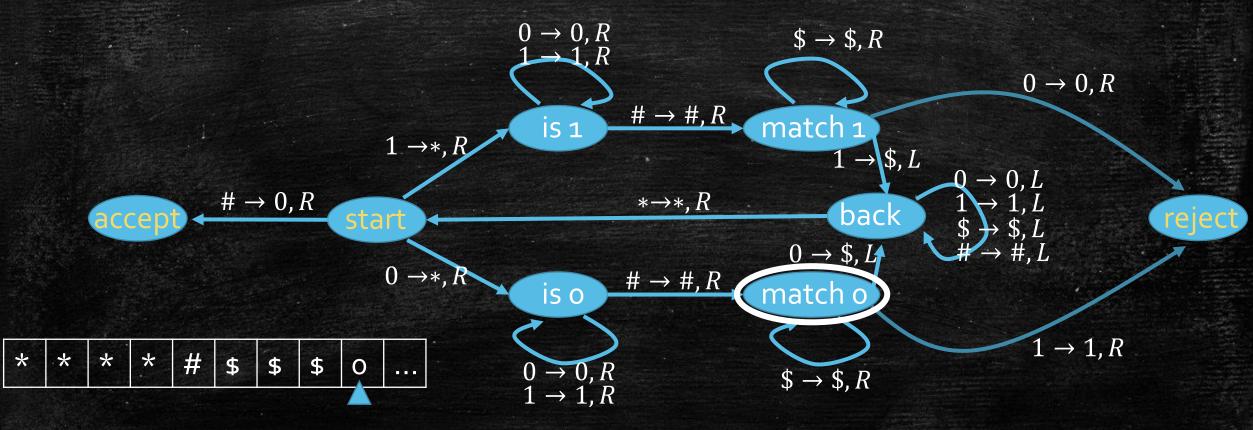
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



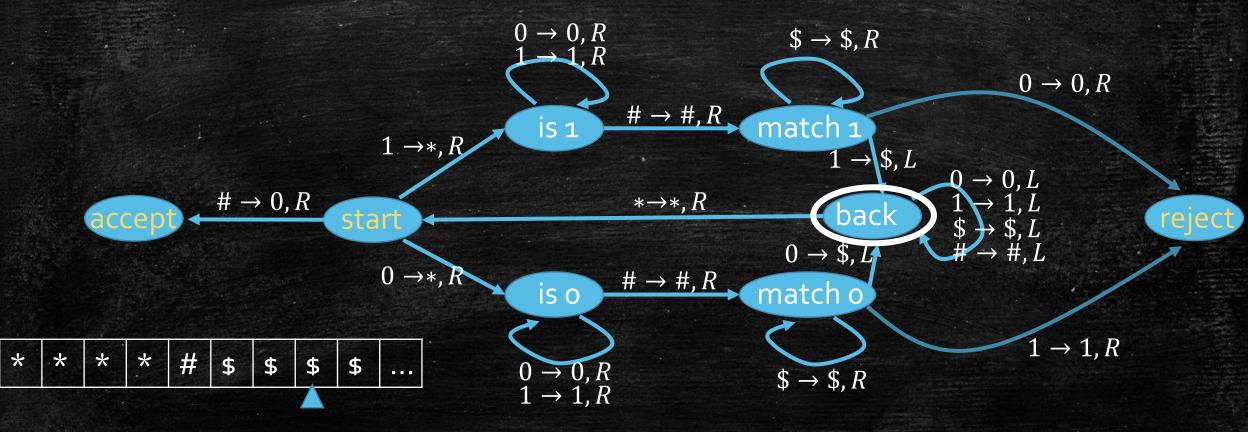
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



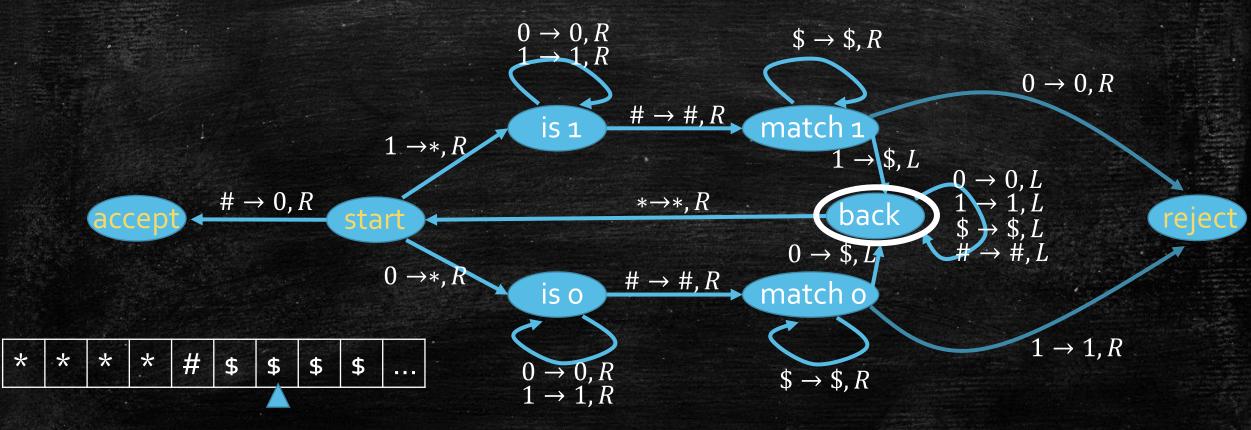
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



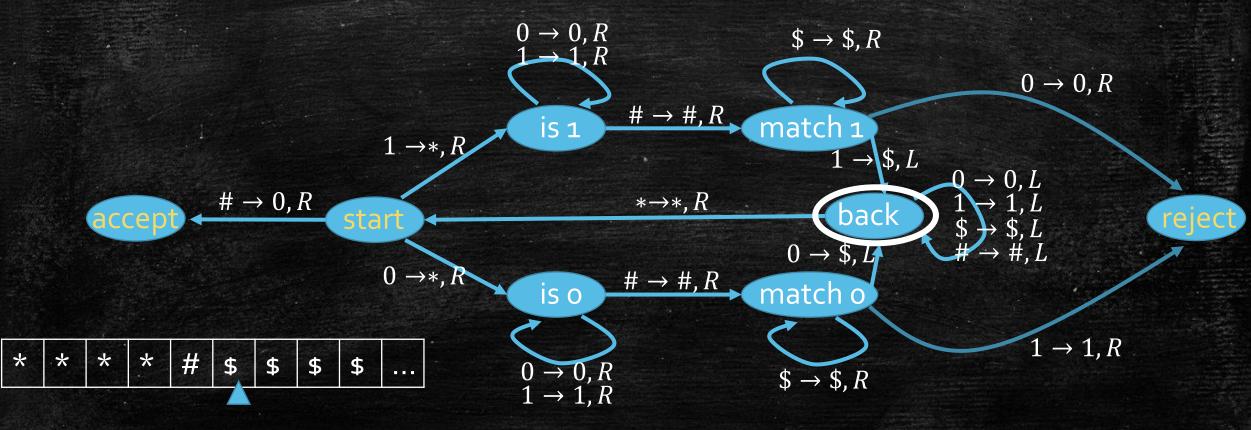
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



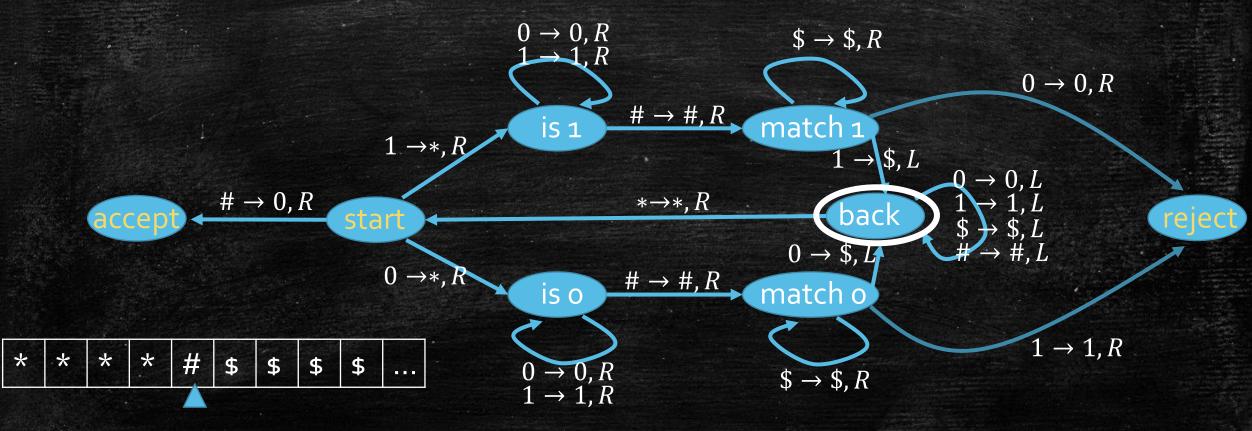
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



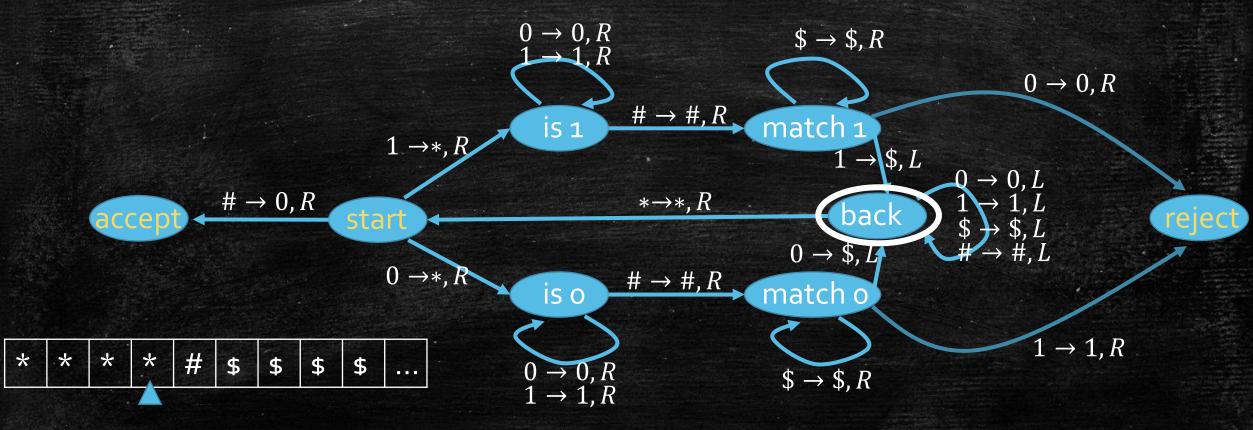
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



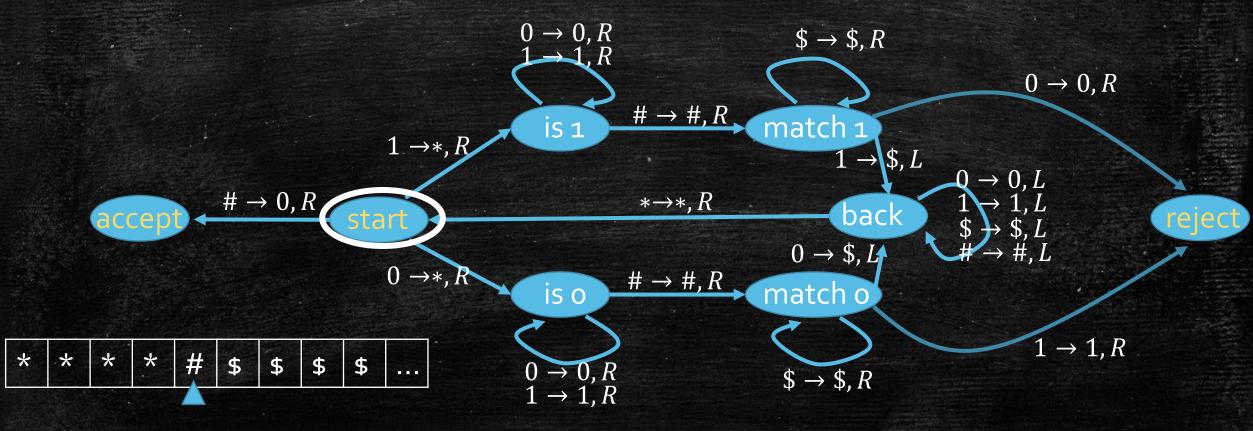
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



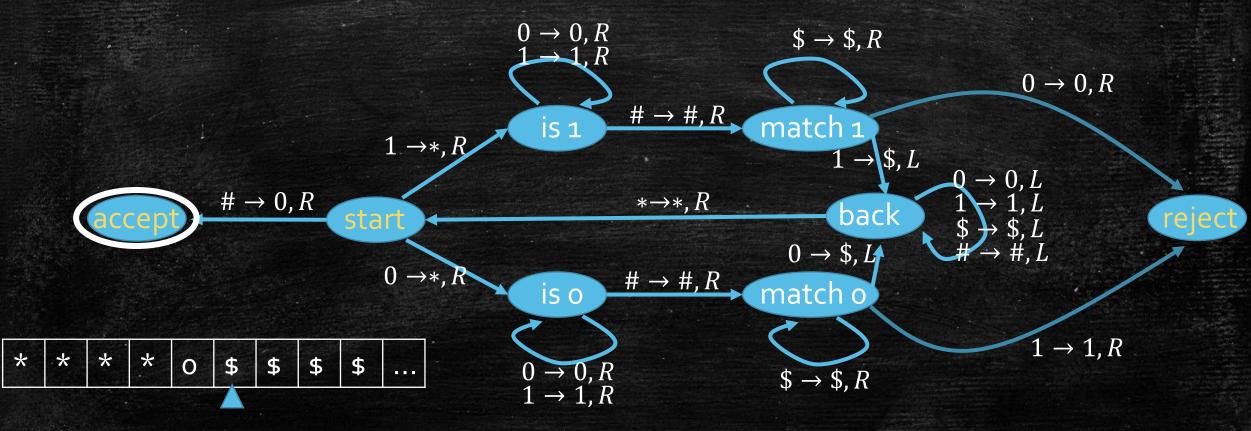
- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



- Input: a string of format x # y where  $x, y \in \{0, 1\}^n$  and  $\# \in \Sigma$  is a special separating alphabet
- Decide if the binary strings x and y is identical



# **Turing Machine**

- If you do not appreciate a Turing machine, in this course, just treat it as a computer program or an algorithm (that outputs "accept" or "reject" as well as an output string)...
- Turing machine has the same power as a computer program or an algorithm, in the following sense:
- Whatever can be computed in polynomial time by a computer program or an algorithm can also be computed in polynomial time by a Turing machine.

#### Polynomial Time TM

 Definition. A Turing Machine A is a polynomial time TM if there exists a polynomial p such that A always terminates within p(|x|) steps on input x.

## The Complexity Class **P**

- A decision problem  $f: \Sigma^* \to \{0, 1\}$  is in **P**, if there exists a polynomial time TM  $\mathcal{A}$  such that
  - $\mathcal{A}$  accepts x if f(x) = 1
  - $\mathcal{A} \text{ rejects } x \text{ if } f(x) = 0$
- Problems in P are those "easy" problems that can be solved in polynomial time.

#### Examples for Problems in **P**

- [PATH] Given a graph G = (V, E) and  $s, t \in V$ , decide if there is a path from s to t.
  - Build a TM that runs BFS or DFS at s; accept if t is reached; reject if the search terminates without reaching t.
  - PATH ∈ P
- [k-FLOW] Given a directed graph G = (V, E),  $s, t \in V$ , a capacity function  $c: E \to \mathbb{R}^+$ , and  $k \in \mathbb{R}^+$ , decide if there is a flow with value at least k.
  - Build a TM that implements Edmonds-Karp, Dinic's, or other algorithms. – k-FLOW  $\in \mathbf{P}$
- [PRIME] Given  $k \in \mathbb{Z}^+$  encoded in binary string, decide if k is a prime number.
  - [Agrawal, Kayal & Saxena, 2004] PRIME  $\in \mathbf{P}$

# The Complexity Class NP

- A commonality with SAT, VertexCover, IndependentSet, SubsetSum, HamiltonianPath:
  - For a yes instance, it can be easily verified if a hint is given.
- SAT: a hint can be a valid assignment to the variables
- VertexCover/IndependentSet: a hint can be a valid set of k vertices
- SubsetSum: a hint can be a sub-collection with sum k
- HamiltonianPath: a hint can be an encoding of a valid path.

# The Complexity Class NP

 NP: Problems whose yes instances can be efficiently verified if hints are given.

- Formal Definition. A decision problem f: Σ\* → {0,1} is in NP if there exist a polynomial q and a polynomial time TM A such that
  - If x is a yes instance (f(x) = 1), there exists  $y \in \Sigma^*$  with  $|y| \le q(|x|)$  such that  $\mathcal{A}$  accepts the input (x, y)
  - If x is a no instance (f(x) = 0), for all  $y \in \Sigma^*$  with  $|y| \le q(|x|)$  such that  $\mathcal{A}$  rejects the input (x, y)
- The string *y* is called a certificate.
- SAT, VertexCover, IndependentSet, SubsetSum, HamiltonianPath are all in NP.

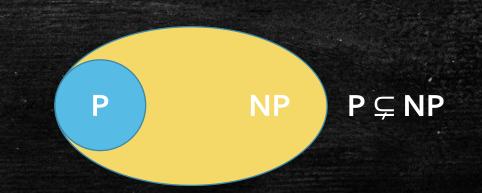
## $\mathbf{P} \subseteq \mathbf{NP}$

- Proof. If a decision problem  $f: \Sigma^* \rightarrow \{0,1\}$  is in **P**, we will show it is in **NP**.
- By definition of **P**, there exists a polynomial time TM  $\mathcal{A}$  such that  $\mathcal{A}$  accepts x if and only if f(x) = 1.
- Let A' be a TM such that it outputs A(x) on input (x, y).
   That is, A' implements A and ignore y.
- If f(x) = 1, there exists y, say,  $y = \emptyset$ , such that  $\mathcal{A}'$  accepts (x, y).
- If f(x) = 0, for all y,  $\mathcal{A}'$  rejects (x, y).
- Thus,  $f \in \mathbf{NP}$ .

#### Central Open Problem: P vs. NP

- Central Open Problem: Does P equals NP?
- Most research believes no...
  - If P = NP, we do not need the certificate: we can just "guess" it correctly and efficiently... This doesn't seem possible.
  - Given an exam question, do you believe solving the question is much harder than checking if someone's solution to the question is correct? P = NP would suggest they are equally easy...





## **NP** Problems

We have seen many NP problems not known in P

- SAT
- VertexCover
- IndependentSet
- SubsetSum
- HamiltonianPath

Are some of these problems "more difficult" than the others?

#### 3SAT

- A 3-CNF formula is a CNF formula where each clause contains at most three literals:
  - a 3-CNF formula:  $(x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2)$
  - Not a 3-CNF formula:  $(x_1 \lor x_3 \lor \neg x_4) \land (x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4)$
- [3SAT] Given a 3-CNF formula, decide if there is a value assignment to the variables to make the formula true.
- Clearly, 3SAT is at most as hard as SAT, as it is a special case.
- We will prove 3SAT is also at least as hard as SAT.
  - so that SAT and 3SAT are "equally hard"

- <u>Idea</u>: given a CNF formula φ, construct a 3-CNF formula φ' such that φ is a yes SAT instance if and only if φ' is a yes 3SAT instance.
- If converting φ to φ' can be done in polynomial time, being able to solve 3SAT in polynomial time implies being able to solve SAT in polynomial time.

- That is, 3SAT is weakly harder than SAT.

- We can "break" a long clause in φ to shorter clauses by introducing new variables:
- $(x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4) = (x_1 \lor x_2 \lor y_1) \land (\neg y_1 \lor \neg x_3 \lor \neg x_4)$ 
  - For example, if  $x_2 = \text{true}$  is the one making LHS true, we can set  $x_2 = \text{true}$ ,  $y_1 = \text{false}$  to make RHS true.
  - If  $x_1 = x_2$  = false and  $x_3 = x_4$  = true so that LHS is false, at least one of the two clauses on RHS is false.
- We can "break" a even longer clause to clauses with at most three literals:
- $(x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4 \lor x_5 \lor x_6) = (x_1 \lor x_2 \lor y_1) \land (\neg y_1 \lor \neg x_3 \lor y_2) \land (\neg y_2 \lor \neg x_4 \lor y_3) \land (\neg y_3 \lor x_5 \lor x_6)$ 
  - For example, if  $x_4 =$ false is the one making LHS true, we can set  $y_3 =$ false,  $y_2 =$ true,  $y_1 =$ true to guarantee RHS is true.

#### In general:

true

- $(\ell_1 \vee \cdots \vee \ell_k) = (\ell_1 \vee \ell_2 \vee y_1) \land (\neg y_1 \vee \ell_3 \vee y_2) \land \cdots \land (\neg y_{k-2} \vee \ell_{k-1} \vee \ell_k)$
- If a literal  $\ell_i$  is true, we can make all RHS clauses true by properly setting  $y_i$ 's

true

 $(\ell_1 \vee \ell_2 \vee y_1) \wedge \cdots \wedge (\neg y_{i-3} \vee \ell_{i-1} \vee y_{i-2}) \wedge (\neg y_{i-2} \vee \ell_i \vee y_{i-1}) \wedge (\neg y_{i-1} \vee \ell_{i+1} \vee y_i) \wedge \cdots \wedge (\neg y_{k-2} \vee \ell_{k-1} \vee \ell_k)$ 

false

true

false

true

• If all of  $\ell_i$ 's are false, we cannot make all RHS clauses true:

true

- We have to set  $y_1 =$ true to make the first clause true

false

- After that, we have to make  $y_2 = true$  to make the second clause true
- We have to make  $y_{k-2} =$ true; however, this will make the last clause false

false

- We have described how to convert a CNF formula  $\phi$  to a 3-CNF formula  $\phi'$ .
- The conversion can clearly done in polynomial time.
- We have shown that φ is a yes SAT instance if and only if φ' is a yes 3SAT instance.
- If we have a polynomial time algorithm for 3SAT, we have a polynomial time algorithm for SAT:
  - Given input  $\phi$ , compute  $\phi'$
  - Solve 3SAT instance  $\phi'$  and obtain answer yes or no
  - Output the same answer for  $\phi$

- <u>Same Idea before</u>: Given a 3SAT instance  $\phi$ , construct a IndependentSet instance (G = (V, E), k) such that  $\phi$  is a yes instance if and only if (G = (V, E), k) is a yes instance.
- If construction can be done in polynomial time, this implies IndependentSet is weakly harder than 3SAT.

#### Here is how we do it:

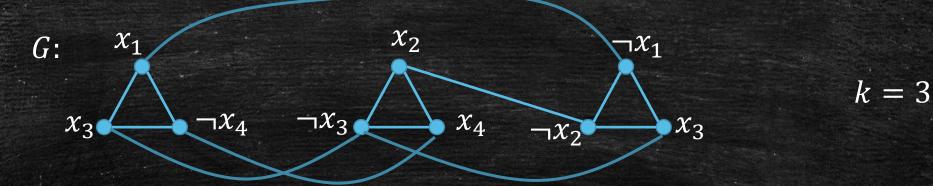
- For each clause, construct a triangle where three vertices represent three literals.
- Connect two vertices if one represents the negation of the other.
- Set k in IndependentSet instance to the number of clauses

 $\phi = (x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_3)$ 

G: 
$$x_1$$
  
 $x_3$   $\neg x_4$   $\neg x_3$   $x_4$   $\neg x_2$   
 $x_4$   $\neg x_2$   $x_3$ 

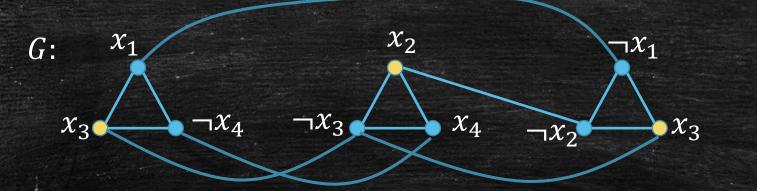
k = 3

 $\phi = (x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_3)$ 



- If φ is a yes instance, each clause must have a literal with value true.
- For each triangle in G, pick exactly one vertex representing a true literal in S.
- S is an independent set and |S| = k. So (G, k) is a yes instance.

 $\phi = (x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_3)$ 



k = 3

- Example:  $x_1 = x_2 = x_3 = x_4 = \text{true makes } \phi = \text{true}$
- We choose exactly one true literal in each clause, for example,
  - $(x_1 \vee x_3 \vee \neg x_4)$
  - $(x_2 \lor \neg x_3 \lor x_4)$
  - $(\neg x_1 \lor \neg x_2 \lor x_3)$

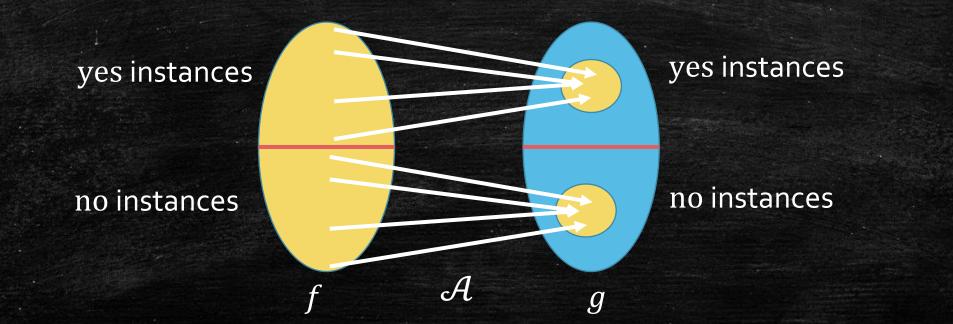
- If  $\phi$  is a no instance, for contradiction, assume (G, k) is a yes instance. Let S with |S| = k be the independent set.
- S must contain exactly one vertex in each triangle.
  - because any two vertices in a triangle is connected
- Assign true to the literals representing the chosen vertices.
  - We will not assign both true and false to a same literal, as  $x_i$  and  $\neg x_i$  is connected.
- For variables not yet assigned a value, assign values to them arbitrarily.
- The resultant assignment makes φ true (as each clause has a true literal), contradicting to that φ is a no instance!

# Reduction

- A decision problem *f* Karp reduce to (or simply, reduce to) a decision problem *g* if there is a polynomial time TM A such that
  - $\mathcal{A}$  outputs a yes instance of g if a yes instance of f is input
  - $\mathcal{A}$  outputs a no instance of g if a no instance of f is input
- Denoted as  $f \leq_k g$ 
  - Very intuitive: the difficulty level of f is weakly less than that of g
- We have just proved:
  - SAT  $\leq_k$  3SAT
  - $3SAT \leq_k IndependentSet$

#### Reduction

In the reduction, f ≤<sub>k</sub> g, the TM A defines a mapping.
The mapping needs not to be one-to-one.
The mapping needs not to be onto.



## Transitivity of Reduction

#### • **Theorem.** If $f \leq_k g$ and $g \leq_k h$ , then $f \leq_k h$ .

- If g is (weakly) harder than f and h is (weakly) harder than g, then h is (weakly) harder than f.
- Proof. Let  $\mathcal{A}_1$  be the polynomial time TM doing  $f \leq_k g$  and  $\mathcal{A}_2$  be the polynomial time TM doing  $g \leq_k h$ .
- Let  $\mathcal{A} = \mathcal{A}_1 \circ \mathcal{A}_1$  be the TM that first executes  $\mathcal{A}_1$  and then executes  $\mathcal{A}_2$  (using the output of  $\mathcal{A}_1$  as input of  $\mathcal{A}_2$ ).
- Then  $\mathcal{A}$  does the job of  $f \leq_k h$ .
- $\mathcal{A}$  runs in polynomial time: the time complexity of  $\mathcal{A}$  is the sum of the time complexities of  $\mathcal{A}_1$  and  $\mathcal{A}_2$ , and  $\mathcal{A}_1$  and  $\mathcal{A}_2$  are polynomial time TMs.

# More Results in Reduction

- In Problem 3 of Assignment 5, you will prove S is an independent set of G = (V, E) if and only if V \ S is a vertex cover.
- Thus, IndependentSet  $\leq_k$  VertexCover

 $\leq_k$ 

- The reduction  $\mathcal{A}$  simply maps (G = (V, E), k) to (G = (V, E), |V| k)
- It is also true that:

**SA** 

- VertexCover  $\leq_k$  SubsetSum
- $3SAT \leq_k HamitonianPath$

IndependentSet

**HamiltonianPath** 



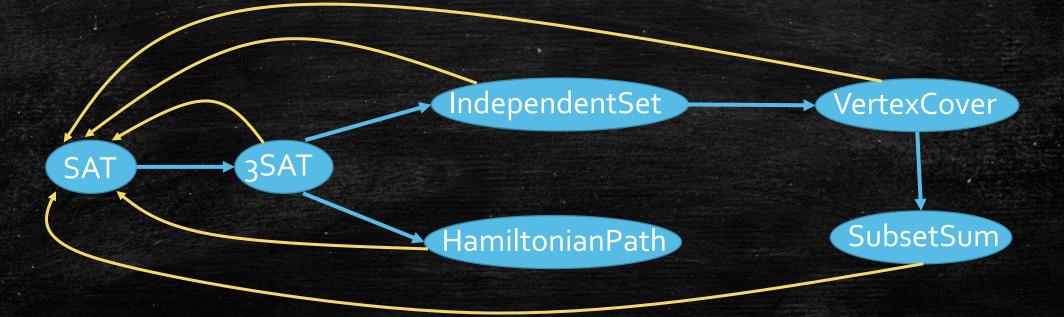


## The Hardest Problem in NP

- We have built difficulty relations between many problems in NP.
- Does there exist a problem in NP that is the hardest?
- **Definition.** A decision problem f is NP-hard if  $g \leq_k f$  for any problem  $g \in \mathbf{NP}$ .
- **Definition.** A decision problem f is NP-complete if  $f \in NP$ and  $g \leq_k f$  for any problem  $g \in NP$ .
- [Cook-Levin Theorem] SAT is NP-complete.

# More NP-Complete Problems

- Cook-Levin Theorem implies the yellow arrows, since all the problems below are in NP.
- Each problem is NP-complete
  - By transitivity: any NP problem reduce to SAT, and SAT reduce to each of these problems.
- These problems are "equally hard", and are the hardest problems in NP.



#### Intuition behind Cook-Levin Theorem

- We have seen SAT is in NP.
- Consider an arbitrary **NP** problem f. We will show  $f \leq_k SAT$ .
- For a yes instance x, there exist a polynomial time TM A and a polynomial length certificate y such that A accepts (x, y).
- Consider a computation tableau that records the tape at every step of A's execution.

|            | X     |                       |                       |   |       | $\mathcal{Y}$         |                       |                       |   |                |
|------------|-------|-----------------------|-----------------------|---|-------|-----------------------|-----------------------|-----------------------|---|----------------|
|            | _     |                       |                       |   |       | -                     |                       |                       |   |                |
| Step o     | $x_0$ | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> |   | $x_n$ | <i>y</i> <sub>0</sub> | <i>y</i> <sub>1</sub> | <i>y</i> <sub>2</sub> |   | y <sub>m</sub> |
| Step 1     | 1     | 1                     | 0                     | 0 | 0     | 1                     | 1                     | 1                     | 1 | 0              |
| Step 2     | 1     | 1                     | 1                     | 0 | 0     | 1                     | 1                     | 1                     | 1 | . 0            |
|            | :     | :                     | :                     | : | :     | :                     | :                     | :                     | : | :              |
| Final Step | 0     | 1                     | 1                     | 0 | 0     | 0                     | 1                     | 1                     | 0 | 0              |

#### Intuition behind Cook-Levin Theorem

|            |                       |                       | X                     |   |                |                       |                       |                       |   |                |
|------------|-----------------------|-----------------------|-----------------------|---|----------------|-----------------------|-----------------------|-----------------------|---|----------------|
| Step o     | <i>x</i> <sub>0</sub> | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> |   | x <sub>n</sub> | <i>y</i> <sub>0</sub> | <i>y</i> <sub>1</sub> | <i>y</i> <sub>2</sub> |   | y <sub>m</sub> |
| Step 1     | 1                     | 1                     | 0                     | 0 | 0              | 1                     | 1                     | 1                     | 1 | 0              |
| Step 2     | 1                     | 1                     | 1                     | 0 | 0              | 1                     | 1                     | 1                     | 1 | 0              |
|            | :                     | :                     | :                     | : | :              | :                     |                       | :                     | : | :              |
| Final Step | 0                     | 1                     | 1                     | 0 | 0              | 0                     | 1                     | 1                     | 0 | 0              |

- For each y<sub>i</sub> and each cell in the tape from Step 1 to the final step, construct a Boolean variable for the SAT instance.
- We can use clauses to ensure the tableau gives a valid TM computation.
- E.g., we can use two clauses  $(x \lor \neg y) \land (\neg x \lor y)$  to enforce x = y.

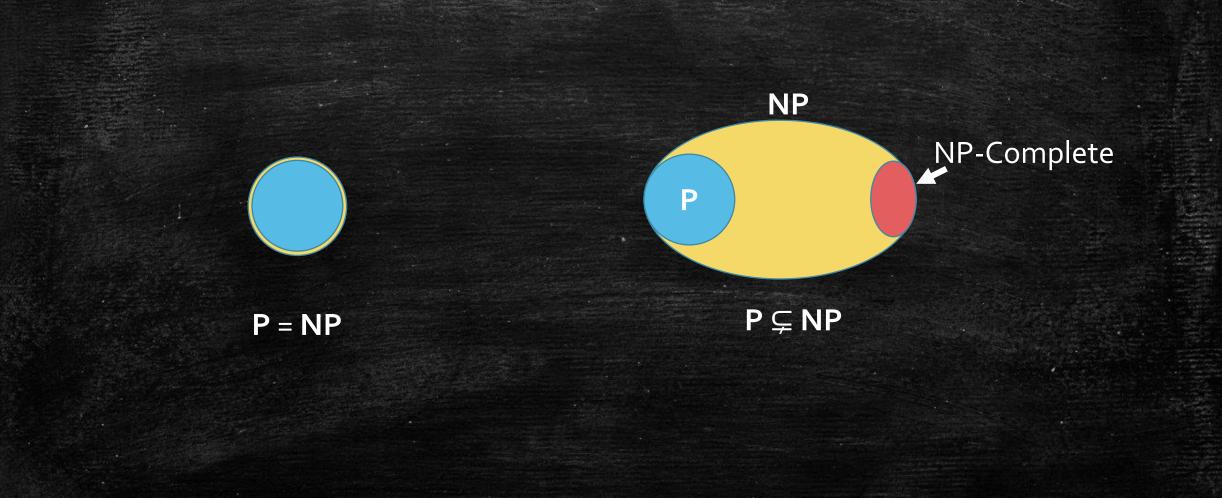
# Intuition behind Cook-Levin Theorem

- High-level Intuition: a CNF formula is sufficient to simulate the execution of a Turing Machine!
- If x for the NP problem f is a yes instance, the CNF formula constructed can be satisfied:
  - Assign  $y_i =$ true if and only if the *i*-th bit of *y* is 1.
  - Assign each other variable the value corresponding to the value of the cell in the computation tableau.
- If x for the NP problem f is a no instance, the CNF formula constructed <u>cannot</u> be satisfied:
  - Otherwise, we can find a certificate  $y = y_1y_2 \cdots y_m$  that fools the TM to accept (x, y).

# Solving a NP-complete problem implies **P** = **NP**

- **Theorem.** If f is NP-complete and  $f \in \mathbf{P}$ , then  $\mathbf{P} = \mathbf{NP}$ .
- Proof. Suppose there is a polynomial time TM  $\mathcal{A}$  that decides f. We will show  $g \in \mathbf{P}$  for any  $g \in \mathbf{NP}$ .
- Since f is NP-hard,  $g \leq_k f$ , and let  $\mathcal{A}'$  be the polynomial time TM that does the reduction.
- Then  $\mathcal{A} \circ \mathcal{A}'$  is the polynomial time TM that decides g.
- Thus,  $g \in \mathbf{P}$ .
- If you solve any of SAT, 3SAT, IndependentSet, VertexCover, SubsetSum, HamiltionianPath, you will be the greatest person in the 21<sup>st</sup> century!

# P vs NP



## **NP-Intermediate**

- [Ladner's Theorem] If P ≠ NP, then there exist decision problems that are neither in P nor NP-complete.
- Such problems are called NP-intermediate.
- However, we do not know any "natural" NP-intermediate problems. **NP-Intermediate**



**NP-Complete** 

NP

D

#### NP-Hard vs NP-Complete

Difference between NP-hardness and NP-completeness:

- For decision problems: NP-complete = NP-hard + (in NP)
  - There are NP-hard problems that are not in NP; these problems are even harder than NP-complete problems.
- NP-hardness can describe optimization problems:
  - Maximum Independent Set is NP-hard
  - Minimum Vertex Cover is NP-hard
  - Max-3SAT is NP-hard
  - Finding a longest simple path is NP-hard
  - Etc.

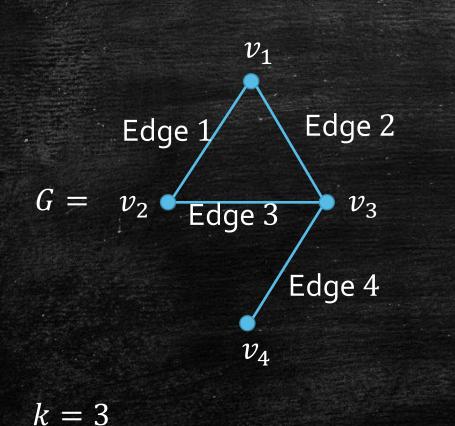
#### VertexCover $\leq_k$ SubsetSum

- We first consider the following "vector version" of SubsetSum.
- [VectorSubsetSum] Given a collection of integer vectors  $S = \{a_1, ..., a_n : a_i \in \mathbb{Z}^m\}$  and a vector  $\mathbf{k} \in \mathbb{Z}^m$ , decide if there exists  $T \subseteq S$  with  $\sum_{\mathbf{a}_i \in T} \mathbf{a}_i = \mathbf{k}$ .
- We will show that
  - *1.* VertexCover  $\leq_k$  VectorSubsetSum
  - 2. VectorSubsetSum  $\leq_k$  SubsetSum

#### $VertexCover \leq_k VectorSubsetSum$

- Given a VertexCover instance (G = (V, E), k), we will. construct a VectorSubsetSum instance  $(S, \mathbf{k})$ .
- First, we label the edges with 1, 2, ..., |E| (in arbitrary order).
- For each  $v_i \in V$ , construct a (|E| + 1)-dimensional vector  $\mathbf{a}_i \in S$  such that  $\mathbf{a}_i[0] = 1$  and for each j = 1, ..., |E|:  $\mathbf{a}_i[j] = \begin{cases} 1 & \text{if } v_i \text{ is an endpoint of edge } j \\ 0 & \text{otherwise} \end{cases}$
- For each edge *j*, construct  $\mathbf{b}_j \in S$  where  $\mathbf{b}_j[j] = 1$  is the only non-zero entry.
- Let  $\mathbf{k} = (k, 2, 2, ..., 2)$ .

# Example



a VertexCover instance

 $\mathbf{a}_1 = (1, 1, 1, 0, 0)$  $\mathbf{a}_2 = (1, 1, 0, 1, 0)$  $\mathbf{a}_3 = (1, 0, 1, 1, 1)$  $\mathbf{a}_4 = (1, 0, 0, 0, 1)$  $\mathbf{b}_1 = (0, 1, 0, 0, 0)$  $\mathbf{b}_2 = (0, 0, 1, 0, 0)$  $\mathbf{b}_3 = (0, 0, 0, 1, 0)$  $\mathbf{b}_4 = (0, 0, 0, 0, 1)$  $\mathbf{k} = (3, 2, 2, 2, 2)$ 

a VectorSubsetSum instance

#### Ideas Behind the Reduction

- Picking  $\mathbf{a}_i \in T$  represents picking  $v_i$  in the vertex cover.
- The 0-th entry of k is set to k, enforcing exactly k vertices must be picked.
- The j-th entry of k is set to 2 enforcing edge j must be covered:
  - Say, edge j is  $(v_{i_1}, v_{i_2})$
  - If  $\mathbf{a}_{i_1}$ ,  $\mathbf{a}_{i_2} \in T$ , we are fine, as the *j*-th entries already add up to 2.
  - If one of  $\mathbf{a}_{i_1}$ ,  $\mathbf{a}_{i_2}$  is chosen in *T*, we are also fine, as we can include  $\mathbf{b}_j \in T$ .
  - If  $a_{i_1}$ ,  $a_{i_2} \notin T$ , we are <u>not</u> fine: the *j*-th entries add up to at most 1 even if we include  $b_j \in T$ .
- We are done! VertexCover  $\leq_k$  VectorSubsetSum

#### VectorSubsetSum $\leq_k$ SubsetSum

- We can convert a vector  $\mathbf{a} = (\mathbf{a}[0], \dots, \mathbf{a}[m])$  to a large number.
- For example, convert  $\mathbf{a} = (1, 4, 5, 3)$  to number 1453
  - $-1453 = \mathbf{a}[0] \times 1000 + \mathbf{a}[1] \times 100 + \mathbf{a}[2] \times 10 + \mathbf{a}[3] \times 1$
- We are using decimal representation in the above example...
- To avoid carry, use N-ary representation instead (for sufficiently large N)?
- Additions with vectors are now equivalent to additions with numbers, since we do not have carry issue.
- VectorSubsetSum  $\leq_k$  SubsetSum

# SubsetSum is NP-complete

- We have seen SubsetSum is in NP.
- We have proved
  - *1.* VertexCover  $\leq_k$  VectorSubsetSum
  - *2.* VectorSubsetSum  $\leq_k$  SubsetSum

# This Lecture

- Learn what are P and NP
- Cook-Levin Theorem and NP-complete problems
- Reduction

#### Take Home Messages

- SAT (3SAT), VertexCover, IndependentSet, SubsetSum, HamiltonianPath are the hardest problems in NP, and they are NP-complete.
- Reduction is a effective tool to show one problem is "weakly harder" than another.