
NP-Completeness, NP-
hardness for Optimization

Techniques for reductions, Proof writing guide, NP-hard
optimization problems

Last Lecture

▪ P: decision problems that can be decided efficiently

▪ NP: decision problems that can be verified efficiently

▪ Reduction is an effective tool to show one problem is
“weakly harder” than another.

▪ NP-Completeness describes the hardest problems in NP.

▪ Cook-Levin Theorem. SAT is NP-complete.

▪ 3SAT, VertexCover, IndependentSet, SubsetSum,
HamiltonianPath are NP-complete.

This Lecture

▪ Show more important NP-complete problems.

▪ Learn some elementary techniques for reduction.

▪ Learn how to write a formal proof for NP-completeness.

▪ NP-hard optimization problems.

Note 1: Choose the Right Problem to Reduce
from.

▪ Want to show an NP problem 𝑓 is NP-complete.

▪ Need to show 𝑔 ≤𝑘 𝑓 for some NP-complete problem 𝑔.

▪ Conceptually and in principle, 𝑔 ≤𝑘 𝑓 should hold for any
NP problem 𝑔.
– Choosing any NP-complete problem should work, e.g., SAT.

▪ However, choosing a suitable problem makes your life
much easier!

▪ If possible, choose 𝑔 that “looks similar to” 𝑓.

Dominating Set

▪ Given an undirected graph 𝐺 = (𝑉, 𝐸), a dominating set is a
subset of vertices 𝑆 such that, for any 𝑣 ∈ 𝑉 ∖ 𝑆, there is a
vertex 𝑢 ∈ 𝑆 that is adjacent to 𝑣.

a dominating set not a dominating set

Dominating Set Problem

▪ [DominatingSet] Given an undirected graph 𝐺 = (𝑉, 𝐸) and
an integer 𝑘 ∈ ℤ+, decide if 𝐺 contains a dominating set
with size 𝑘.

▪ Problem: Show that DominatingSet is NP-complete.

▪ Question: Which problem should we reduce from?

Reduction from VertexCover

▪ A dominating set is similar to a vertex cover:
– Vertex cover: 𝑆 covers edges

– Dominating set: 𝑆 covers vertices

▪ An idea for reduction:
– Introduce an intermediate vertex for each edge

– cover the edge ⟹ cover the intermediate vertex

𝑢 𝑣 𝑢 𝑣𝑤𝑢𝑣

Does it work?

Does it work? NO!

▪ New vertices are covered, but original vertices may not be covered!

▪ Can we fix it?

not a dominating seta vertex cover

Note 2: Fix your reduction if it doesn’t work.

▪ All we have to do: make the original vertices a clique!

▪ Now, selecting a single vertex in the original vertex set
covers all the original vertices.

1

2 3

4

1

2

3

4

1

2

3

4

𝑤12

𝑤13

𝑤23

𝑤24

𝑤34

original graph redraw it
our idea that
doesn’t work

1

2

3

4

𝑤12

𝑤13

𝑤23

𝑤24

𝑤34

fixing it

How to write a NP-Completeness Proof

Four Parts for proving 𝑓 is NP-complete:

1. Prove that 𝑓 is in NP

2. Present the reduction 𝑔 ≤𝑘 𝑓 for an NP-complete problem 𝑔

3. Show that yes instances of 𝑔 are mapped to yes instances of 𝑓

4. Show that no instances of 𝑔 are mapped to no instances of 𝑓
⚫ Most of the time, it is easier to prove its contrapositive: if an instance 𝑥 of 𝑔

is mapped to a yes instance of 𝑓, then 𝑥 is a yes instance of 𝑔.

DominatingSet is NP-complete
– a formal proof

Proof. First of all, DominatingSet is in NP, as a dominating set 𝑆 can be served
as a certificate, and it can be verified in polynomial time whether 𝑆 is a
dominating set and whether 𝑆 = 𝑘.

To show that DominatingSet is NP-complete, we present a reduction from
VertexCover. Given a VertexCover instance 𝐺 = 𝑉, 𝐸 , 𝑘 , we construct a
DominatingSet instance 𝐺′ = 𝑉′, 𝐸′ , 𝑘′ as follows.

The vertex set is 𝑉′ = 𝑉 ∪ 𝐸, which is defined as follows. For each vertex 𝑣 ∈ 𝑉 in
the VertexCover instance, construct a vertex 𝑣 ∈ 𝑉 ⊆ 𝑉′; for each edge 𝑒 ∈ 𝐸 in
the VertexCover instance, construct a vertex 𝑤𝑒 ∈ 𝐸 ⊆ 𝑉′.

The edge set 𝐸′ is defined as follows. For each edge 𝑒 = (𝑢, 𝑣) in the
VertexCover instance, build two edges 𝑢,𝑤𝑒 , 𝑣, 𝑤𝑒 ∈ 𝐸′. For any two vertices
𝑢, 𝑣 in 𝑉, build an edge 𝑢, 𝑣 .

Define 𝑘′ = 𝑘.

DominatingSet is NP-complete
– a formal proof (continued)

Proof (Continued).

Suppose 𝐺 = 𝑉, 𝐸 , 𝑘 is a yes VertexCover instance. There exists a vertex cover 𝑆 ⊆ 𝑉
with 𝑆 = 𝑘. We will prove 𝑆 corresponding 𝑆 is a dominating set in 𝐺′.

For each vertex in 𝑉, it is covered by any vertex in 𝑆 as 𝑉 forms a clique.

For each vertex 𝑤𝑒 in 𝐸, let 𝑒 = 𝑢, 𝑣 ∈ 𝐸 be the corresponding edge in the VertexCover
instance. We have either 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆 (or both), as 𝑆 is a vertex cover. This implies
either 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆 (or both), which further implies 𝑤𝑒 is covered as 𝑢, 𝑤𝑒 , 𝑣, 𝑤𝑒 ∈ 𝐸
by our construction.

Since 𝑆 = 𝑆 = 𝑘 = 𝑘′, the DominatingSet instance we constructed is a yes instance.

DominatingSet is NP-complete
– a formal proof (continued)

Suppose 𝐺′ = 𝑉′, 𝐸′ , 𝑘′ is a yes DominatingSet instance. There exists a

dominating set 𝑆′ ⊆ 𝑉′ = 𝑉 ∪ 𝐸 with 𝑆′ = 𝑘′ = 𝑘. We aim to show that (
)

𝐺 =
𝑉, 𝐸 , 𝑘 is a yes VertexCover instance.

First of all, we can assume 𝑆′ ⊆ 𝑉 without loss of generality. If we have 𝑤𝑒 ∈ 𝑆′

for some 𝑤𝑒 ∈ 𝐸, we can replace 𝑤𝑒 with either 𝑢 or 𝑣 for the edge 𝑒 = (𝑢, 𝑣) in
the VertexCover instance. (In the case 𝑢 and 𝑣 have already been included in 𝑆′,

we can replace 𝑤𝑒 with any unpicked vertex in 𝑉.) It is easy to see that 𝑆′ is still a
dominating set after the change, as the set of vertices covered by either 𝑢 or 𝑣
is a superset of the set of vertices covered by 𝑤𝑒 (which is just 𝑢, 𝑣).

Next, since 𝑆′ ⊆ 𝑉, 𝑆′ corresponds to a vertex set 𝑆 ⊆ 𝑉 in the VertexCover
instance with 𝑆 = 𝑆′ = 𝑘′ = 𝑘. It remains to show 𝑆 is a vertex cover.
For any edge 𝑒 = (𝑢, 𝑣), we have either 𝑢 ∈ 𝑆′ or 𝑣 ∈ 𝑆′ (or both) since 𝑆′ is a
dominating set and 𝑢, 𝑣 are the only two vertices that can cover 𝑤𝑒. This implies
𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆 (or both), so 𝑆 is a vertex cover.

Some Additional Notes

▪ Note 3: To prove a no instance is mapped to a no instance,
we often prove the contrapositive.

▪ Note 4: When proving the above-mentioned contrapositive
for 𝑔 ≤𝑘 𝑓, a common technique is to show that we can
assume the yes instance of 𝑓 is “well-behaved” that
corresponds to the yes instance of 𝑔.
– E.g., we prove that we can assume 𝑆′ ⊆ 𝑉 just now.

▪ Note 5: Do not mess up with the direction: a common
mistake is to construct a instance of 𝑔 from 𝑓, which only
shows 𝑓 ≤𝑘 𝑔 (which is not helpful).

Web of NP-complete Problems

SAT

3SAT

IndependentSet

VertexCover

DominatingSet

Clique

[Clique] Given an undirected graph 𝐺 = (𝑉, 𝐸)
and an integer 𝑘 ∈ ℤ+, decide if 𝐺 contains a
clique (a complete subgraph) with size 𝑘.

Note 6: Find an intermediate problem

▪ 𝑔 ≤𝑘 𝑓 where 𝑔 and 𝑓 look quite different.

▪ Find an intermediate problem ℎ that has similarities to both
𝑔 and 𝑓.

▪ Show that 𝑔 ≤𝑘 ℎ and ℎ ≤𝑘 𝑓.

VertexCover ≤𝑘 SubsetSum

▪ We first consider the following “vector version” of SubsetSum.

▪ [VectorSubsetSum] Given a collection of integer vectors 𝑆 =
{𝐚1, … , 𝐚𝑛: 𝐚𝑖 ∈ ℤ𝑚} and a vector 𝐤 ∈ ℤ𝑚, decide if there exists 𝑇 ⊆
𝑆 with σ𝐚𝑖∈𝑇

𝐚𝑖 = 𝐤.

▪ We will show that
1. VertexCover ≤𝑘 VectorSubsetSum

2. VectorSubsetSum ≤𝑘 SubsetSum

VertexCover ≤𝑘 VectorSubsetSum

▪ Given a VertexCover instance 𝐺 = 𝑉, 𝐸 , 𝑘 , we will
construct a VectorSubsetSum instance 𝑆, 𝐤 .

▪ First, we label the edges with 1, 2, … , |𝐸| (in arbitrary order).

▪ For each 𝑣𝑖 ∈ 𝑉, construct a 𝐸 + 1 -dimensional vector
𝐚𝑖 ∈ 𝑆 such that 𝐚𝑖 0 = 1 and for each 𝑗 = 1,… , |𝐸|:

𝐚𝑖 𝑗 = ቊ
1 if 𝑣𝑖 is an endpoint of edge 𝑗
0 otherwise

▪ For each edge 𝑗, construct 𝐛𝑗 ∈ 𝑆 where 𝐛𝑗 𝑗 = 1 is the only
non-zero entry.

▪ Let 𝐤 = 𝑘, 2,2,… , 2 .

Example

𝑣1

𝑣2 𝑣3

𝑣4

𝑘 = 3

𝐺 =

a VertexCover instance a VectorSubsetSum instance

𝐚1 = (1, 1, 1, 0, 0)

Edge 1 Edge 2

Edge 3

Edge 4

𝐚2 = (1, 1, 0, 1, 0)

𝐚3 = (1, 0, 1, 1, 1)

𝐚4 = (1, 0, 0, 0, 1)

𝐛1 = (0, 1, 0, 0, 0)

𝐛2 = (0, 0, 1, 0, 0)

𝐛3 = (0, 0, 0, 1, 0)

𝐛4 = (0, 0, 0, 0, 1)

𝐤 = 3, 2, 2, 2, 2

Ideas Behind the Reduction

▪ Picking 𝐚𝑖 ∈ 𝑇 represents picking 𝑣𝑖 in the vertex cover.

▪ The 0-th entry of 𝐤 is set to 𝑘, enforcing exactly 𝑘 vertices must
be picked.

▪ The 𝑗-th entry of 𝐤 is set to 2 enforcing edge 𝑗 must be covered:
– Say, edge 𝑗 is (𝑣𝑖1 , 𝑣𝑖2)

– If 𝐚𝑖1 , 𝐚𝑖2 ∈ 𝑇, we are fine, as the 𝑗-th entries already add up to 2.

– If one of 𝐚𝑖1 , 𝐚𝑖2 is chosen in 𝑇, we are also fine, as we can include 𝐛𝑗 ∈ 𝑇.

– If 𝐚𝑖1 , 𝐚𝑖2 ∉ 𝑇, we are not fine: the 𝑗-th entries add up to at most 1 even if we
include 𝐛𝑗 ∈ 𝑇.

▪ We are done! VertexCover ≤𝑘 VectorSubsetSum

VectorSubsetSum ≤𝑘 SubsetSum

▪ We can convert a vector 𝐚 = 𝐚 0 ,… , 𝐚 𝑚 to a large number.

▪ For example, convert 𝐚 = (1, 4, 5, 3) to number 1453
– 1453 = 𝐚 0 × 1000 + 𝐚 1 × 100 + 𝐚 2 × 10 + 𝐚 3 × 1

▪ We are using decimal representation in the above example…

▪ To avoid carry, use N-ary representation instead (for
sufficiently large N)?

▪ Additions with vectors are now equivalent to additions with
numbers, since we do not have carry issue.

▪ VectorSubsetSum ≤𝑘 SubsetSum

SubsetSum is NP-complete

▪ We have seen SubsetSum is in NP.

▪ We have proved
1. VertexCover ≤𝑘 VectorSubsetSum

2. VectorSubsetSum ≤𝑘 SubsetSum

SubsetSum+

▪ [SubsetSum+] Given a collection of positive integers 𝑆 =
{𝑎1, … , 𝑎𝑛} and 𝑘 ∈ ℤ+, decide if there is a sub-collection 𝑇 ⊆
𝑆 such that σ𝑎𝑖∈𝑇

𝑎𝑖 = 𝑘.

▪ SubsetSum+ is NP-complete
– The same proof for SubsetSum can prove this!

▪ Test your “sense of direction”: Which one holds trivially?
A. SubsetSum ≤𝑘 SubsetSum+

B. SubsetSum+ ≤𝑘 SubsetSum

Web of NP-complete Problems

SAT

3SAT

IndependentSet

VertexCover

DominatingSet

Clique

SubsetSum(+)

Partition Problem

▪ [Partition] Given a collection of integers 𝑆, decide if there is
a partition of 𝑆 to 𝐴 and 𝐵 such that σ𝑎∈𝐴 𝑎 = σ𝑏∈𝐵 𝑏.

▪ [Partition+] Given a collection of positive integers 𝑆, decide
if there is a partition of 𝑆 to 𝐴 and 𝐵 such that σ𝑎∈𝐴 𝑎 =
σ𝑏∈𝐵 𝑏.

▪ Exercise: Prove that both Partition and Partition+ are NP-
complete.

Web of NP-complete Problems

SAT

3SAT

IndependentSet

VertexCover

DominatingSet

Clique

SubsetSum(+)

Partition(+)

HamiltonianPath is NP-complete

▪ We have seen HamiltonianPath ∈ NP. It remains to show its
NP-hardness.

▪ Intermediate problem: DirectedHamiltonianPath
– [DirectedHamiltonianPath] Given a directed graph 𝐺 = (𝑉, 𝐸), a

source 𝑠 ∈ 𝑉 and a sink 𝑡 ∈ 𝑉, decide if there is a Hamiltonian path
from 𝑠 to 𝑡.

▪ We will show:
1. 3SAT ≤𝑘 DirectedHamiltonianPath

2. DirectedHamiltonianPath ≤𝑘 HamiltonianPath

Note 7: constructing “gadgets” – be creative!

3SAT ≤𝑘 DirectedHamiltonianPath

▪ Given a 3SAT instance 𝜙, we will construct a DirectedHamiltonianPath
instance.

▪ Let 𝑛 and 𝑚 be the number of variables and clauses respectively.

▪ “Variable Gadget”
entrance

exit

𝑥𝑖 …

3SAT ≤𝑘 DirectedHamiltonianPath

▪ There are two ways to go from “entrance” to “exit” that visit
the middle vertices.

▪ They will represent 𝑥𝑖 = true and 𝑥𝑖 = false respectively.

entrance

𝑥𝑖 = true

entrance

𝑥𝑖 = false… …

exit exit

3SAT ≤𝑘 DirectedHamiltonianPath

▪ Connect all the variable gadgets.

𝑥1 …

…

…

𝑠

𝑡

𝑥2

𝑥𝑛

⋮ ⋮ ⋮

3SAT ≤𝑘 DirectedHamiltonianPath

▪ Connect all the variable gadgets.

▪ An 𝑠-𝑡 simple path visiting all
middle vertices corresponds to
an assignment to all variables.

𝑥1 = true…

…

…

𝑠

𝑡

𝑥2 = false

𝑥𝑛 = true

⋮ ⋮ ⋮

3SAT ≤𝑘 DirectedHamiltonianPath

▪ Connect all the variable gadgets.

▪ An 𝑠-𝑡 simple path visiting all
middle vertices corresponds to
an assignment to all variables.

▪ Build a vertex 𝑣𝑗 for each clause 𝑗.

𝑥1 …

…

…

𝑠

𝑡

𝑥2

𝑥𝑛

⋮ ⋮ ⋮

⋮

𝑣1

𝑣2

𝑣3

𝑣𝑚

3SAT ≤𝑘 DirectedHamiltonianPath

▪ Inside the variable gadget, build 3𝑚 + 1 middle vertices
such that every two vertices corresponds to a clause
separated by a “separator”.

entrance

exit

𝑥𝑖 …

Clause 1 Clause 2 Clause 3

3SAT ≤𝑘 DirectedHamiltonianPath

▪ If 𝑥𝑖 is in 𝑗-th clause, connect the gadget to 𝑣𝑗 as follows.

entrance

exit

𝑥𝑖 …

Clause j

𝑣𝑗

…

3SAT ≤𝑘 DirectedHamiltonianPath

▪ If 𝑥𝑖 is in 𝑗-th clause, connect the gadget to 𝑣𝑗 as follows.

▪ If 𝑥𝑖 = true, 𝑗-th clause is satisfied, we can take a detour and visit 𝑣𝑗.

entrance

exit

𝑥𝑖 …

Clause j

𝑣𝑗

…

3SAT ≤𝑘 DirectedHamiltonianPath

▪ If ¬𝑥𝑖 is in 𝑗-th clause, connect the gadget to 𝑣𝑗 as follows.

entrance

exit

𝑥𝑖 …

Clause j

𝑣𝑗

…

3SAT ≤𝑘 DirectedHamiltonianPath

▪ If ¬𝑥𝑖 is in 𝑗-th clause, connect the gadget to 𝑣𝑗 as follows.

▪ If 𝑥𝑖 = false, 𝑗-th clause is satisfied, we can take a detour and visit 𝑣𝑗.

entrance

exit

𝑥𝑖 …

Clause j

𝑣𝑗

…

3SAT ≤𝑘 DirectedHamiltonianPath

If 𝜙 is a yes instance, the graph has a Hamiltonian path:

▪ For each clause, choose a representative true literature.

▪ Go from 𝑠 to 𝑡, and visit each 𝑣𝑗 from its representative by
taking a detour.

If the graph has a Hamiltonian path, 𝜙 is a yes instance:

▪ The Hamiltonian path has to go from 𝑠 to 𝑡.

▪ Each 𝑣𝑗 has to be visited by a detour from a variable.

▪ The variable’s value is then determined.

DirectedHamiltonianPath ≤𝑘 HamiltonianPath

▪ Vertex Gadget:

a vertex and its incident edges
DirectedHamiltonianPath instance

a vertex gadget and its incident edges
HamiltonianPath instance

𝑢

𝑢𝑖𝑛

𝑢𝑚𝑖𝑑

𝑢𝑜𝑢𝑡

DirectedHamiltonianPath ≤𝑘 HamiltonianPath

If 𝐺 is a yes DirectedHamiltonianPath instance, 𝐺′ is a yes
HamiltonianPath instance:

▪ Hamiltonian path in 𝐺: 𝑠 → 𝑢1 → 𝑢2 → ⋯ → 𝑢𝑛 → 𝑡

▪ Hamiltonian path in 𝐺′: 𝑠𝑖𝑛 → 𝑠𝑚𝑖𝑑 → 𝑠𝑜𝑢𝑡 → 𝑢1
𝑖𝑛 → 𝑢1

𝑚𝑖𝑑 →
𝑢1
𝑜𝑢𝑡 → 𝑢2

𝑖𝑛 → ⋯ → 𝑢𝑛
𝑜𝑢𝑡 → 𝑡𝑖𝑛 → 𝑡𝑚𝑖𝑑 → 𝑡𝑜𝑢𝑡

DirectedHamiltonianPath ≤𝑘 HamiltonianPath

If 𝐺′ is a yes HamiltonianPath instance, 𝐺 is a yes
DirectedHamiltonianPath instance:

Show that the yes HamiltonianPath instance is “well-behaved”

▪ Lemma 1. The path in 𝐺′ must start at 𝑠𝑖𝑛 and end at 𝑡𝑜𝑢𝑡.

DirectedHamiltonianPath ≤𝑘 HamiltonianPath

If 𝐺′ is a yes HamiltonianPath instance, 𝐺 is a yes
DirectedHamiltonianPath instance:

Show that the yes HamiltonianPath instance is “well-behaved”

▪ Lemma 1. The path in 𝐺′ must start at 𝑠𝑖𝑛 and end at 𝑡𝑜𝑢𝑡.

▪ Proof. 𝑠𝑖𝑛 and 𝑡𝑜𝑢𝑡 have degree 1, so they must be starting
and ending vertices.

▪ We can assume the path goes from 𝑠𝑖𝑛 to 𝑡𝑜𝑢𝑡

– Going from 𝑡𝑜𝑢𝑡 to 𝑠𝑖𝑛 is equivalent, as the graph is undirected.

DirectedHamiltonianPath ≤𝑘 HamiltonianPath

If 𝐺′ is a yes HamiltonianPath instance, 𝐺 is a yes
DirectedHamiltonianPath instance:

Show that the yes HamiltonianPath instance is “well-behaved”

▪ Lemma 1. The path in 𝐺′ must start at 𝑠𝑖𝑛 and end at 𝑡𝑜𝑢𝑡.

▪ Lemma 2. If we first enter a vertex gadget at 𝑢𝑖𝑛 (or 𝑢𝑜𝑢𝑡)
we must proceed to 𝑢𝑚𝑖𝑑 and then to 𝑢𝑜𝑢𝑡 (or 𝑢𝑖𝑛).

DirectedHamiltonianPath ≤𝑘 HamiltonianPath

If 𝐺′ is a yes HamiltonianPath instance, 𝐺 is a yes
DirectedHamiltonianPath instance:

Show that the yes HamiltonianPath instance is “well-behaved”

▪ Lemma 1. The path in 𝐺′ must start at 𝑠𝑖𝑛 and end at 𝑡𝑜𝑢𝑡.

▪ Lemma 2. If we first enter a vertex gadget at 𝑢𝑖𝑛 (or 𝑢𝑜𝑢𝑡)
we must proceed to 𝑢𝑚𝑖𝑑 and then to 𝑢𝑜𝑢𝑡 (or 𝑢𝑖𝑛).

▪ Proof. If we go to 𝑢𝑖𝑛 and do not proceed to 𝑢𝑚𝑖𝑑, we have
nowhere to go when we reach 𝑢𝑚𝑖𝑑 in the future.

▪ 𝑢𝑚𝑖𝑑 must be an endpoint of the path, contradicting to
Lemma 1.

DirectedHamiltonianPath ≤𝑘 HamiltonianPath

If 𝐺′ is a yes HamiltonianPath instance, 𝐺 is a yes
DirectedHamiltonianPath instance:

Show that the yes HamiltonianPath instance is “well-behaved”

▪ Lemma 1. The path in 𝐺′ must start at 𝑠𝑖𝑛 and end at 𝑡𝑜𝑢𝑡.

▪ Lemma 2. If we first enter a vertex gadget at 𝑢𝑖𝑛 (or 𝑢𝑜𝑢𝑡)
we must proceed to 𝑢𝑚𝑖𝑑 and then to 𝑢𝑜𝑢𝑡 (or 𝑢𝑖𝑛).

▪ Lemma 3. The pattern of the path must be 𝑖𝑛 → 𝑚𝑖𝑑 →
𝑜𝑢𝑡 → 𝑖𝑛 → 𝑚𝑖𝑑 → 𝑜𝑢𝑡 → ⋯

DirectedHamiltonianPath ≤𝑘 HamiltonianPath

If 𝐺′ is a yes HamiltonianPath instance, 𝐺 is a yes
DirectedHamiltonianPath instance:

Show that the yes HamiltonianPath instance is “well-behaved”

▪ Lemma 1. The path in 𝐺′ must start at 𝑠𝑖𝑛 and end at 𝑡𝑜𝑢𝑡.

▪ Lemma 2. If we first enter a vertex gadget at 𝑢𝑖𝑛 (or 𝑢𝑜𝑢𝑡)
we must proceed to 𝑢𝑚𝑖𝑑 and then to 𝑢𝑜𝑢𝑡 (or 𝑢𝑖𝑛).

▪ Lemma 3. The pattern of the path must be 𝑖𝑛 → 𝑚𝑖𝑑 →
𝑜𝑢𝑡 → 𝑖𝑛 → 𝑚𝑖𝑑 → 𝑜𝑢𝑡 → ⋯
– Proof. We start at 𝑠𝑖𝑛 (Lemma 1) and we must go to 𝑠𝑚𝑖𝑑 and 𝑠𝑜𝑢𝑡

(Lemma 2).

– Each 𝑢𝑜𝑢𝑡 is only connected to an 𝑣𝑖𝑛, and we need to proceed to
𝑣𝑚𝑖𝑑 and 𝑣𝑜𝑢𝑡 (Lemma 2).

DirectedHamiltonianPath ≤𝑘 HamiltonianPath

If 𝐺′ is a yes HamiltonianPath instance, 𝐺 is a yes
DirectedHamiltonianPath instance:

Show that the yes HamiltonianPath instance is “well-behaved”

▪ Lemma 1. The path in 𝐺′ must start at 𝑠𝑖𝑛 and end at 𝑡𝑜𝑢𝑡.

▪ Lemma 2. If we first enter a vertex gadget at 𝑢𝑖𝑛 (or 𝑢𝑜𝑢𝑡)
we must proceed to 𝑢𝑚𝑖𝑑 and then to 𝑢𝑜𝑢𝑡 (or 𝑢𝑖𝑛).

▪ Lemma 3. The pattern of the path must be 𝑖𝑛 → 𝑚𝑖𝑑 →
𝑜𝑢𝑡 → 𝑖𝑛 → 𝑚𝑖𝑑 → 𝑜𝑢𝑡 → ⋯

▪ Now we have a Hamiltonian path in 𝐺′ corresponding to a
path in 𝐺.

Web of NP-complete Problems

SAT

3SAT

IndependentSet

VertexCover

HamiltonianPath

DominatingSet

Clique

SubsetSum(+)

Partition(+)

Hamiltonian Cycle

▪ Given an undirected graph 𝐺 = (𝑉, 𝐸), a Hamiltonian cycle is
a cycle that visits each vertex exactly once.

▪ [HamiltonianCycle] Given an undirected graph 𝐺 = (𝑉, 𝐸),
decide if 𝐺 contains a Hamiltonian cycle.

▪ Exercise: Prove that HamiltonianCycle is NP-complete.

Web of NP-complete Problems

SAT

3SAT

IndependentSet

VertexCover

HamiltonianPath

DominatingSet

Clique

SubsetSum(+)

Partition(+)

HamiltonianCycle

Five Most Important NP-Complete Problems

Most NP-complete problems can be reduced from…

▪ 3SAT

▪ IndependentSet (Clique)

▪ VertexCover

▪ SubsetSum (Partition)

▪ HamiltonianPath (HamiltonianCycle)

Techniques we have seen…

1. Choose the right problem to reduce from

2. Fix the reduction by minor modifications

3. Show the contrapositive for the mapping of no instances

4. Show the yes instance being reduced to is “well-behaved”

5. Do not mess-up the direction

6. Introduce intermediate problems

7. Use gadgets – be creative

NP-Hard vs NP-Complete

Difference between NP-hardness and NP-completeness:

▪ For decision problems: NP-complete = NP-hard + (in NP)
– There are NP-hard problems that are not in NP; these problems are

even harder than NP-complete problems.

▪ NP-hardness can describe optimization/search problems

NP-hard Optimization Problems (Informal)

▪ A maximization problem is NP-hard if there exists 𝑘 ∈ ℝ
such that deciding whether OPT ≥ 𝑘 is NP-hard.

▪ A minimization problem is NP-hard if there exists 𝑘 ∈ ℝ
such that deciding whether OPT ≤ 𝑘 is NP-hard.

▪ If there exists a polynomial time algorithm to solve an NP-
hard optimization problem, then P = NP.
– If OPT can be computed in polynomial time, whether OPT ≥ 𝑘 (OPT ≤
𝑘) can also be decided in polynomial time.

– Solving an NP-hard decision problem in polynomial time implies P =
NP.

NP-hard Optimization Problem Examples

▪ [Max-3SAT] Maximizing the number of satisfying clauses.
– NP-hard to decide if OPT ≥ NumOfClauses

▪ [Max-IndependentSet] Maximizing the size of the
independent set.
– NP-hard to decide if OPT ≥ 𝑘

– Note: existence of 𝑘-independent set implies OPT ≥ 𝑘.

▪ [Min-VertexCover] Minimizing the size of the vertex cover.
– NP-hard to decide if OPT ≤ 𝑘

– Note: existence of 𝑘-vertex cover implies OPT ≤ 𝑘.

▪ [LongestPath] Maximizing the length of a simple path.
– NP-hard to decide if OPT ≥ |𝑉| (HamiltonianPath)

Makespan Minimization (Revisited)

▪ Makespan Minimization is NP-hard.

▪ Let 𝑘 =
1

2
σ𝑖=1
𝑛 𝑝𝑖.

▪ For even two machines, it is NP-hard to decide whether
optimal makespan ≤ 𝑘.

▪ An obvious reduction from Partition.

Travelling Salesman Problem (TSP)

▪ [TSP] Given a list of cities and the distances between each
pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?

▪ [TSP (Formulation)] Given a weighted and complete
undirected graph 𝐺 = (𝑉, 𝐸 = 𝑉 × 𝑉,𝑤), find a Hamiltonian
cycle with minimum length.

▪ Differences with HamiltonianCycle:
– A Hamiltonian cycle always exists for TSP

– But the graph is weighted, we need to optimize the path length

TSP is NP-hard

▪ Given a HamiltonianPath instance 𝐺 = (𝑉, 𝐸), we construct a
TSP instance 𝐺 = (𝑉′, 𝐸′, 𝑤) such that
– 𝑉′ = 𝑉

– 𝑤 𝑢, 𝑣 = 1 if 𝑢, 𝑣 ∈ 𝐸

– 𝑤 𝑢, 𝑣 = |𝑉|2615 is a very large number if 𝑢, 𝑣 ∉ 𝐸

▪ It’s NP-hard to decide if optimal tour has length at most |𝑉|.

TSP is even hard to “approximate”!

▪ Theorem. Suppose P ≠ NP. There is no polynomial time 𝛼-
approximation algorithm for TSP for any 𝛼 ≥ 1 that may depend
on the instance.

▪ Theorem holds for exponentially large 𝛼, e.g., 𝛼 = 2615 𝑉 2615|𝑉|.

▪ Proof. Change |𝑉|2615 to 𝛼 𝑉 + 1 in the previous reduction.

▪ Yes HamiltonianCycle instance ⟹ OPTTSP = |𝑉|

▪ No HamiltonianCycle instance ⟹ OPTTSP ≥ 𝛼 𝑉 + 1

▪ Let ALG be the output of an 𝛼-approximation algorithm 𝒜.

▪ ALG ≤ 𝛼 𝑉 ⟹ yes HamiltonianCycle instance

▪ ALG ≥ 𝛼 𝑉 + 1 ⟹ no HamiltonianCycle instance

This Lecture

▪ Show more important NP-complete problems.
– DominatingSet

– SubsetSum (Partition)

– HamiltonianPath (HamiltonianCycle)

▪ Learn some elementary techniques for reduction.

▪ Learn how to write a formal proof for NP-completeness.

▪ NP-hard optimization problems
– Makespan Minimization

– TSP

