"NP-Completeness, NP-
hardness for Optimization

Techniques for reductions, Proof writing guide, NP-hard
optimization problems

Last Lecture '

s = - —— - ——— o — — -

= P: decision problems that can be decided efficiently
= NP: decision problems that can be verified efficiently

. Reduction is an effective tool to show one problem is
“weakly harder” than another.

- NP-Completeness describes the hardest problems in NP.

= Cook-Levin Theorem. SAT is NP-complete.

= 3SAT, VertexCover, IndependentSet, SubsetSum,
HamiltonianPath are NP-complete.

This Lecture '

e—

Show more important NP-complete problems.

Learn some elementary techniques for reduction.

Learn how to write a forma proof for NP-completeness.

NP-hard optimization problems.

Note 1: Choose the Right Problem to Reduce
from.

S ——— = - — - — —————

= Want to show an NP problem f is NP-complete.
= Need to show g < f for some NP-complete problem g.

. Conceptually and in principle, g <; f should hold for any
NP problem g.

- Choosing any NP-complete problem should work e.g.; SAT

= However, choosing a suitable problem makes your life
much easier!

- If possible, choose g that “looks similar to” f.

Dominating Set

— - S = s —_— - — s e e

= Given an undlrected graph G = (V,E), a dominating set is a
- subset of vertices S such that, forany v e V' \ S, there IS a
- vertex u € S that is adjacent to v.

a dominating set not a dominating set

Dominating Set Problem

——— = - —

= [DominatingSet] Given an undirected graph ¢ = (V,E) and
an integer k € Z*, decide if G contains a dominating set
- with size k. A

= Problem: Show that DominatingSet is NP-complete.

= Question: Which problem should we reduce from?

Reduction from VertexCover

E————

= A dominating set is similar to a vertex cover:

- Vertex cover: S covers edges
- Dominating set: S covers vertices

= An idea for reduction:
- Introduce an intermediate vertex for each edge
- cover the edge = cover the intermediate vertex

® ® m) ®

u v . u

Does it work?

Does it work? NO! | |

S

a vertex cover ' not a dominating set

- New vertices are covered, but original vertices may not be covered!

- Can we fix it?

Note 2: Fix your reduction if it doesn't work.

— - e - = - ——

= All we have to do: rhake the original vertices a clique!

= Now, selecting a single vertex in the original vertex set
covers all the original vertices.

1 ; s | 1

2 e

e 3

3

4 5
p o A our idea that
fopagrap e doesn’t work fixing it

How to write a NP-Completeness Proof

S ——— = - — = - — ————— = —

Four Parts for proving f is NP-complete:

1. Prove that f isin NP

2. Present thé reduction g <, f for an NP-complete problem g
3. Show that yes instances of g are mapped to yes instances of f

4. Show that no instances of g are mapped to no instances of f

® Most of the time, it is easier to prove its contrapositive: if an instance x of g
is mapped to a yes instance of f, then x is a yes instance of g.

DominatingSet is NP-complete
— a formal proof

et = - —e—

Proof. First of all, DominatingSet is in NP, as a dominating set S can be served
as a certificate, and it can be verified in polynomial time whether S is a
dominating set and whether [S]| = k.

To show that DominatingSet is NP-complete, we present a reduction from
VertexCover. Given a VertexCover instance (G = (V,E), k), we construct a
DominatingSet instance (G¢' = (V',E'), k') as follows. |

The vertex set is V' = V U E, which is defined as follows. For each vertex v € V in
the VertexCover instance, construct a vertex v € V. c V’; for each edge e € E in
the VertexCover instance, construct a vertex w, e EC V',

The edge set E' is defined as follows. For each edge e = (i, v) in the :
VertexCover instance, build two edges (u,w,), (v,w,) € E'. For any two vertices

u,v in V, build an edge (w,v).
Defin‘e e &

————— e — — - =

DominatingSet is NP-complete
— a formal proof (continued)

————— = - — = - — ———— = — = S

Proof (Continued).

Suppose (G = (V,E), k) is a yes VertexCover instance. There exists a vertex cover S €V
with |S| = k. We will prove S corresponding S is a dominating set in G'.

For each vertex in V, it is covered by any vertex in S as V forms a clique.

For each vertex w, in E, let e = (u,v) € E be the corresponding edge in the VertexCover
instance. We have either u € S or v € S (or both), as S is a vertex cover. This implies

either u € S or v € S (or both), which further implies w, is covered as (u,w,), (v,w,) € E
by our construction.

Since |S| = |S| = k = K, the DominatingSet instance we constructed is a yes instance.

DominatingSet is NP-complete
— a formal proof (continued)

Suppose (G' = (V',E"), k') is a yes DominatingSet instance. There exists a
dominating set S’ € V' = V U E with |S| = k' = k. We aim to show that (G =
(V,E), k) is a yes VertexCover instance. _
First of all, we can assume S’ € V without loss of generality. If we have w, € 5’

for'some w, € E, we can replace w, with either u or v for the edge e = (4, v) in
the VertexCover instance. (In the case u and v have already been included in &/,

we can replace w, with any unpicked vertex in V) It is easy to see that S’ is still a
dominating set after the change, as the set of vertices covered by either u or v
is a superset of the set of vertices covered by w, (which is just {u,v}).

Next, since S’ €V, S’ corresponds to a vertex set S € V in the VertexCover
instance with |S| = |S'| = k' = k. It remains to show S is a vertex cover.

For any edge e = (u,v), we have eitheru € S’ or v € S’ (or both) since §' is a
dominating set and u, v are the only two vertices that can cover w,. This implies
u € Sorv e S (or both), so S is a vertex cover.

——— —— e =T -

Some Additional Notes

S — < - - ———

= Note 3: To prove a no instance is mapped to a no mstance
- we often prove the contrapositive.

. Note 4: When proving the above-mentioned contrapositive
for g <, f, acommon technique Is to show that we can ~
assume the yes instance of f is “well-behaved” that
corresponds to the yes instance of g.

- E.g., we prove that we can assume = V just now.

= Note 5: Do not mess up with the direction: a common
mistake is to construct a instance of g from f, which only
shows f <, g (WhICh is not helpful).

Web of NP-complete Problems

— - S = - — - —_— = S N e o S0 g

[Clique] Given én'undirected graph G = (V,E)

and an integer k € Z*, decide if G contains a
cliqgue (a complete subgraph) with size k.

Note 6: Find an intermediate problem

E————

? g <¢ f Where g and f look quite different.

= Find an intermediate problem h that has similarities to both
- gandf. |

= Show that g <, h and h <k f.

VertexCover <, SubsetSum

e = x = - - — Do ieSes — e s

= We first consider the following “vector version” of SubsetSum.

. [VectorSubsetSUm] Given a collection of integer vectors S =

fa,,..,a,:a; € Z™} and a vector k € Z™, decide if there exists T c
S with Yaera; =k

= We will show that

1. VertexCover <; VectorSubsetSum
Z. VectorSubsetSum <, SubsetSum

VertexCover <, VectorSubsetSum

—

Given a VertexCover instance (G = (V,E), k), we will
- construct a VectorSubsetSum instance (S, k).

First, we label the edges with 1,2, ..., |E] (in arbitrary order).

For each v; € V, construct a (|E| + 1)-dimensional vector |
a; € S such that ai{O] =1and foreachj=1,..,|E|:

a il 1 ifv; is an’endpoint of edge j
; 0 otherwise

For each edge j. construct b; € S where b;[j] =1 is the only
non-zero entry. :

Let k = (k, 2,2, ..., 2).

Example

4 L 1,1 020)
. a,=(1, 1, 0, .1, 0)

Edge1/ "\ Edge? (L0 1D

- i Ak 0 D0
2 Edged 0 e)
Edge 4 b,=(0, 0, 1, 0, 0)

. * b;=(0, 0, 0, 1, 0)

o ~ by=(0, 0, 0, 0, 1)

s | ki 7 2 50

a VertexCover instance a VectorSubsetSum instance

Ideas Behind the Reduction

————— = - — = - — ———— = — = S

» Picking a; € T represents picking v; in the vertex cover.

= The 0-th entry of k Is set to k, enforcing exactly k vertices must
be picked. |

= The j-th entry of k is set to 2 enforcing edge j must be covered:
- Say, edge j is (v;,,v;,) ~
- Ifa; ,a;, € T, we are fine, as the j-th entries aIready add up to 2.
- If one of a; ,a;, is chosen in T, we are also fine, as we can include b; € T.

- If a; ,a;, ¢ T, we are not fine: the j-th entries add up to at most 1 even If we
include b; €T. -

= We are done! VertexCover <, VectorSubsetSum

VectorSubsetSum <, SubsetSum

S ——— = - — = - — ———— = — = S

We can convert a vector a = (a[0], ...,a[m]) to a large humber.

For example, convert a = (1,4,5,3) to number 1453
-~ 1453 = a[0] x 1000 + a[1] x 100 + a[2] x 10 + a[3] x 1

We are using decimal representation in the above example...

To avoid carry, use N-ary representation instead (for
sufficiently large N)?

Additions with vectors are now equivalent to additions with
numbers, since we do not have carry issue.

VectorSubsetSum <, SubsetSum

SubsetSum is NP-complete

E——

= We have seen SubsetSum is in NP.

= We have proved
1. VertexCover <; VectorSubsetSum
2. VectorSubsetSum <, SubsetSum

SubsetSum+ |

e - = - — - —_— e

« [SubsetSum+] Give'n a collection of positive integers S =
{ay,...,a,} and k € Z*, decide if there is a sub- coIIectlon T C

=S such that ¥, cra; = k.

. SubsetSum+ is NP-complete
- The same proof for SubsetSum can prove this!

. Test your “sense of direction”: Which one holds tr|V|aIIy7

A. SubsetSum <, SubsetSum-+
B. SubsetSum+ <, SubsetSum

-~ Web of NP.co'mpIete P“roblems" "

— = =S = - —— - —=c ~ A e

Partition Prob’lem

S — < = - ———

[Partltlon] leen a coIIectlon of integers S, decide if there i IS
a partition of StoAand B suchthat} - a=Y,5b.

[Part|t|0n+] leen a collection of positive integers S, “decide
if there is a partition of S to A and B such that ZaeAa e

2pep b

. Exercise: Prove that both Partition and Part|t|on+ are NP-
complete. -

-~ Web of NP.co'mpIete P“roblems" "

— = =S = - —— - —=c ~ A e

HamiltonianPath is NP-complete

S ————

» We have seen HamlltonlanPath e NP. It remains to show |ts
NP- hardness

. Intermediate problem: DirectedHamiltonianPath

- [DirectedHamiltonianPath] Given a directed graph ¢ = (V,E), a

source s € V and a sink t € V, decide if there is a Hamlltonlan path
from's to t.

« We will show:

1. 3SAT <, DirectedHamiltonianPath
Z. DirectedHamiltonianPath <, HamiltonianPath

Note 7: constructing “gadgets” — be creative!

— - — - —— . — e P i I

- 3SAT <, DirectedHamiltonianPath

= Given a 3SAT instance ¢, we will construct a DlrectedHamlltonlanPath
instance. -

+ Let n and m be the number of variables and clauses respectively.
= “Variable Gadget” |

- entrance
@

_p.’__
exIt

x; = true

3SAT ﬁk DirectedHamiltonianPath

e— . - - —_— . pa MR &~ e e i !

. There are two ways to go from “entrance” to “exit” that VISIt
~ the middle vertlces

. They will represent x; = true and x; = false respectivély.

entrance . ' entrance
o ' o

x; = false

exit exit

3SAT < DirectedHamiltonianPath ‘

. Connect all the variable gadgets.

X1 = true

3SAT <4, DirectedHamiltonianPath ‘

. Connect all the variable gadgets.
= An s-t 5|mple path VIS|t|ng all ‘
middle vertices corresponds to X, = false

~an assignment to all variables.

X, = true

3SAT <4, DirectedHam’iltonianPath ‘

. Connect all the variable gadgets.

» An s-t 5|mple path V|S|t|ng all
middle vertices corresponds to
~an assignment to all variables.

= Build a vertex v; for each clause ;.

3SAT §k DirectedHamiltonianPath

S — < - - ———

= Inside the variable gadget build 3m + 1 middle vertices
- such that every two vertices corresponds to a cIause
- separated by a “separator”.

entrance

Lessssnnnnnnnnnnnn Lesssssssnsnnmssse Ssssssssssssmmsmam

Clause 1 Clause 2 - Clause 3

s If x; Qs in j-th clause, connect the gadget to v; as follows.

3SAT Sk DirectedHamiltohi'anPath

— = e - = - ——

entrance —

3SAT ﬁk DirectedHamiltonianPath

— < - - —— : Tt LD Ly e !

= If x; is in j-th clause, connect the gadget to v; as follows.
= If x; = true, j-th clause is satisfied, we can take a detour and visit v;.

entrance — _Uj
—

—p O-—
exit

3SAT Sk DirectedHamiltohi'anPath

— = e - = - —— - —=- ~

e If axg isin j-th clause, connect the gadget to v; as follows.

entrance ® ,Uj

3SAT ﬁk DirectedHamiltonianPath

— < - - — : e L e g 4

= If —x; is in j-th clause, connect the gadget to v; as follows.
= If x; = false, j-th clause is satisfied, we can take a detour and visit v;.

entrance -0 _Uj
—9

— 04—
exit

3SAT <, DirectedHamiltonianPath

S ——— = - — = - — ———— = — = S

It ¢ is a yes instance, the graph has a Hamiltonian path:

= For each clause, choose a representative true literature.

« Go from s to ¢, and visit each v; from its representative by
taking a detour.

If the graph has a Hamiltonian path, ¢ is a yes instance:

= The Hamiltonian path has to go froms to ¢.
» Each v; has to be visited by a detour from a variable.

= The variable’s value is then determined.

DirectedHamiltonianPath <, HamiltonianPath

= - = - —— - ———— — === s X

? Vertex Gadget:

% .
/\

a vertex and its incident edges a vertex gadget and its incident edges
DirectedHamiltonianPath instance HamiltonianPath instance

DirectedHamiltonianPéth <i HamiltonianPath

IfGis a yes DlrectedHamlltonlanPath instance, G'is a yes
HamlltonlanPath mstance

= Hamiltonian pathinG:s > uy s uy - - s u, = t

= Hamiltonian path in G': s > gMid 5 gout _, yif _, mid
ugut =5 uén = ugut 25 tm = tmld e tout

DirectedHamiltonianPath <, HamiltonianPath

If G’ is a yes HamiltonianPath instance, G is a yes

 DirectedHamiltonianPath instance:

Show that the yes HamiltonianPath instance is “well-behaved”

. Lemma 1. The path in G’ must start at s'* and end at ¢°%,

———— — — - — o — — =

DirectedHamiltonianPath <, HamiltonianPath

=, X - V— — 4 — i ——— —— -

If G’ is a yes HamiltonianPath instance, G is a yes
DirectedHamiltonianPath Instance:

Show that the yes HamiltonianPath instance is “well-behaved”
. Lemma 1. The path in G’ must start at s'* and end at ¢°%,

= Proof. s and t°%“ have degree 1, so they must be starting
and ending vertices.

= We can assume the path goes from s to t°%
- Going from t°%t to s is equivalent, as the graph is undirected.

DirectedHamiltonianPath <, HamiltonianPath

1t G is ayes HamiltonianPath instance, G is a yes
DirectedHamiltonianPath Instance:

Show that the yes HamiltonianPath instance is “well-behaved”
: Lemma 1. The path in G’ must start at s'* and end at ¢°%,

- Lemma 2. If we first enter a vertex gadget at u'* (or u°*)
we must proceed to u™¢ and then to u°“t (or u'®).

DirectedHamiltonianPath <, HamiltonianPath

If G’ is a yes HamiltonianPath instance, G is a yes
DirectedHamiltonianPath Instance:

Show that the yes HamiltonianPath instance is “well-behaved”
. Lemma 1. The path in G’ must start at s'* and end at ¢°%,

» Lemma 2. If we first enter a vertex gadget at u'™ (or u°%t)
we must proceed to u™¢ and then to u®%“ (or u'™).

~ = Proof. If we go to u™* and do not proceed to u™*¢, we have
nowhere to go when we reach u™? in the future.

= u™4 must be an endpomt of the path, contradicting to
Lemma 1.

DirectedHamiltonianPath <, HamiltonianPath

1t G is ayes HamiltonianPath instance, G is a yes
DirectedHamiltonianPath Instance:

Show that the yes HamiltonianPath instance is "well-behaved”
. Lemma 1. The path in G’ must start at s'* and end at ¢°%,

- Lemma 2. If we first enter a vertex gadget at u'* (or u°*)
we must proceed to u™¢ and then to u°“t (or u'®).

- = Lemma 3. The pattern of the path must be in - mid —
out = in - mid - out - -

DirectedHamiltonianPath <, HamiltonianPath

If G’ is a yes HamiltonianPath instance, G is a yes

 DirectedHamiltonianPath instance:

Show that the yes HamiltonianPath instance is "well-behaved”
. Lemma 1. The path in G’ must start at s'* and end at ¢°%,

- Lemma 2. If we first enter a vertex gadget at u'* (or u°*)
we must proceed to u™¢ and then to u°“t (or u'®).

- = Lemma 3. The pattern of the path must be in - mid —

out — in » mid — out - --:

- Proof. We start at s* (Lemma 1) and we must go to s™¢ and s°%¢
(Lemma 2).

- Each u°“ is only connected to an v'", and we need to proceed to
v™4 and v°%t (Lemma 2).

—— - — —

DirectedHamiltonianPath <, HamiltonianPath

If G’ is a yes HamiltonianPath instance, G is a yes
DirectedHamiltonianPath Instance:

Show that the yes HamiltonianPath instance is “well-behaved”
. Lemma 1. The path in G’ must start at s'* and end at ¢°%,

- Lemma 2. If we first enter a vertex gadget at u'* (or u°*)
we must proceed to u™¢ and then to u°“t (or u'®).

- = Lemma 3. The pattern of the path must be in - mid —
out = in - mid - out - -

- Now we have a Hamiltonian path in ¢’ corresponding to a
path in G.

-~ Web of NP.co'mpIete P“roblems" "

— = =S = - —— - —=c ~ A e

Hamiltonian Cycle

E————

=

leen an undlrected graph G = (V,E), a Hamiltonian cycle i IS
~ acycle that visits each vertex exactly once.

[HamlltonlanCycIe] Given an undirected graph G = (V E)
decide if G contains a Hamiltonian cycle.

= Exercise: Prove that HamiltonianCycle is NP—compIete.

-~ Web of NP.co'mpIete P“roblems" "

— = =S = - —— - —=c ~ A e

Five Most I’mportant NP-Complete Problems

S ——— = - — = —— - — — —= -

Most NP-complete problems can be reduced from...
= 3SAT |

. IhdépendehtSet (Clique)

- VertexCover

» SubsetSum (Partition)

= HamiltonianPath (HamiltonianCycle) |

Techniques we have seen...

N o A w2

—

Choose the right problem to reduce from

. Fix the reduction by minor modifications

Show the contrapositive for the mapping of no instances

Show the yes instance being reduced to is “well-behaved”
Do not mess-up the direction
Introduce intermediate problems

Use gadgets — be creative

NP-Hard vs NP-Complete

>, X ' V— i 5 = i ——— == -— = - =

Difference between NP-hardness and NP-completeness:

= For decision problems: NP-complete = NP-hard + (in NP)

- There are NP-hard problems that are not in NP; these problems are
even harder than NP-complete problems.

. NP-hardness can describe optimization/search prc)blems

NP-hard O'ptimization Problems (Informal)

—

= A maximization problem is NP-hard if there exists k € R
- such that deciding whether OPT > k is NP-hard.

« A minimization problem is NP-hard if there exists k € R
such that deciding whether OPT < k is NP-hard.

= If there exists a polynomial time algor,ithm' to solve an NP-
hard optimization problem, then P = NP.

- If OPT can be computed in polynomial time, whether OPT > k (OPT <
k) can also be decided in polynomial time.

- Solving an NP-hard decision problem in polynomial time implies P =
NP. ' :

NP-hard O’ptimization Problem Examples

= = — - — i ———— == =

[Max-3SAT] Maximizing the number of satisfying clauses.
- NP-hard to decide if OPT = NumOfClauses

[Max-IndependentSet] Maximizing the size of the
Independent set.

- NP-hard to decide if OPT > k

- Note: existence of k-independent set implies OPT > k.

[Min-VertexCover] Minimizing the size of the vertex cover.

- NP-hard to decide if OPT < k
- Note: existence of k-vertex cover implies OPT < k.

[LongestPath] Maximizing the length of a simple path.
- NP-hard to decide if OPT = |V| (HamiltonianPath)

Makespan Minimization (Revisited)

 Makespan Minimization is NP-hard.

* Letk =-37,p;.

« For even two machines, it is NP-hard to deC|de whether ‘
optimal makespan < k.

. An obvious reduction from Partition.

Travelling Salesman Problem (TSP)

= - = . —

= [TSP] Given a list of cities and the distances between each
pair of cities, what is the shortest possible route that visits
- each city exactly once and returns to the origin city?

= [TSP (Formulation)] Given a weighted and complete
undirected graph G = (V,E =V XV, w) find a Hamlltonlan
cycle with minimum length.

- Differences with HamlltonlanCycIe°
- - A Hamiltonian cycle always exists for TSP
- But the graph is weighted, we need to optimize the path Iength

TSP is NP-hard

—

= Given a HamiltonianPath instance ¢ = (V,E), we construct a
TSP mstance G =V E, w) such that

=V =
- w(y, v)—llf(u v) EE
- w(u,v) = |V|?%1° is a very large number if (u,v) ¢ E

= It's NP-hard to decide if optimal tour has length at most |V].

—————— s — — S

11
.

TSP is even hard to “approximate

- = - — - ——— e e 3

+» Theorem. Suppose P = NP. There is no polyno'mial time a-
approximation algorithm for TSP for any a = 1 that may depend

~on the instance. , _

. Theorem holds for exponentially large a, e.q., & = (2615[V[)2615IV!.

= Proof. Change |V|%%1> to a|V| + 1 in the previous reduction.

= Yes HamiltonianCycle instance = OPTgp = V]|

= No HamiltonianCycle instance = OPTqysp = a|V|+1

- Let ALG be the output of an a-approximation algorithm 4.

» ALG < a|V| = yes HamiltonianCycle instance

= ALG=alV|+1 = no HamiltonianCycle instance

This Lecture '

S ————

Show more important NP-complete problems.
- - DominatingSet |

- SubsetSum (Partition)

- HamiltonianPath (HamiltonianCycle)

Learn some elementary techniques for reduction.

Learn how to write a formal proof for N P-completeness.

NP-hard optimization problems

- Makespan Minimization
- TSP

