P, NP, NP-Completeness

P NP, NP-Completeness, and Reductions



Introduction '
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» Some problems can be solved in polynomial time.
- - as most of the problems we have seen in the previous lectures

= You've heard some other problems are “NP-hard” or “NP-
complete”.

= This lecture: |
- Learn what exactly do we mean by 'NP-hardness, or NP-completeness.
- Understand why people believe these problems are hard.



Let's first see some famous NP-hard problems
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= SAT |

= Vertex Cover
-IhdépendehtSet
* Subset Sum

 Hamiltonian Path



SAT (Boolean Satisfiability Problem)

= A Boolean formula is built from variables, operators AND
(A), OR (v), NOT (—), and parentheses.

= o Example: (x1 \" x3 \V4 _IX4_) /\‘(xz VvV _Ix3) N\ (_le VvV _I.'X:2)

= A Boolean formula is in conjunctive normal form (CNF) If it
Is an "AND" of many clauses:

- Each clause contains “OR" of literals:
= A literal is a variable x; or its negation —x;

- The example is in CNF; it has three clauses: (x; V x5 V =x,), (x; V. —1x3)
and (_le \/ '_I.X'Z)

= [SAT Problem] Given a CNF formula ¢, decide if there is a
value assignment to the variables to make ¢ true.

- This is true for the example above: x; = true, x, = false, x5 = false.

= — ———— o —



Vertex Cover |

— = s = - — - —— e s e

leen an undlrected graph G = (V,E), a subset of vertices
- S c Visavertex cover if S contains at least one endpomt of
- every vertex. -

a vertex cover not a vertex cover



Vertex Cover Problem
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= [Vertex Cover Probllhem] Given an undirected graph ¢ =
(V,E)and k € Z*, decide if the graph has a vertex cover of
- S|ze k. .

For this graph and k = 4, the
output should be yes.




IndependentSet

— - S = s —_— - —— e e s S gt

leen an undlrected graph G = (V,E), a subset of vertices
S cVisanindependent set if there is no edge between
- any two vertices in S.

“an independent set not an independent set



Independe’nt Set Problem
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» [Independent Set Problem] Given an undirected graph G =
- (V,E) and k € Z*, decide if the graph has an mdependent
- set of size k. |

For this graph and k = 4, the
output should be yes.




Subset Sum Problem

et = - —

« [Subset Sum Problém] Given a collection of integers S =
{aq,...,a,} and k € Z*, decide if there is a sub-collection T <

~ Ssuch that ¥, cra; = k.

= The output should be yes for § = {1,1,6,13 27} and k = 21, as
1+1+6+13 =21.

. The output should be no for § = {1,1,6,13,27} and =222



Hamiltonian Path Problem
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= Given an undlrected graph G = (V,E), a Hamiltonian path | IS
~ a path containing each vertex exactly once.

- [Hamiltonian Path Problem] Given an undirected graph G =
(V,E), decide if it contains a Hamiltonian path. »

Output should be yes- .




In this lecture, we will only focus on...
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= Decision Problems: those with output yes or no.

= Polynomial Time vs Not Polynomial Time
- E.g., we will not care about 0(n) or 0(n?)
“Easy” Problems: those can be solved in polynomial time

“Hard" problems: those for which people belleve cannot be solved in
polynomlal time



Decision Problem — Formal Definition
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A decision problem is a function f:2* - {0, 1}

¥ - set of alphabets: for example, binary alphabets = = {0, 1}

" - set of strings using alphabets in X with length n

Z* = Up=o Z" - set of all strings with any lengths

x € Y* - an instance

f(x) = 1: xis a yes Instance
- E.g., x encodes G and k where G has a k-vertex cover

= f(x) = 0: x1s a no instance
- E.g., x encodes G and k where G does not have a k-vertex cover
- Or x is not a valid encoding of G and k



Problems That Are “Easy”
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= A decision problem f:Z* - {0,1} is "easy” if there is a
- polynomial time algorithm A that computes it.

. Thatis, A(x) = f(x) always holds.
« Polynomial time: A(x) terminates in |x|°(") steps. |

= But wait! What exactly is an algorithm??



Turing Machine (TM)

- An abstract machine that is a'prototype of

modern computers.

- A Turing Machine is a triple (0,, ) 01

one tape: contains infinitely many cells

= Each cell can store an alphabet

A moving head pointing at a cell of the tape |
3. set of alphabets ' | : 0-1,
Q: set of states, each state specifying “the current step”
Transition function §:0 x % —» Q X £ x {L, R}

= instructions on how to move to the next step

- Input: current state, current alphabet the head is reading

ﬁ-
1-0,R

0—>0,d

’

e— - - - — | EACATRA B S T S s

Ll
= Output: next state, new alphabet written on the current
position of the head, move to left (L) or right (R) by one

cell A



Turing Machine: Start and Terminate

et = - ——

= Start;

- At a special state called starting state: ggarc € 0
- Input is loaded to the tape
- Moving Head is pointing at the first cell

= Terminate:
- Two special state called halting states: q,.. and g,

- TM terminates when reaching a halting state

- TM accepts a string if g, is reached |

- TM rejects a string if g, is reached

- TM'’s output is the content on the tape when TM terminates



™ Example: Check if two strings are idehtical' ‘
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= Input: a string of format x#y Where x,y € {0,1}" and # €Xisa speC|aI

separatlng alphabet

- Decide if the binary strihgs x and y is identical
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Turing Machine
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= If you do not appreciate a Turing machine, in this course,
just treat it as a computer program or an algorithm (that
~ outputs "accept” or “reject” as well as an output string)...

= Turing machine has the same power as a computer
program or an algorithm, in the following sense:

. Whatever can be computed in polynomial time by a

computer program or an algorithm can also be computed
in polynomial time by a Turing machine.



Polynomial Time TM
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= Definition. A Turing Machine A is a polynomial time TM if
there exists a polynomial p such that A always terminates
- within p(|x|) steps on input x.



The Complexity Class P

E——

« A decision problem f:x* - {0,1} is in P, if there exists a
polynomial time TM A such that

- A accepts x if f(x) =1
A rejects x if f(x) =0

= Problems in P are those “easy’ problems that can be solved
in' polynomial time.



Examples for Problems in P
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= [PATH] Given a graph ¢ = (V,E) and s,t € V, decide if there is a
path fromstot.

- Build a TM that runs BFS or DFS at s; accept if t is reached; reject if the
- search terminates without reaching t.

- PATHE P

: ‘Lk—FLQW] Given a directed graph G = (V,E), s,t € V, a capacity
unction c: E - R*, and k € R, decide if there is a flow with
value at least k.
- Build a TM that implements Edmonds-Karp, Dinic’s, or other algorithms.
- k-FLOW € P

= [PRIME] Given k € Z* encoded in binary string, decide if k is a
prime number. |
- [Agrawal, Kayal & Saxena, 2004] PRIME € P



The Complexity Class NP
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A commonality with SAT, VertexCover, IndependentSet,
SubsetSum, HamiltonianPath:

: - For a yes instance, it can be easily verified if a hint is given.

SAT: a hint can be a valid assignment to the variables

VertexCover/IndependentSet: a hlnt can be a valid set of k
vertices

SubsetSum: a hint can be a sub-collection with sum k

HamiltonianPath: a hint can be an encoding of a valid path.



The Complexity Class NP
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= NP: Problems whose yes instances can be efficiently
- verified if hints are given.

« Formal Definition. A decision problem f:2* - {0,1} is in NP
if there exist a polynomial q and a polynomlal time TM A
such that 4

- If x is a yes instance (f(x) = 1), there exists y € 2* with |y| < q(|x])
such that A accepts the input (x, y)

- If x is a no instance (f(x) = 0), for all y € 2* with |y| < q(]x|) such that
A rejects the input (x,y)

= The string y is called a certificate.

= SAT, VertexCover, IndependentSet, SubsetSum,
- HamiltonianPath are all in NP.



PcNP
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» Proof. If a deC|S|on problem f:3* — {0,1} is in P, we will
- show itis in NP.

- By definition of P, there exists a polynomial time TM A
such that A accepts x if and only if f(x) = 1.

= Let A’ be a TM such that it outputs A (x) on Input (x,y).
That is, A’ implements A and ignore y.

= If f(x) =1, there exists y, say, y = @, such that A’ accepts
(x, y).

- If f(x) =0, for all y, A’ rejects (x; y).
= Thus, f € NP.



Central Open Problem: P vs. NP

— - = - —

- Central Open Problé_m: Does P equals NP?

= Most research believes no...

- If P = NP, we do not need the certificate: we can just “guess” it
correctly and efficiently... This doesn’t seem possible.

- Given an exam question, do you believe solving the question is
much harder than checking if someone's solution to the question is

correct? P = NP would suggest they are equally easy...

P:NPQ




NP Problems '

= We have seen many NP problems not known in P
- SAT | |
- VertexCover

- IndependentSet

- SubsetSum

- HamiltonianPath

. Are some of these problems “more difficult” than the
others? |



3SAT
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A 3-CNF formula is a CNF formula where each clause
contains at most three literals:

= = d 3'CNF fOI‘mU|aI (xl VvV X3 V _IX4_) 7AN (xz VvV _IXB) AN (_Ix]_ VvV _I.'X:2)
= NOt d 3'CNF fOFmU|aZ (x1 \V4 x3 VvV _Ix4,) /AN (x1 VvV xz VvV _IXB VvV _IX4_)

= [3SAT] Given a 3-CNF formula, decide if there is a value
assignment to the variables to make the formula true.

= Clearly, 3SAT is at most as hard as SAT, as it is a special case.

- We will prove 3SAT is also at least as hard as SAT.
- so that SAT and 3SAT are “equally hard”



Proving 3SAT is “weakly harder than” SAT
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Idea: given a CNF formula ¢, construct a 3-CNF formula ¢’
such that ¢ is a yes SAT instance if and only if ¢’ is a yes 3SAT
- mstance ’ |

= If converting ¢ to ¢’ can be done in polynomial time, being
able to solve 3SAT in polynomial time implies belng able to
solve SAT in polynomial time. -

- That is, 3SAT is weakly harder than SAT.



Provi,ng BSAT is “weakly harder than" SAT

S — = = —— - — — - =

« We can ”break” a long clause in ¢ to shorter cIauses by
Introducing new variables:

= (X Vx V=xz V —xg) = (3 V25 V 1) A (21 V X3 V 2y)

- For example, if x, = true is the one making LHS true, we can set x, =
true, y, = false to make RHS true.

- If x; = x, = false and x3 = x, = true so that LHS is false, at least one of
the two clauses on RHS Is false.

= We can "break” a even longer clause to clauses with at most
three literals:

= (xyVx,VaxsVax,VxeVxg) = Vi, Vy) A=y, V—xg VvV
V2) A (my2 V mxg VY3) A (2Y3 V X5 V X6)

- For example, if x, = false is the one making LHS true, we can set y; =
false, y, = true, y; = true to guarantee RHS is true.



Proving 3SAT is “weakly harder than” SAT

— e

In general:
" (Ve VE) = V4V Y A=y VE3VY) A A(=—z Vg V £y)

- If a literal #; is true, we can make all RHS clauses true by properly setting y;'s

tfrue
$ - ‘ ‘
B VL VYDA NV 3V VYD) AV VE VY ) Ay V2 VYD) A A(mYk—2 V 1 V L)
% %t %t % = | % %+ %
true false true false false true false true

= |If all of ¢;'s are false, we cannot make all RHS clauses true:

- We have to set y; = true to make the first clause true
- After that, we have to make y, = true to make the second clause true

- We have to make y,_, = true; however, this will make the last clause false



Proving 3SAT 'is “weakly harder than" SAT
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= We have descrlbed how to convert a CNF formula ¢ to a 3-
- CNF formula ¢".

« The conversion can clearly done in polynomial time.

= We have shown that ¢ is a yes SAT instance if and only if ¢’
Is.a yes 3SAT instance.

= If we have a polynomial time algorithm for 3SAT, we have a
polynomial time algorithm for SAT:

- Given input ¢, compute ¢’
- Solve 3SAT instance ¢’ and obtain answer yes or no
- Output the same answer for ¢



Independe'ntSet is “weakly harder” than 3SAT
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= Same |dea before: Given a 3SAT instance ¢, construct a
IndependentSet instance (G = (V,E), k) such that ¢ is a yes
~ Instance if and only if (G = (V,E), k) is a yes instance.

= If construction can be done in polynomial time, this implies
IndependentSet is weakly harder than 3SAT.



IndependentSet is “weakly harder” than 3SAT

Here is how we do it:

= For each clause, construct a triangle where three vertices
represent three literals.

= Connect two vertices if one represents the negation of the other.
= Set k in IndependentSet instance to the number of clauses

b= VxsVaxy) Ay VaxgVxy) A(=xg V—axs Vxs)

_le

= /_. e ok ./A.m\./_\.xg -3



IndependentSet IS weakly harder” than 3SAT

¢ s (x1 V x3 V _IX4) /\ (xz V _Ix3 V x4) /\ (_le V _IXZ V x3)
_le

W= \m\/\,@, e

- If ¢ is a yes instance, each clause must have a literal with value
true.

= For each trlangle in G, pick exactly one vertex representing a
true literal in S.

= Sisan independént set and |S| = k. So (G, k) is a yes instance.




IndependentSet IS weakly harder” than 3SAT

¢ s (xl V x3 V —|X4) /\ (xz V _Ix3 V x4) /\ (_le V _IXZ V x3)
_le

W= \m\/\,@, e

« Example: x; = x, = x3 = x, = true makes ¢ = true

» We choose exactly one true literal in each clause, for example
- (X1 VX3V x,)

- (xy V=x3 Vxy)

- (mx1V =x, VX3)



Independe'ntSet is “weakly harder” than 3SAT

= If ¢ is @ no instance, for contradiction, assume (G, k) is a yes
~ instance. Let S with [S| = k be the independent set.

S must contain exactly one vertex in each triangle.
- because any two vertices in a triangle is connected

= Assign true to the literals representing the chosen vertices.

- We will not assign both true and false to a same literal, as x; and —x; is
connected.

= For variables not yet assigned a value assign values to them
arbitrarily. '

- = The resultant assignment makes ¢ true (as each clause has a
- true literal), contradicting to that ¢ is a no instance!



Reduction

— - : ——— : e e T s :

. A decision problem f Karp reduce to (or simply, reduce to)
a decision problem g if there is a polynomial time TM A
~ such that

- A outputs a yes mstavnce of g if a yes instance of f is input
- A outputs a no instance of g if a no instance of f is input

= Denoted as [ <, g '
- Very intuitive: the difficulty level of f is weakly less than that of g

» We have just proved:
- SAT <, 3SAT
- 3SAT <, IndependentSet



Reduction |

e - = - —

E In the reduction, f Sk g, the TM A defines a mapping.
= The mapping'n'eeds not to be one-to-one.

+ The mapping needs not to be onto.

yes instances yes instances

no instances no instances




Transitivity of Reduction

e = x = - — — Aah s SLTRS e £

« Theorem. If f <, gand g <, h, then f <, h.

= |fgis (Weakly) harder than f and h is (weakly) harder than
g, then h is-(weakly) harder than f.

= Proof. Let A, be the polynomial time TM doing f <, g and

A, be the polynomial time TM doing g <; h.

- Let A = A, o Ay be the TM that first executes 4; and then
executes A, (using the output of A, as input of A,).

= Then A does the job of f <, h.

« A runs in polynomial time: the time complexity of A is the
sum of the time complexities of A; and A,, and A, and A,
are polynomial time TMs.



More Results in Reduction

— - s = - == - —— e T s

= In Problem 3 of Assignment 5, you will prove S is an
~ independent set of G = (V,E) if and only if V \ S is a vertex cover.

. Thus, IndependentSet Sk VertexCover
- The reduction A simply maps (G = (V,E), k) to (G = (V,E),|V| —k)

= Itis also true that:
- VertexCover <, SubsetSum
— 3SAT <, HamitonianPath




The Hardest Problem in NP

e— - ' —_— . e e e T s %

= We have bU|It drfflculty relations between many problems
in NP.

- Does there exist a problem in NP that is the hardest?

. Definition. A decision problem f is NP-hard Ifg <, f for
any problem g € NP.

= Definition. A decision problem f 1s NP- complete |ff € NP
and g <, f for any problem g € NP.

= [Cook-Levin Theorem] SAT is NP-complete.



More NP Complete Problems

- Cook—Levm Theorem implies the yellow arrows, since all the problems T

below are in NP.

= Each problem is NP-complete

- By transitivity: any NP problem reduce to SAT, and SAT reduce to each of these
. problems. -

. These problems are “equally hard”, and are the hardest problems in NP.




Intuition behind Cook-Levin Theorem

We have seen SAT is in NP.
Consider an arbitrary NP problem f. We will show f <, SAT.

For a yes jnsténce x, there exist a polynomial time TM A and a
polynomial length certificate y such that A accepts (x, y).

Consider a computation tableau that records the tape at every step
of A's execution. , -

X S
S o A B N
— ey i
Stepo | % | X | X | [ X [ Vo |V [ Y2 | | Y
Stepa 1 1 0 0 e R 1 1 1 0
Step 2 1 1 1 0 0 1 1 1 1 0
Final Step 0 1 1 0 0 0 1 1 0 0




Intuition behind Cook-Levin Theorem

X E Ly
e, e " el N
Sy T o
SpO. | xoo X | K| o [ Xn | Vo | Vi | V2 | o | Vm
Z Stepa dii et 6. 5m 0 1 1 1 1 0
' Step 2 1 1 1 0 0 1 1 1 1 0
Final Step 0 1 1 0 0 0 1 1 o 0

. For each y; and each cell in the tape from Step 1 to the final
step, construct a Boolean variable for the SAT instance.

= We can use clauses to ensure the tableau gives a valid TM
computation.

~» E.g., We can use two clauses (x v -y) A (=x Vy) to enforce x = y.



Intuition behind Cook-Levin Theorem

et = - ——

= High-level Intuition: a CNF formula is sufficient to simulate
- the execution of a Turing Machine!

« If x for the NP problem f is a yes instance, the CNF formula
constructed can be satisfied:
- Assign y; = true if and only if the i-th bit of y is 1.

- Assign each other variable the value corresponding to the value of
the cell in the computation tableau.

- If x for the NP problem £ is a no instance, the CNF formula
constructed cannot be satisfied:

- Otherwise, we can find a certificate y V1Y, - ¥ that fools the TM
to accept (x,y).




Solving a NP—CompIeté problem implies P - NP -

~» Theorem. If fis NP—compIéte and Fe P,thén P = NP.

= Proof. Suppose there is a poIB/nomiaI time TM A that
- decides f. We will show g € P for any g € NP.

- Since f is NP-hard, g < f, and let A’ be the polynomial'
time TM that does the reduction. |

* Then A o A’ is the polynomial time TM that decides g.
= Thus, g € P.

» If you solve any of SAT, 3SAT, IndependentSet, VertexCover, _
SubsetSum, HamiltionianPath, you will be the greatest
person in the 215t century!

———— o —



P vs NP

NP

NP-Complete
, -

NP ' PS NP

P



NP—Intermediate
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[Ladner’s Theorem] If P = NP then there exist decision
-~ problems that are neither in P nor NP-complete.

- Such problems are called NP-intermediate.

+ However, we do not know any "natural” NP-intermediate

problems.
NP NP-Intermediate

NP-Complete
, 3 :




NP-Hard vs NP-Complete

T —— = - e = = — ————— s —

Difference between NP-hardness and NP-completeness:

= For decision problems: NP-complete = NP-hard + (in NP)

- There are NP-hard problems that are not in NP; these problems are
even harder than NP-complete problems.

» NP-hardness can describe optimization problems:
- Maximum Independent Set is NP-hard
-~ Minimum Vertex Cover is NP-hard
- Max-3SAT is NP-hard
- Finding a longest simple path is NP-hard
- Etc.



VertexCover <, SubsetSum

e = x = - — — Aah s SLTRS e 7

= We first consider the following “vector version” of SubsetSum.

= [VectorSubsetSum] Given a collection of integer vectors S =

fa;,..,a,:a; € Z™} and a vector k € Z™, decide if there exists T €
S with Yaera; =k

« We will show that

1. VertexCover <, VectorSubsetSum
2. VectorSubsetSum <, SubsetSum



VertexCover <, VectorSubsetSum

—

Given a VertexCover instance (G = (V,E), k), we will.
- construct a VectorSubsetSum instance (S, k).

First, we label the edges with 1,2, ..., |E] (in arbitrary order).

For each v; € V, construct a (|E| + 1)-dimensional vector
a; € S such that a;[0] =1 and foreachj =1, ..., |E|:

a il 1 ifv; is an’endpoint of edge j
; 0 otherwise

For each edge j. construct b; € S where b;[j] =1 is the only
non-zero entry. '

Let k = (k, 2,2, ..., 2).



Example

il 1,1 00
. a,=(1, 1, 0, .1, 0)

- Edge Edgez G0 1D

- 7 e .0 0
2 oEdge s A b, =0, 1,- 0, 0, 0)
Edge 4 b= {070 150 0)

¢ * b;=(0, 0, 0, 1, 0)

A ~ b,=(0, 0,0, 0,1)

P | k=@ 72 Z 2 9

a VertexCover instance a VectorSubsetSum instance



Ideas Behind the Reduction

X - V— —— N —_— i —— - — -— = - =

« Picking a; € T represents picking v; in the vertex cover.

= The 0-th entry of k is set to k, enforcing exactly k vertices must
be picked. |

= The j-th entry of k is set to 2 enforcing edge j must be covered:
- Say, edge j is (v;,,v;,) »
- Ifa; ,a;, € T, we are fine, as the j-th entries aIready add up to 2.
- If one of a; ,a;, is chosen in T, we are also fine, as we can include b; € T.

- If a; ,a;, ¢ T, we are not fine: the j-th entries add up to at most 1 even |f we
include b; €T. -

- = We are done! VertexCover <, VectorSubsetSum



VectorSubsetSum <, SubsetSum

S —— = - — = - — ——— = — = e

We can convert a vector a = (a[0], ...,a[m]) to a large number.

For example, convert a = (1,4,5,3) to number 1453
- 1453 = a[0] x 1000 + a[1] x 100 + a[2] x 10 + a[3] x 1

We are using decimal representation in the above example...

To avoid carry, use N-ary representation instead (for
sufficiently large N)?

Additions with vectors are now equivalent to additions with
numbers, since we do not have carry issue.

VectorSubsetSum <; SubsetSum



SubsetSum is NP-complete

E——

= We have seen SubsetSum is in NP,

= We have proved
1. VertexCover <, VectorSubsetSum
2. VectorSubsetSum <, SubsetSum



This Lecture '

« Learn what are P and NP
= Cook-Levin Theorem and NP-complete problems

. Reduction



Take Home Messages

E——

= SAT (3SAT), VertexCover, IndependentSet, SubsetSum,

HamiltonianPath are the hardest problems in NP, and they
- are NP-complete.

= Reduction is a effective tool to show one problem IS
weakly harder” than another. »



