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Introduction

▪ Some problems can be solved in polynomial time.
– as most of the problems we have seen in the previous lectures

▪ You’ve heard some other problems are “NP-hard” or “NP-
complete”.

▪ This lecture:
– Learn what exactly do we mean by NP-hardness, or NP-completeness.

– Understand why people believe these problems are hard.



Let’s first see some famous NP-hard problems 

▪ SAT

▪ Vertex Cover

▪ Independent Set

▪ Subset Sum

▪ Hamiltonian Path



SAT (Boolean Satisfiability Problem)

▪ A Boolean formula is built from variables, operators AND 
(∧), OR (∨), NOT (¬), and parentheses.
– Example: 𝑥1 ∨ 𝑥3 ∨ ¬𝑥4 ∧ 𝑥2 ∨ ¬𝑥3 ∧ (¬𝑥1 ∨ ¬𝑥2)

▪ A Boolean formula is in conjunctive normal form (CNF) if it 
is an “AND” of many clauses:
– Each clause contains “OR” of literals:

▪ A literal is a variable 𝑥𝑖 or its negation ¬𝑥𝑖
– The example is in CNF; it has three clauses: 𝑥1 ∨ 𝑥3 ∨ ¬𝑥4 , 𝑥2 ∨ ¬𝑥3

and (¬𝑥1 ∨ ¬𝑥2)

▪ [SAT Problem] Given a CNF formula 𝜙, decide if there is a 
value assignment to the variables to make 𝜙 true.
– This is true for the example above: 𝑥1 = true, 𝑥2 = false, 𝑥3 = false.



Vertex Cover

▪ Given an undirected graph 𝐺 = (𝑉, 𝐸), a subset of vertices 
𝑆 ⊆ 𝑉 is a vertex cover if 𝑆 contains at least one endpoint of 
every vertex.

a vertex cover not a vertex cover



Vertex Cover Problem

▪ [Vertex Cover Problem] Given an undirected graph 𝐺 =
(𝑉, 𝐸) and 𝑘 ∈ ℤ+, decide if the graph has a vertex cover of 
size 𝑘.

For this graph and 𝑘 = 4,  the 
output should be yes.



Independent Set

▪ Given an undirected graph 𝐺 = (𝑉, 𝐸), a subset of vertices 
𝑆 ⊆ 𝑉 is an independent set if there is no edge between 
any two vertices in 𝑆.

not an independent setan independent set



Independent Set Problem

▪ [Independent Set Problem] Given an undirected graph 𝐺 =
(𝑉, 𝐸) and 𝑘 ∈ ℤ+, decide if the graph has an independent 
set of size 𝑘.

For this graph and 𝑘 = 4, the 
output should be yes.



Subset Sum Problem

▪ [Subset Sum Problem] Given a collection of integers 𝑆 =
{𝑎1, … , 𝑎𝑛} and 𝑘 ∈ ℤ+, decide if there is a sub-collection 𝑇 ⊆
𝑆 such that σ𝑎𝑖∈𝑇

𝑎𝑖 = 𝑘.

▪ The output should be yes for 𝑆 = {1,1,6,13,27} and 𝑘 = 21, as 
1 + 1 + 6 + 13 = 21.

▪ The output should be no for 𝑆 = {1,1,6,13,27} and 𝑘 = 22.



Hamiltonian Path Problem

▪ Given an undirected graph 𝐺 = (𝑉, 𝐸), a Hamiltonian path is 
a path containing each vertex exactly once.

▪ [Hamiltonian Path Problem] Given an undirected graph 𝐺 =
(𝑉, 𝐸), decide if it contains a Hamiltonian path.

Output should be yes



In this lecture, we will only focus on…

▪ Decision Problems: those with output yes or no.

▪ Polynomial Time vs Not Polynomial Time
– E.g., we will not care about 𝑂(𝑛) or 𝑂 𝑛2

– “Easy” Problems: those can be solved in polynomial time

– “Hard” problems: those for which people believe cannot be solved in 
polynomial time



Decision Problem – Formal Definition

▪ A decision problem is a function 𝑓: Σ∗ → {0, 1}

▪ Σ - set of alphabets: for example, binary alphabets Σ = {0, 1}

▪ Σ𝑛 - set of strings using alphabets in Σ with length 𝑛

▪ Σ∗ = 𝑛=0ڂ
∞ Σ𝑛 - set of all strings with any lengths

▪ 𝑥 ∈ Σ∗ - an instance

▪ 𝑓 𝑥 = 1: 𝑥 is a yes instance
– E.g., 𝑥 encodes 𝐺 and 𝑘 where 𝐺 has a 𝑘-vertex cover

▪ 𝑓 𝑥 = 0: 𝑥 is a no instance
– E.g., 𝑥 encodes 𝐺 and 𝑘 where 𝐺 does not have a 𝑘-vertex cover

– Or 𝑥 is not a valid encoding of 𝐺 and 𝑘



Problems That Are “Easy”

▪ A decision problem 𝑓: Σ∗ → {0, 1} is “easy” if there is a 
polynomial time algorithm 𝒜 that computes it.

▪ That is, 𝒜 𝑥 = 𝑓 𝑥 always holds.

▪ Polynomial time: 𝒜 𝑥 terminates in 𝑥 𝑂 1 steps.

▪ But wait! What exactly is an algorithm??



Turing Machine (TM)

▪ An abstract machine that is a prototype of 
modern computers.

▪ A Turing Machine is a triple 𝑄, Σ, 𝛿
– one tape: contains infinitely many cells

▪ Each cell can store an alphabet

– A moving head pointing at a cell of the tape

– Σ: set of alphabets

– 𝑄: set of states, each state specifying “the current step”

– Transition function 𝛿:𝑄 × Σ → 𝑄 × Σ × {𝐿, 𝑅}

▪ instructions on how to move to the next step

▪ Input: current state, current alphabet the head is reading

▪ Output: next state, new alphabet written on the current 
position of the head, move to left (𝐿) or right (𝑅) by one 
cell

𝑞start

0 1 1 0 0 0 1 0 1 …

𝑞1 𝑞2

𝑞acc 𝑞rej

0 → 1, 𝑅 1 → 1, 𝑅

1 → 0, 𝑅
0 → 1, 𝐿 0 → 0, 𝑅

1 → 1, 𝑅



Turing Machine: Start and Terminate

▪ Start:
– At a special state called starting state: 𝑞start ∈ 𝑄

– Input is loaded to the tape

– Moving Head is pointing at the first cell

▪ Terminate:
– Two special state called halting states: 𝑞acc and 𝑞rej
– TM terminates when reaching a halting state

– TM accepts a string if 𝑞acc is reached

– TM rejects a string if 𝑞rej is reached

– TM’s output is the content on the tape when TM terminates



TM Example: Check if two strings are identical

▪ Input: a string of format 𝑥#𝑦 where 𝑥, 𝑦 ∈ 0, 1 𝑛 and # ∈ Σ is a special 
separating alphabet

▪ Decide if the binary strings 𝑥 and 𝑦 is identical

start

is 1

is 0

match 1

match 0

back

0 1 1 0 # 0 1 1 0 …

accept reject

0 →∗, 𝑅

1 →∗, 𝑅

0 → 0, 𝑅
1 → 1, 𝑅

# → #, 𝑅
0 → 0, 𝑅

$ → $, 𝑅

1 → $, 𝐿

1 → 1, 𝐿
0 → 0, 𝐿

$ → $, 𝐿
# → #, 𝐿

∗→∗, 𝑅

0 → 0, 𝑅
1 → 1, 𝑅

# → #, 𝑅

$ → $, 𝑅

0 → $, 𝐿

1 → 1, 𝑅

# → 0, 𝑅
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Turing Machine

▪ If you do not appreciate a Turing machine, in this course, 
just treat it as a computer program or an algorithm (that 
outputs “accept” or “reject” as well as an output string)…

▪ Turing machine has the same power as a computer 
program or an algorithm, in the following sense:

▪ Whatever can be computed in polynomial time by a 
computer program or an algorithm can also be computed 
in polynomial time by a Turing machine.



Polynomial Time TM

▪ Definition. A Turing Machine 𝒜 is a polynomial time TM if 
there exists a polynomial 𝑝 such that 𝒜 always terminates 
within 𝑝 𝑥 steps on input 𝑥.



The Complexity Class P

▪ A decision problem 𝑓: Σ∗ → {0, 1} is in P, if there exists a 
polynomial time TM 𝒜 such that
– 𝒜 accepts 𝑥 if 𝑓 𝑥 = 1

– 𝒜 rejects 𝑥 if 𝑓 𝑥 = 0

▪ Problems in P are those “easy” problems that can be solved 
in polynomial time.



Examples for Problems in P

▪ [PATH] Given a graph 𝐺 = (𝑉, 𝐸) and 𝑠, 𝑡 ∈ 𝑉, decide if there is a 
path from 𝑠 to 𝑡.
– Build a TM that runs BFS or DFS at 𝑠; accept if 𝑡 is reached; reject if the 

search terminates without reaching 𝑡.
– PATH ∈ P

▪ [k-FLOW] Given a directed graph 𝐺 = (𝑉, 𝐸), 𝑠, 𝑡 ∈ 𝑉, a capacity 
function 𝑐: 𝐸 → ℝ+, and 𝑘 ∈ ℝ+, decide if there is a flow with 
value at least 𝑘.
– Build a TM that implements Edmonds-Karp, Dinic’s, or other algorithms.
– k-FLOW ∈ P

▪ [PRIME] Given 𝑘 ∈ ℤ+ encoded in binary string, decide if 𝑘 is a 
prime number.
– [Agrawal, Kayal & Saxena, 2004] PRIME ∈ P



The Complexity Class NP

▪ A commonality with SAT, VertexCover, IndependentSet, 
SubsetSum, HamiltonianPath:
– For a yes instance, it can be easily verified if a hint is given.

▪ SAT: a hint can be a valid assignment to the variables

▪ VertexCover/IndependentSet: a hint can be a valid set of 𝑘
vertices

▪ SubsetSum: a hint can be a sub-collection with sum 𝑘

▪ HamiltonianPath: a hint can be an encoding of a valid path



The Complexity Class NP

▪ NP: Problems whose yes instances can be efficiently 
verified if hints are given.

▪ Formal Definition. A decision problem 𝑓: Σ∗ → {0,1} is in NP 
if there exist a polynomial 𝑞 and a polynomial time TM 𝒜
such that
– If 𝑥 is a yes instance (𝑓 𝑥 = 1), there exists 𝑦 ∈ Σ∗ with 𝑦 ≤ 𝑞 𝑥

such that 𝒜 accepts the input (𝑥, 𝑦)

– If 𝑥 is a no instance (𝑓 𝑥 = 0), for all 𝑦 ∈ Σ∗ with 𝑦 ≤ 𝑞 𝑥 such that 
𝒜 rejects the input (𝑥, 𝑦)

▪ The string 𝑦 is called a certificate.

▪ SAT, VertexCover, IndependentSet, SubsetSum, 
HamiltonianPath are all in NP.



P ⊆ NP

▪ Proof. If a decision problem 𝑓: Σ∗ → {0,1} is in P, we will 
show it is in NP.

▪ By definition of P, there exists a polynomial time TM 𝒜
such that 𝒜 accepts 𝑥 if and only if 𝑓 𝑥 = 1.

▪ Let 𝒜′ be a TM such that it outputs 𝒜(𝑥) on input 𝑥, 𝑦 . 
That is, 𝒜′ implements 𝒜 and ignore 𝑦.

▪ If 𝑓 𝑥 = 1, there exists 𝑦, say, 𝑦 = ∅, such that 𝒜′ accepts 
𝑥, 𝑦 .

▪ If 𝑓 𝑥 = 0, for all 𝑦, 𝒜′ rejects 𝑥, 𝑦 .

▪ Thus, 𝑓 ∈ NP.



Central Open Problem: P vs. NP

▪ Central Open Problem: Does P equals NP?

▪ Most research believes no…
– If P = NP, we do not need the certificate: we can just “guess” it 

correctly and efficiently… This doesn’t seem possible.

– Given an exam question, do you believe solving the question is 
much harder than checking if someone’s solution to the question is 
correct? P = NP would suggest they are equally easy…

P = NP P⊊NPNPP



NP Problems

▪ We have seen many NP problems not known in P
– SAT

– VertexCover

– IndependentSet

– SubsetSum

– HamiltonianPath

▪ Are some of these problems “more difficult” than the 
others?



3SAT

▪ A 3-CNF formula is a CNF formula where each clause 
contains at most three literals:
– a 3-CNF formula: 𝑥1 ∨ 𝑥3 ∨ ¬𝑥4 ∧ 𝑥2 ∨ ¬𝑥3 ∧ (¬𝑥1 ∨ ¬𝑥2)

– Not a 3-CNF formula: 𝑥1 ∨ 𝑥3 ∨ ¬𝑥4 ∧ 𝑥1 ∨ 𝑥2 ∨ ¬𝑥3 ∨ ¬𝑥4

▪ [3SAT] Given a 3-CNF formula, decide if there is a value 
assignment to the variables to make the formula true.

▪ Clearly, 3SAT is at most as hard as SAT, as it is a special case.

▪ We will prove 3SAT is also at least as hard as SAT.
– so that SAT and 3SAT are “equally hard”



Proving 3SAT is “weakly harder than” SAT 

▪ Idea: given a CNF formula 𝜙, construct a 3-CNF formula 𝜙′
such that 𝜙 is a yes SAT instance if and only if 𝜙′ is a yes 3SAT 
instance.

▪ If converting 𝜙 to 𝜙′ can be done in polynomial time, being 
able to solve 3SAT in polynomial time implies being able to 
solve SAT in polynomial time.
– That is, 3SAT is weakly harder than SAT.



Proving 3SAT is “weakly harder than” SAT 

▪ We can “break” a long clause in 𝜙 to shorter clauses by 
introducing new variables:

▪ 𝑥1 ∨ 𝑥2 ∨ ¬𝑥3 ∨ ¬𝑥4 = 𝑥1 ∨ 𝑥2 ∨ 𝑦1 ∧ (¬𝑦1 ∨ ¬𝑥3 ∨ ¬𝑥4)
– For example, if 𝑥2 = true is the one making LHS true, we can set 𝑥2 =
true, 𝑦1 = false to make RHS true.

– If 𝑥1 = 𝑥2 = false and 𝑥3 = 𝑥4 = true so that LHS is false, at least one of 
the two clauses on RHS is false.

▪ We can “break” a even longer clause to clauses with at most 
three literals:

▪ 𝑥1 ∨ 𝑥2 ∨ ¬𝑥3 ∨ ¬𝑥4 ∨ 𝑥5 ∨ 𝑥6 = 𝑥1 ∨ 𝑥2 ∨ 𝑦1 ∧ (
)

¬𝑦1 ∨ ¬𝑥3 ∨
𝑦2 ∧ ¬𝑦2 ∨ ¬𝑥4 ∨ 𝑦3 ∧ (¬𝑦3 ∨ 𝑥5 ∨ 𝑥6)
– For example, if 𝑥4 = false is the one making LHS true, we can set 𝑦3 =
false, 𝑦2 = true, 𝑦1 = true to guarantee RHS is true.



Proving 3SAT is “weakly harder than” SAT 

In general:

▪ ℓ1 ∨ ⋯∨ ℓ𝑘 = ℓ1 ∨ ℓ2 ∨ 𝑦1 ∧ ¬𝑦1 ∨ ℓ3 ∨ 𝑦2 ∧ ⋯∧ (¬𝑦𝑘−2 ∨ ℓ𝑘−1 ∨ ℓ𝑘)

▪ If a literal ℓ𝑖 is true, we can make all RHS clauses true by properly setting 𝑦𝑖’s

ℓ1 ∨ ℓ2 ∨ 𝑦1 ∧ ⋯∧ ¬𝑦𝑖−3 ∨ ℓ𝑖−1 ∨ 𝑦𝑖−2 ∧ ¬𝑦𝑖−2 ∨ ℓ𝑖 ∨ 𝑦𝑖−1 ∧ ¬𝑦𝑖−1 ∨ ℓ𝑖+1 ∨ 𝑦𝑖 ∧ ⋯∧ (¬𝑦𝑘−2 ∨ ℓ𝑘−1 ∨ ℓ𝑘)

▪ If all of ℓ𝑖’s are false, we cannot make all RHS clauses true:
– We have to set 𝑦1 = true to make the first clause true

– After that, we have to make 𝑦2 = true to make the second clause true

– ……

– We have to make 𝑦𝑘−2 = true; however, this will make the last clause false

true

truetrue falsefalse false falsetrue true



Proving 3SAT is “weakly harder than” SAT 

▪ We have described how to convert a CNF formula 𝜙 to a 3-
CNF formula 𝜙′.

▪ The conversion can clearly done in polynomial time.

▪ We have shown that 𝜙 is a yes SAT instance if and only if 𝜙′
is a yes 3SAT instance. 

▪ If we have a polynomial time algorithm for 3SAT, we have a 
polynomial time algorithm for SAT:
– Given input 𝜙, compute 𝜙′

– Solve 3SAT instance 𝜙′ and obtain answer yes or no

– Output the same answer for 𝜙



IndependentSet is “weakly harder” than 3SAT

▪ Same Idea before: Given a 3SAT instance 𝜙, construct a 
IndependentSet instance 𝐺 = 𝑉, 𝐸 , 𝑘 such that 𝜙 is a yes
instance if and only if 𝐺 = 𝑉, 𝐸 , 𝑘 is a yes instance.

▪ If construction can be done in polynomial time, this implies 
IndependentSet is weakly harder than 3SAT.



IndependentSet is “weakly harder” than 3SAT

Here is how we do it:

▪ For each clause, construct a triangle where three vertices 
represent three literals.

▪ Connect two vertices if one represents the negation of the other.

▪ Set 𝑘 in IndependentSet instance to the number of clauses 

𝜙 = 𝑥1 ∨ 𝑥3 ∨ ¬𝑥4 ∧ 𝑥2 ∨ ¬𝑥3 ∨ 𝑥4 ∧ (¬𝑥1 ∨ ¬𝑥2 ∨ 𝑥3)

𝑥1

𝑥3 ¬𝑥3

𝑥2

¬𝑥4 𝑥4

¬𝑥1

¬𝑥2 𝑥3
𝑘 = 3

𝐺:



IndependentSet is “weakly harder” than 3SAT

▪ If 𝜙 is a yes instance, each clause must have a literal with value 
true. 

▪ For each triangle in 𝐺, pick exactly one vertex representing a 
true literal in 𝑆.

▪ 𝑆 is an independent set and 𝑆 = 𝑘. So (𝐺, 𝑘) is a yes instance.

𝜙 = 𝑥1 ∨ 𝑥3 ∨ ¬𝑥4 ∧ 𝑥2 ∨ ¬𝑥3 ∨ 𝑥4 ∧ (¬𝑥1 ∨ ¬𝑥2 ∨ 𝑥3)

𝑥1

𝑥3 ¬𝑥3

𝑥2

¬𝑥4 𝑥4

¬𝑥1

¬𝑥2 𝑥3
𝑘 = 3

𝐺:



IndependentSet is “weakly harder” than 3SAT

▪ Example: 𝑥1 = 𝑥2 = 𝑥3 = 𝑥4 = true makes 𝜙 = true

▪ We choose exactly one true literal in each clause, for example,
– 𝑥1 ∨ 𝑥3 ∨ ¬𝑥4
– 𝑥2 ∨ ¬𝑥3 ∨ 𝑥4
– (¬𝑥1 ∨ ¬𝑥2 ∨ 𝑥3)

𝜙 = 𝑥1 ∨ 𝑥3 ∨ ¬𝑥4 ∧ 𝑥2 ∨ ¬𝑥3 ∨ 𝑥4 ∧ (¬𝑥1 ∨ ¬𝑥2 ∨ 𝑥3)

𝑥1

𝑥3 ¬𝑥3

𝑥2

¬𝑥4 𝑥4

¬𝑥1

¬𝑥2 𝑥3
𝑘 = 3

𝐺:



IndependentSet is “weakly harder” than 3SAT

▪ If 𝜙 is a no instance, for contradiction, assume (𝐺, 𝑘) is a yes
instance. Let 𝑆 with 𝑆 = 𝑘 be the independent set.

▪ 𝑆 must contain exactly one vertex in each triangle.
– because any two vertices in a triangle is connected

▪ Assign true to the literals representing the chosen vertices.
– We will not assign both true and false to a same literal, as 𝑥𝑖 and ¬𝑥𝑖 is 

connected.

▪ For variables not yet assigned a value, assign values to them 
arbitrarily.

▪ The resultant assignment makes 𝜙 true (as each clause has a 
true literal), contradicting to that 𝜙 is a no instance!



Reduction

▪ A decision problem 𝑓 Karp reduce to (or simply, reduce to) 
a decision problem 𝑔 if there is a polynomial time TM 𝒜
such that
– 𝒜 outputs a yes instance of 𝑔 if a yes instance of 𝑓 is input

– 𝒜 outputs a no instance of 𝑔 if a no instance of 𝑓 is input

▪ Denoted as 𝑓 ≤𝑘 𝑔
– Very intuitive: the difficulty level of 𝑓 is weakly less than that of 𝑔

▪ We have just proved:
– SAT ≤𝑘 3SAT

– 3SAT ≤𝑘 IndependentSet



Reduction

▪ In the reduction, 𝑓 ≤𝑘 𝑔, the TM 𝒜 defines a mapping.

▪ The mapping needs not to be one-to-one.

▪ The mapping needs not to be onto.

𝑓 𝑔

yes instances

no instances

yes instances

no instances

𝒜



Transitivity of Reduction

▪ Theorem. If 𝑓 ≤𝑘 𝑔 and 𝑔 ≤𝑘 ℎ, then 𝑓 ≤𝑘 ℎ.

▪ If 𝑔 is (weakly) harder than 𝑓 and ℎ is (weakly) harder than 
𝑔, then ℎ is (weakly) harder than 𝑓.

▪ Proof. Let 𝒜1 be the polynomial time TM doing 𝑓 ≤𝑘 𝑔 and 
𝒜2 be the polynomial time TM doing 𝑔 ≤𝑘 ℎ.

▪ Let 𝒜 = 𝒜1 ∘ 𝒜1 be the TM that first executes 𝒜1 and then 
executes 𝒜2 (using the output of 𝒜1 as input of 𝒜2).

▪ Then 𝒜 does the job of 𝑓 ≤𝑘 ℎ.

▪ 𝒜 runs in polynomial time: the time complexity of 𝒜 is the 
sum of the time complexities of 𝒜1 and 𝒜2, and 𝒜1 and 𝒜2
are polynomial time TMs.



More Results in Reduction

▪ In Problem 3 of Assignment 5, you will prove 𝑆 is an 
independent set of 𝐺 = (𝑉, 𝐸) if and only if 𝑉 ∖ 𝑆 is a vertex cover.

▪ Thus, IndependentSet ≤𝑘 VertexCover
– The reduction 𝒜 simply maps 𝐺 = 𝑉, 𝐸 , 𝑘 to 𝐺 = 𝑉, 𝐸 , |𝑉| − 𝑘

▪ It is also true that: 
– VertexCover ≤𝑘 SubsetSum

– 3SAT ≤𝑘 HamitonianPath

SAT 3SAT
≤𝑘

IndependentSet VertexCover

SubsetSum
HamiltonianPath

≤𝑘

≤𝑘

≤𝑘

≤𝑘



The Hardest Problem in NP

▪ We have built difficulty relations between many problems 
in NP.

▪ Does there exist a problem in NP that is the hardest?

▪ Definition. A decision problem 𝑓 is NP-hard if 𝑔 ≤𝑘 𝑓 for 
any problem 𝑔 ∈ NP.

▪ Definition. A decision problem 𝑓 is NP-complete if 𝑓 ∈ NP
and 𝑔 ≤𝑘 𝑓 for any problem 𝑔 ∈ NP.

▪ [Cook-Levin Theorem] SAT is NP-complete.



More NP-Complete Problems

▪ Cook-Levin Theorem implies the yellow arrows, since all the problems 
below are in NP.

▪ Each problem is NP-complete
– By transitivity: any NP problem reduce to SAT, and SAT reduce to each of these 

problems.

▪ These problems are “equally hard”, and are the hardest problems in NP.

SAT 3SAT

IndependentSet VertexCover

SubsetSumHamiltonianPath



Intuition behind Cook-Levin Theorem

▪ We have seen SAT is in NP.

▪ Consider an arbitrary NP problem 𝑓. We will show 𝑓 ≤𝑘 SAT.

▪ For a yes instance 𝑥, there exist a polynomial time TM 𝒜 and a 
polynomial length certificate 𝑦 such that 𝒜 accepts (𝑥, 𝑦).

▪ Consider a computation tableau that records the tape at every step 
of 𝒜’s execution.

𝑥0 𝑥1 𝑥2 … 𝑥𝑛 𝑦0 𝑦1 𝑦2 … 𝑦𝑚

1 1 0 0 0 1 1 1 1 0

1 1 1 0 0 1 1 1 1 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 1 1 0 0 0 1 1 0 0

𝑥 𝑦

Step 0

Step 1

Step 2

Final Step

⋮



Intuition behind Cook-Levin Theorem

▪ For each 𝑦𝑖 and each cell in the tape from Step 1 to the final 
step, construct a Boolean variable for the SAT instance.

▪ We can use clauses to ensure the tableau gives a valid TM 
computation.

▪ E.g., we can use two clauses 𝑥 ∨ ¬𝑦 ∧ ¬𝑥 ∨ 𝑦 to enforce 𝑥 = 𝑦.

𝑥0 𝑥1 𝑥2 … 𝑥𝑛 𝑦0 𝑦1 𝑦2 … 𝑦𝑚

1 1 0 0 0 1 1 1 1 0

1 1 1 0 0 1 1 1 1 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 1 1 0 0 0 1 1 0 0

𝑥 𝑦

Step 0

Step 1

Step 2

Final Step

⋮



Intuition behind Cook-Levin Theorem

▪ High-level Intuition: a CNF formula is sufficient to simulate
the execution of a Turing Machine!

▪ If 𝑥 for the NP problem 𝑓 is a yes instance, the CNF formula 
constructed can be satisfied:
– Assign 𝑦𝑖 = true if and only if the 𝑖-th bit of 𝑦 is 1.

– Assign each other variable the value corresponding to the value of 
the cell in the computation tableau.

▪ If 𝑥 for the NP problem 𝑓 is a no instance, the CNF formula 
constructed cannot be satisfied:
– Otherwise, we can find a certificate 𝑦 = 𝑦1𝑦2⋯𝑦𝑚 that fools the TM 

to accept (𝑥, 𝑦).



Solving a NP-complete problem implies P = NP

▪ Theorem. If 𝑓 is NP-complete and 𝑓 ∈ P, then P = NP.

▪ Proof. Suppose there is a polynomial time TM 𝒜 that 
decides 𝑓. We will show 𝑔 ∈ P for any 𝑔 ∈ NP.

▪ Since 𝑓 is NP-hard, 𝑔 ≤𝑘 𝑓, and let 𝒜′ be the polynomial 
time TM that does the reduction.

▪ Then 𝒜 ∘𝒜′ is the polynomial time TM that decides 𝑔.

▪ Thus, 𝑔 ∈ P.

▪ If you solve any of SAT, 3SAT, IndependentSet, VertexCover, 
SubsetSum, HamiltionianPath, you will be the greatest 
person in the 21st century!



P vs NP

P = NP P⊊NP

NP

P

NP-Complete



NP-Intermediate

▪ [Ladner’s Theorem] If P ≠ NP, then there exist decision 
problems that are neither in P nor NP-complete.

▪ Such problems are called NP-intermediate.

▪ However, we do not know any “natural” NP-intermediate 
problems.

P = NP P⊊NP

NP

P

NP-Complete

NP-Intermediate



NP-Hard vs NP-Complete

Difference between NP-hardness and NP-completeness:

▪ For decision problems: NP-complete = NP-hard + (in NP)
– There are NP-hard problems that are not in NP; these problems are 

even harder than NP-complete problems.

▪ NP-hardness can describe optimization problems:
– Maximum Independent Set is NP-hard

– Minimum Vertex Cover is NP-hard

– Max-3SAT is NP-hard

– Finding a longest simple path is NP-hard

– Etc.



VertexCover ≤𝑘 SubsetSum

▪ We first consider the following “vector version” of SubsetSum.

▪ [VectorSubsetSum] Given a collection of integer vectors 𝑆 =
{𝐚1, … , 𝐚𝑛: 𝐚𝑖 ∈ ℤ𝑚} and a vector 𝐤 ∈ ℤ𝑚, decide if there exists 𝑇 ⊆
𝑆 with σ𝐚𝑖∈𝑇

𝐚𝑖 = 𝐤.

▪ We will show that
1. VertexCover ≤𝑘 VectorSubsetSum

2. VectorSubsetSum ≤𝑘 SubsetSum



VertexCover ≤𝑘 VectorSubsetSum

▪ Given a VertexCover instance 𝐺 = 𝑉, 𝐸 , 𝑘 , we will. 
construct a VectorSubsetSum instance 𝑆, 𝐤 .

▪ First, we label the edges with 1, 2, … , |𝐸| (in arbitrary order).

▪ For each 𝑣𝑖 ∈ 𝑉, construct a 𝐸 + 1 -dimensional vector 
𝐚𝑖 ∈ 𝑆 such that 𝐚𝑖 0 = 1 and for each 𝑗 = 1,… , |𝐸|:

𝐚𝑖 𝑗 = ቊ
1 if 𝑣𝑖 is an endpoint of edge 𝑗
0 otherwise

▪ For each edge 𝑗, construct 𝐛𝑗 ∈ 𝑆 where 𝐛𝑗 𝑗 = 1 is the only 
non-zero entry.

▪ Let 𝐤 = 𝑘, 2,2,… , 2 .



Example

𝑣1

𝑣2 𝑣3

𝑣4

𝑘 = 3

𝐺 =

a VertexCover instance a VectorSubsetSum instance

𝐚1 = (1, 1, 1, 0, 0)

Edge 1 Edge 2

Edge 3

Edge 4

𝐚2 = (1, 1, 0, 1, 0)

𝐚3 = (1, 0, 1, 1, 1)

𝐚4 = (1, 0, 0, 0, 1)

𝐛1 = (0, 1, 0, 0, 0)

𝐛2 = (0, 0, 1, 0, 0)

𝐛3 = (0, 0, 0, 1, 0)

𝐛4 = (0, 0, 0, 0, 1)

𝐤 = 3, 2, 2, 2, 2



Ideas Behind the Reduction

▪ Picking 𝐚𝑖 ∈ 𝑇 represents picking 𝑣𝑖 in the vertex cover.

▪ The 0-th entry of 𝐤 is set to 𝑘, enforcing exactly 𝑘 vertices must 
be picked.

▪ The 𝑗-th entry of 𝐤 is set to 2 enforcing edge 𝑗 must be covered:
– Say, edge 𝑗 is (𝑣𝑖1 , 𝑣𝑖2)

– If 𝐚𝑖1 , 𝐚𝑖2 ∈ 𝑇, we are fine, as the 𝑗-th entries already add up to 2.

– If one of 𝐚𝑖1 , 𝐚𝑖2 is chosen in 𝑇, we are also fine, as we can include 𝐛𝑗 ∈ 𝑇.

– If 𝐚𝑖1 , 𝐚𝑖2 ∉ 𝑇, we are not fine: the 𝑗-th entries add up to at most 1 even if we 
include 𝐛𝑗 ∈ 𝑇.

▪ We are done! VertexCover ≤𝑘 VectorSubsetSum



VectorSubsetSum ≤𝑘 SubsetSum

▪ We can convert a vector 𝐚 = 𝐚 0 ,… , 𝐚 𝑚 to a large number.

▪ For example, convert 𝐚 = (1, 4, 5, 3) to number 1453
– 1453 = 𝐚 0 × 1000 + 𝐚 1 × 100 + 𝐚 2 × 10 + 𝐚 3 × 1

▪ We are using decimal representation in the above example…

▪ To avoid carry, use N-ary representation instead (for 
sufficiently large N)?

▪ Additions with vectors are now equivalent to additions with 
numbers, since we do not have carry issue.

▪ VectorSubsetSum ≤𝑘 SubsetSum



SubsetSum is NP-complete

▪ We have seen SubsetSum is in NP.

▪ We have proved
1. VertexCover ≤𝑘 VectorSubsetSum

2. VectorSubsetSum ≤𝑘 SubsetSum



This Lecture

▪ Learn what are P and NP

▪ Cook-Levin Theorem and NP-complete problems

▪ Reduction



Take Home Messages

▪ SAT (3SAT), VertexCover, IndependentSet, SubsetSum, 
HamiltonianPath are the hardest problems in NP, and they 
are NP-complete.

▪ Reduction is a effective tool to show one problem is 
“weakly harder” than another.


