
Approximation 
Algorithms

1. One more example of reduction: 𝑘-means
2. approximation algorithms



Proving 𝑓 is NP-complete

▪ Prove 𝑓 ∈ NP.

▪ Find an NP-complete problem 𝑔 and prove 𝑔 ≤𝑘 𝑓.



Reduction: 𝒜 computes 𝑔 ≤𝑘 𝑓

▪ 𝑥 ↦ 𝑦 under poly-time TM 𝒜

▪ 𝑥 is yes ⟹ 𝑦 is yes

▪ 𝑥 is no  ⟹ 𝑦 is no

𝑔 𝑓

yes instances

no instances

yes instances

no instances

𝒜



Reduction: 𝒜 computes 𝑔 ≤𝑘 𝑓

▪ 𝑥 ↦ 𝑦 under poly-time TM 𝒜

▪ 𝑥 is yes ⟹ 𝑦 is yes

▪ 𝑥 is no  ⟹ 𝑦 is no

𝑔 𝑓

𝒜

𝑥 𝑦 Given any 𝑔 instance 𝑥,
Compute the 𝑓 instance 
𝑦 = 𝒜(𝑥).

▪ A poly-time TM ℬ solving 𝑓

▪ ⟹ The TM ℬ ∘ 𝒜 solves 𝑔



Reduction: 𝒜 computes 𝑔 ≤𝑘 𝑓

▪ 𝑥 ↦ 𝑦 under poly-time TM 𝒜

▪ 𝑥 is yes ⟹ 𝑦 is yes

▪ 𝑥 is no  ⟹ 𝑦 is no

𝑔 𝑓

𝒜

𝑥 𝑦 Decide if 𝑦 is a yes 
instance for 𝑓 using ℬ. 

▪ A poly-time TM ℬ solving 𝑓

▪ ⟹ The TM ℬ ∘ 𝒜 solves 𝑔

ℬ 𝑦 = yes? no?



Reduction: 𝒜 computes 𝑔 ≤𝑘 𝑓

▪ 𝑥 ↦ 𝑦 under poly-time TM 𝒜

▪ 𝑥 is yes ⟹ 𝑦 is yes

▪ 𝑥 is no  ⟹ 𝑦 is no

𝑔 𝑓

𝒜

𝑥 𝑦𝑦 is yes ⟹ 𝑥 is yes
𝑦 is no   ⟹ 𝑥 is no

▪ A poly-time TM ℬ solving 𝑓

▪ ⟹ The TM ℬ ∘ 𝒜 solves 𝑔

ℬ 𝑦 = yes? no?This is crucial for a 
reduction to work!



Four Steps for a NP-completeness Proof

1. Prove 𝑓 ∈ NP.

2. Construct the reduction 𝑔 ≤𝑘 𝑓. 
– Fix an instance 𝑥 of 𝑔. Describe the corresponding 𝑓 instance 𝑦.

3. [Completeness] 𝑥 is yes ⟹ 𝑦 is yes

4. [Soundness] 𝑥 is no ⟹ 𝑦 is no
– Proving the contrapositive “𝑦 is yes ⟹ 𝑥 is yes” is often easier.



NP-hardness for Optimization Problems

Optimization to Decision:

▪ Maximization → decide whether OPT ≥ 𝑘

▪ Minimization  → decide whether OPT ≤ 𝑘

▪ A maximization problem is NP-hard if there exists 𝑘 ∈ ℝ
such that deciding whether OPT ≥ 𝑘 is NP-hard.

▪ A minimization problem is NP-hard if there exists 𝑘 ∈ ℝ
such that deciding whether OPT ≤ 𝑘 is NP-hard.



𝑘-Means

▪ Input: 𝑆 = 𝐱: 𝐱 ∈ ℝ𝑑 and 𝑘 ∈ ℤ+

▪ Output:
1. Partition of 𝑆 = 𝐶1 ∪ 𝐶2 ∪⋯∪ 𝐶𝑘
2. A “center” 𝐜𝑖 ∈ ℝ𝑑 for each cluster 𝐶𝑖

that minimizes σ𝑖=1
𝑘 σ𝐱∈𝐶𝑖

𝐱 − 𝐜𝑖
2

▪ Only need to specify either output 
1 or output 2:
– Given clusters, optimal centers are easy 

to compute…

– Same holds for giving centers.

Image from: 
https://www.osapublishing.org/oe/fulltext.cfm?uri=o
e-25-22-27570&id=375887



Proving 𝑘-Means Is NP-Hard

Decision version: 

▪ Decide if there exist 𝐶1, … , 𝐶𝑘 and 𝐜1, … , 𝐜𝑘 s.t.

෍
𝑖=1

𝑘

෍

𝐱∈𝐶𝑖

𝐱 − 𝐜𝑖
2 ≤ 𝜃.

▪ We will show the decision problem is NP-complete.
– NP-hardness would be suffice, but it is NP-complete anyway…

▪ We will define the threshold 𝜃 later.



Step 1: 𝑘-Means ∈ NP

▪ This is obvious…

▪ Certificate can be
– 𝐶1, … , 𝐶𝑘, or 

– 𝐜1, … , 𝐜𝑘, or

– both



Step 2: Define Construction

▪ Reduce from VertexCover

▪ Given any VertexCover instance 𝐺 = 𝑉, 𝐸 , 𝑘 ,

▪ construct the 𝑘-means instance 𝑆 = 𝐱: 𝐱 ∈ ℝ𝑑 , 𝑘, 𝜃 as follows:

▪ Same parameter 𝑘 in the two instances

▪ Threshold: 𝜃 = 𝐸 − 𝑘 (you will see the reason later…)

▪ Dimension 𝑑 = 𝑉

▪ For each 𝑒 = 𝑖, 𝑗 ∈ 𝐸, construct a data point
𝐱𝑒 = (0,… , 0,1,0,… , 0,1,0,… , 0)

𝑖-th 𝑗-th



An Example

1

23 𝑒1

𝑒2 𝑒3 𝐱1 = (0,1,1)

𝐱2 = (1,0,1)

𝐱3 = (1,1,0)



Intuition for Step 3 & 4

▪ edges covered by a vertex form a star

▪ ⟺ corresponding data points only differ by one entry, they 
are “very close”

𝑒1 𝑒2

𝑒3

𝑒4
𝑒5

𝐱1 = (1, 1, 0, 0, 0, 0)

𝐱2 = (1, 0, 1, 0, 0, 0)

𝐱3 = (1, 0, 0, 1, 0, 0)

𝐱4 = (1, 0, 0, 0, 1, 0)

𝐱5 = (1, 0, 0, 0, 0, 1)



Compute the Cost of a Cluster

▪ For Cluster 𝐶, let 𝐺𝐶 = (𝑉, 𝐸𝐶) be the subgraph where 𝐸𝐶 are 
the edges whose corresponding data points are in 𝐶.

▪ Let 𝑑𝐶(𝑖) be the degree of 𝑖 in 𝐶.

▪ Lemma. The cost of a cluster 𝐶 is

2 𝐶 −
1

𝐶
෍

𝑖=1

|𝑉|

𝑑𝐶 𝑖
2
.



Proving cost 𝐶 = 2 𝐶 −
1

𝐶
σ𝑖=1
|𝑉|

𝑑𝐶 𝑖
2

▪ Let 𝜇 =
1

|𝐶|
σ𝐱∈𝐶 𝐱 be the center of 𝐶.

▪ By thinking about 𝐺𝐶 , we have 𝜇[𝑖] =
1

𝐶
𝑑𝐶(𝑖).

▪ cost 𝐶 = σ𝑒∈𝐸𝐶
𝐱𝑒 − 𝜇 2 = σ𝑒∈𝐸𝐶

σ𝑖=1
|𝑉|

𝐱𝑒 𝑖 −
1

𝐶
𝑑𝐶(𝑖)

2

▪ = σ𝑒∈𝐸𝐶
σ𝑖=1
|𝑉|

𝐱𝑒 𝑖
2 − 2𝐱𝑒 𝑖

1

𝐶
𝑑𝐶 𝑖 +

1

𝐶
𝑑𝐶 𝑖

2

▪ = σ𝑒∈𝐸𝐶
σ𝑖=1
|𝑉|

𝐱𝑒 𝑖
2 − σ𝑒∈𝐸𝐶

σ𝑖=1
𝑉 2𝐱𝑒 𝑖

1

𝐶
𝑑𝐶 𝑖 + σ𝑒∈𝐸𝐶

σ𝑖=1
𝑉 1

𝐶
𝑑𝐶 𝑖

2



Proving cost 𝐶 = 2 𝐶 −
1

𝐶
σ𝑖=1
|𝑉|

𝑑𝐶 𝑖
2

▪ cost 𝐶 = σ𝑒∈𝐸𝐶
σ
𝑖=1
|𝑉|

𝐱𝑒 𝑖
2 − σ𝑒∈𝐸𝐶

σ𝑖=1
𝑉 2𝐱𝑒 𝑖

1

𝐶
𝑑𝐶 𝑖 + σ𝑒∈𝐸𝐶

σ𝑖=1
𝑉 1

𝐶
𝑑𝐶 𝑖

2

▪ red = σ𝑒∈𝐸𝐶
2 = 2 𝐶

▪ blue = σ𝑖=1
𝑉 σ𝑒∈𝐸𝐶

2𝐱𝑒 𝑖
1

𝐶
𝑑𝐶 𝑖 =

2

|𝐶|
⋅ σ𝑖=1

𝑉 𝑑𝐶 𝑖
2

▪ purple = 𝐶 ⋅
1

𝐶 2 ⋅ σ𝑖=1
𝑉

𝑑𝐶 𝑖
2
=

1

|𝐶|
⋅ σ𝑖=1

𝑉
𝑑𝐶 𝑖

2

▪ Putting together:

cost 𝐶 = 2 𝐶 −
1

𝐶
෍

𝑖=1

|𝑉|

𝑑𝐶 𝑖
2



Part 3: yes to yes

▪ Suppose 𝐺 = 𝑉, 𝐸 , 𝑘 is a yes instance and 𝑆 is a vertex cover.

▪ Let 𝑆 = {1, 2,… , 𝑘} WLOG.

▪ Let 𝐶𝑖 be those 𝐱𝑒 where 𝑒 is covered by vertex 𝑖
– If 𝑖, 𝑗 ∈ 𝑆 for 𝑒 = (𝑖, 𝑗), include 𝐱𝑒 in any one of 𝐶𝑖 , 𝐶𝑗 (not both!)

▪ 𝐺𝐶𝑖 is a star: 
– one vertex with degree |𝐶𝑖|, and |𝐶𝑖| vertices with degree 1

▪ cost 𝐶𝑖 = 2 𝐶𝑖 −
1

𝐶𝑖
𝐶𝑖

2 + 12 +⋯+ 12 = 𝐶𝑖 − 1

▪ Overall cost: σ𝑖=1
𝑘 cost 𝐶𝑖 = σ𝑖=1

𝑘 𝐶𝑖 − 𝑘 = 𝐸 − 𝑘 = 𝜃

▪ The 𝑘-means instance is yes!



Part 4: no to no (contrapositive)

▪ Suppose the 𝑘-means instance is a yes instance, and the 
cost of {𝐶1, … , 𝐶𝑘} is at most 𝜃 = 𝐸 − 𝑘.

▪ Proposition. cost 𝐶𝑖 ≥ 𝐶𝑖 − 1, and cost 𝐶𝑖 = 𝐶𝑖 − 1 only if 
𝐺𝐶𝑖 is a star.

▪ Suppose 𝐺𝐶𝑖 is not a star for some 𝐶𝑖. It’s a contradiction:

OverallCost =෍

𝑖=1

𝑘

cost 𝐶𝑖 >෍

𝑖=1

𝑘

𝐶𝑖 − 1 = 𝐸 − 𝑘 = 𝜃.

▪ Thus, each 𝐺𝐶𝑖 is a star.

▪ Those 𝑘 “central vertex” of the 𝑘 stars form a vertex cover!



Stronger Hardness Results for 𝑘-Means

▪ 𝑘-means is NP-hard even when 𝑘 = 2
– [Aloise, Deshpande, Hansen & Popat, 2009] [Dasgupta & Freund, 

2009]

▪ 𝑘-means is NP-hard even for ℝ2

– [Mahajan, Nimbhorkar & Varadarajan, 2009]

▪ There exists a constant 𝜀 > 0 such that 𝑘-means is NP-hard 
to approximate within factor 1 − 𝜀 .
– [Awasthi, Charikar, Krishnaswamy & Sinop, 2015]



Positive Results for 𝑘-Means 

▪ There exists a poly-time 9 + 𝜀 -approximation algorithm.
– [Kanungo, Mount, Netanyahu, Piatko, Silverman & Wu, 2003]

▪ Lloyd’s heuristic, EM-heuristic
– No theoretical approximation guarantee



0-1 Integer Programming

▪ 0-1 Integer Programming is NP-hard.

▪ It can formulate many NP-complete problems, e.g., VertexCover

maximize 𝐜⊤𝐱

subject to 𝐴𝐱 ≤ 𝐛

𝑥𝑖 ∈ {0, 1}

minimize ෍

𝑣∈𝑉

𝑥𝑣

subject to 𝑥𝑢 + 𝑥𝑣 ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥𝑣 ∈ 0, 1 ∀𝑣 ∈ 𝑉



IP (Feasibility)

▪ Deciding whether the feasible region of an IP is non-empty 
is NP-complete.

▪ VertexCover:

෍

𝑣∈𝑉

𝑥𝑣 ≤ 𝑘

𝑥𝑢 + 𝑥𝑣 ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥𝑣 ∈ 0, 1 ∀𝑣 ∈ 𝑉



IP: Hardness of Approximation

▪ Even if we only allow feasible IP as input, IP is still hard to 
approximate ( just like TSP).

minimize 1000000000𝑦

subject to 𝑥𝑢 + 𝑥𝑣 + 𝑦 ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥𝑣 ∈ 0, 1 ∀𝑣 ∈ 𝑉

𝑦 ∈ 0, 1

෍

𝑣∈𝑉

𝑥𝑣 ≤ 𝑘



Web of NP-Complete Problems

SAT

3SAT

IndependentSet

VertexCover

HamiltonianPath

DominatingSet

Clique

SubsetSum(+)

Partition(+)

HamiltonianCycle

Note: Optimization problems are 
formulated as decision problems.

MakespanMinimization

(0-1)IP (feasibility)

𝑘-means
TSP



Deal with NP-hard Optimization Problems

Three approaches to handle NP-hard problems:

1. Approximation algorithms

2. Assumption on inputs

3. Heuristics
– Heuristics: “algorithms” without theoretical support; their 

performances are normally justified by experiments/simulations

– NP-hardness is about worst-case analysis. Heuristics may do well on 
most of the “practical instances”.



Approximation Algorithm for Min-VertexCover

▪ Input: an undirected graph 𝐺 = (𝑉, 𝐸)

▪ Output: a vertex cover 𝑆 with minimum |𝑆|



Maximal Matching

▪ A matching 𝑀 is maximal if no more edge can be added to 𝑀
while still forming a matching.

▪ Finding a maximal matching is simple: just iteratively add an 
edge until no more edges can be added!



Finding a maximal matching

▪ Iteratively add an edge until no more edges can be added!



Finding a maximal matching

▪ Iteratively add an edge until no more edges can be added!



Finding a maximal matching

▪ Iteratively add an edge until no more edges can be added!



Finding a maximal matching

▪ Iteratively add an edge until no more edges can be added!



Maximal vs Maximum

▪ A maximal matching may not be maximum!



Lemma 1. The set of endpoints for all edges in a maximal matching is 
a vertex cover.

Proof. Let 𝑀 ⊆ 𝐸 be a maximal matching. 

• For any edge 𝑒 = (𝑢, 𝑣), one or both of 𝑢, 𝑣 must be an endpoint of an 
edge in 𝑀. (Otherwise, 𝑀 ∪ {𝑒} is still a matching, and 𝑀 is not maximal.)

• This already implies endpoints of 𝑀 is a vertex cover!



Lemma 2. For any maximal matching 𝑀, the size of any vertex cover is 
at least 𝑀 .

Proof.

• Edges in 𝑀 must be covered

• A vertex cannot cover two edges in 𝑀

• We need 𝑀 vertices to at least cover edges in 𝑀



A 2-approximation algorithm 

Algorithm 1:

▪ Find a maximal matching 𝑀

▪ Let 𝑆 be the endpoints of all edges in 𝑀

▪ Output 𝑆

Given an undirected graph 𝐺 = (𝑉, 𝐸), let
• 𝑂𝑃𝑇(𝐺) be the size of a minimum vertex cover
• 𝑆(𝐺) be the vertex set output by Algorithm 1

Theorem: For any undirected graph 𝐺, we have |𝑆 𝐺 | ≤ 2 ⋅
𝑂𝑃𝑇(𝐺)



∀𝐺: |𝑆 𝐺 | ≤ 2 ⋅ 𝑂𝑃𝑇(𝐺)

▪ Lemma 1. The set of endpoints for all edges in a maximal 
matching is a vertex cover.

▪ ⟹ 𝑆 𝐺 is a vertex cover

▪ |𝑆 𝐺 | = 2|𝑀|

▪ Lemma 2: For any maximal matching 𝑀, the size of any vertex 
cover is at least 𝑀 .

▪ ⟹ 𝑂𝑃𝑇 𝐺 ≥ |𝑀|

|𝑀| 2|𝑀|0

𝑂𝑃𝑇 𝐺 |𝑆 𝐺 |



Approximation Algorithm

▪ Definition. Consider a minimization problem and an algorithm 
𝒜 for it. Given a instance 𝐼, let 𝒜(𝐼) be the value output by 𝒜
for input 𝐼, let 𝑂𝑃𝑇(𝐼) be the optimal solution for 𝐼. 𝒜 is an 𝛼-
approximation algorithm if

∀𝐼:
𝒜 𝐼

𝑂𝑃𝑇 𝐼
≤ 𝛼

• Definition. For maximization problem, 𝒜 is an 𝛼-approximation 
algorithm if

∀𝐼:
𝒜 𝐼

𝑂𝑃𝑇 𝐼
≥ 𝛼



General Framework for Designing 
Approximation Algorithms

▪ Find a lower bound 𝐿(𝐼) for 𝑂𝑃𝑇 𝐼 (that is easy to calculate)

▪ Design algorithm 𝒜 and find some 𝛼 such that ∀𝐼: 𝒜 𝐼 ≤ 𝛼 ⋅
𝐿(𝐼)

𝐿(𝐼) 𝛼 ⋅ 𝐿(𝐼)0

𝑂𝑃𝑇 𝐼 𝒜 𝐼



Revisiting our 2-approximation algorithm

Question: Can we do better than 2-approximation?

▪ Idea 1: same algorithm with a more careful analysis?

▪ Idea 2: another more clever algorithm?

Algorithm 1:
• Find a maximal matching 𝑀

• Let 𝑆 be the endpoints of all edges in 𝑀

• Output 𝑆



Idea 1 doesn’t work

▪ Suppose 𝐺 has 2𝑛 vertices and 𝑛 edges as above.

▪ 𝑂𝑃𝑇 𝐺 = 𝑛

▪ 𝒜 𝐺 = 2𝑛

𝐺 =



Idea 2 is unlikely to work

▪ [Khot & Regev, 2008] Assuming Unique Game Conjecture, 
if minimum vertex cover has a polynomial time (2 − 𝜖)-
approximation algorithm for some 𝜖 > 0, then 𝐏 = 𝐍𝐏.

▪ [Khot, Minzer & Safra, 2017] If minimum vertex cover has a 
polynomial time ( 2 − 𝜖)-approximation algorithm for 
some 𝜖 > 0, then 𝐏 = 𝐍𝐏.



Once we have an 𝛼-approximation algorithm…

Two natural directions for improving 𝛼:

▪ A more careful analysis

▪ A new approximation algorithm



Approximation Algorithms Based on 
LP-Relaxation

▪ Integer Programming is NP-complete, even for 0-1 case 
∀𝑖: 𝑥𝑖 ∈ {0, 1}.

▪ Use the fact that LP is polynomial-time solvable to design 
approximation algorithm.

▪ Relax 𝑥𝑖 ∈ {0,1} to 0 ≤ 𝑥𝑖 ≤ 1.

▪ Then “round” the fractional solution to integral one:
– E.g., 𝑥𝑖 = 0.7 is rounded to 𝑥𝑖 = 1, 𝑥𝑖 = 0.2 is rounded to 𝑥𝑖 = 0.

▪ and show that the rounded solution is feasible and 
achieves good approximation guarantee.



LP-Relaxation Example: Vertex Cover

▪ Minimum Vertex Cover Formulation by integer program:
– 𝑥𝑢 = 1 represents 𝑢 ∈ 𝑉 is selected in the cover; 𝑥𝑢 = 0 otherwise.

minimize ෍

𝑣∈𝑉

𝑥𝑣

subject to 𝑥𝑢 + 𝑥𝑣 ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥𝑣 ∈ 0, 1 ∀𝑣 ∈ 𝑉



LP-Relaxation Example: Vertex Cover

▪ Relax it to a linear program below:

minimize ෍

𝑣∈𝑉

𝑥𝑣

subject to 𝑥𝑢 + 𝑥𝑣 ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸

0 ≤ 𝑥𝑣 ≤ 1 ∀𝑣 ∈ 𝑉



LP-Relaxation Example: Vertex Cover

▪ OPT(IP) – optimal objective value σ𝑣∈𝑉 𝑥𝑣 for IP
– This is the objective we want for vertex cover

▪ OPT(LP) – optimal objective value σ𝑣∈𝑉 𝑥𝑣 for LP

▪ OPT(IP) ≥ OPT(LP): because LP has a larger feasible region.

minimize ෍

𝑣∈𝑉

𝑥𝑣

subject to 𝑥𝑢 + 𝑥𝑣 ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸

0 ≤ 𝑥𝑣 ≤ 1 ∀𝑣 ∈ 𝑉

minimize ෍

𝑣∈𝑉

𝑥𝑣

subject to 𝑥𝑢 + 𝑥𝑣 ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥𝑣 ∈ 0, 1 ∀𝑣 ∈ 𝑉

Integer Program (IP) Linear Program (LP)



LP-Relaxation Example: Vertex Cover

An approximation algorithm for vertex cover:

▪ Formulate the problem as an integer program and obtain its LP-
relaxation.

▪ Solve the linear program and obtain its optimal solution 𝑥𝑣
∗
𝑣∈𝑉.

▪ Return 𝑆 = 𝑣 𝑥𝑣
∗ ≥

1

2
}



Correctness

𝑆 returned by the algorithm is a vertex cover.

▪ Proof. Consider an arbitrary edge 𝑢, 𝑣 ∈ 𝐸.

▪ We have 𝑥𝑢
∗ + 𝑥𝑣

∗ ≥ 1 by feasibility, which implies we have 
either 𝑥𝑢

∗ ≥
1

2
or 𝑥𝑣

∗ ≥
1

2
, or both.

▪ By our algorithm, we have either 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆, or both.



The algorithm is a 2-approximation.

The algorithm is a 2-approximation algorithm: 𝑆 ≤ 2 ⋅ OPT(IP).

▪ Proof. Since we have OPT(IP) ≥ OPT(LP), it suffices to prove 
𝑆 ≤ 2 ⋅ OPT(LP).

0 OPT(LP)   ≤ OPT(IP)            2OPT(LP)         2OPT(IP)

We will prove 𝑆 is within here. 
The optimal solution 
for vertex cover

To show 2-approximation, 𝑆 is required to be within here.



The algorithm is a 2-approximation.

The algorithm is a 2-approximation algorithm: 𝑆 ≤ 2 ⋅ OPT(IP).

▪ Proof. Since we have OPT(IP) ≥ OPT(LP), it suffices to prove 
𝑆 ≤ 2 ⋅ OPT(LP).

▪ OPT LP = σ𝑣∈𝑉 𝑥𝑣
∗ = σ

𝑣:𝑥𝑣
∗<

1

2

𝑥𝑣
∗ +σ

𝑣:𝑥𝑣
∗≥

1

2

𝑥𝑣
∗

▪ ≥ σ
𝑣:𝑥𝑣

∗<
1

2

0 + σ
𝑣:𝑥𝑣

∗≥
1

2

1

2
=

1

2
⋅ |𝑆|

▪ which implies 𝑆 ≤ 2 ⋅ OPT(LP).



Let’s Come Back to our two questions

Question: Can we do better than 2-approximation?

▪ Idea 1: same algorithm with a more careful analysis?

▪ Idea 2: another more clever algorithm?

▪ We know the answer to 2 is probably no…

▪ Let’s forget about this for a moment…

▪ LP-Relaxation: how to analyze “it more carefully”?



Integrality Gap

▪ IntegralityGap =
OPT IP

OPT(LP)

▪ If you analyze your approximation algorithm based on 
OPT(LP)…

▪ the best approximation ratio you can ever get is the 
integrality gap!



Integrality Gap for Vertex Cover

▪ Consider a complete graph with 𝑛 vertices.

▪ OPT IP = 𝑛 − 1: you need 𝑛 − 1 vertices to cover all edges

▪ OPT LP =
𝑛

2
: just assign 𝑥𝑣 =

1

2
for all 𝑣 ∈ 𝑉.

▪ Integrality gap is 2.



Metric TSP

[TSP]

▪ Input: a complete weighted graph 𝐺 = (𝑉, 𝐸 = 𝑉 × 𝑉,𝑤)

▪ Output: a Hamiltonian cycle with minimum weight

[Metric TSP]

▪ Input: a complete weighted graph 𝐺 = (𝑉, 𝐸 = 𝑉 × 𝑉,𝑤) such 
that 𝑤 𝑢, 𝑣 + 𝑤 𝑣,𝑤 ≥ 𝑤(𝑢,𝑤) for any 𝑢, 𝑣, 𝑤 ∈ 𝑉

▪ Output: a Hamiltonian cycle with minimum weight



Metric TSP is NP-hard

▪ HamiltonianCycle instance 𝐺′ = 𝑉, 𝐸′

▪ TSP instance 𝐺 = (𝑉, 𝐸 = 𝑉 × 𝑉,𝑤) with

𝑤 𝑢, 𝑣 = 𝑓 𝑥 = ቊ
1, 𝑢, 𝑣 ∈ 𝐸
2, 𝑢, 𝑣 ∉ 𝐸

▪ Yes HamiltonianCycle instance ⟹ OPTTSP = |𝑉|

▪ No HamiltonianCycle instance ⟹ OPTTSP ≥ 𝑉 + 1



Approximation Algorithm for TSP

1. Find a minimum weight spanning tree 𝑇.



Approximation Algorithm for TSP

1. Find a minimum weight spanning tree 𝑇.

2. Find a tour 𝐶 in 𝑇 that visit each edge exactly twice.



Approximation Algorithm for TSP

1. Find a minimum weight spanning tree 𝑇.

2. Find a tour 𝐶′ in 𝑇 that visit each edge exactly twice.

3. Shortcut 𝐶′ to get 𝐶 by skipping visited vertices.
– So we get a valid Hamiltonian cycle…

4. Return 𝐶.



2-Approximation

▪ OPTTSP ≥ 𝑤(𝑇):
– A Hamiltonian path is a spanning tree.

– Min spanning tree ≤ min Hamiltonian Path ≤ min Hamiltonian Cycle

▪ 𝑤 𝐶′ = 2𝑤 𝑇 ≤ 2OPTTSP

▪ 𝑤 𝐶 ≤ 𝑤 𝐶′

– Triangle inequality

▪ Putting together: 𝑤 𝐶 ≤ 2OPTTSP



Christofides algorithm

1. Find a minimum weight spanning tree 𝑇.

2. Find a minimum weight perfect matching 𝑀 on 𝑈 ⊆ 𝑉, 
where 𝑈 are odd-degree vertices in 𝑇.



Christofides algorithm

1. Find a minimum weight spanning tree 𝑇.

2. Find a minimum weight perfect matching 𝑀 on 𝑈 ⊆ 𝑉, 
where 𝑈 are odd-degree vertices in 𝑇.

3. Find a Eulerian tour 𝐶′ on 𝑇 ∪ 𝑀.



Christofides algorithm

1. Find a minimum weight spanning tree 𝑇.

2. Find a minimum weight perfect matching 𝑀 on 𝑈 ⊆ 𝑉, 
where 𝑈 are odd-degree vertices in 𝑇.

3. Find a Eulerian tour 𝐶′ on 𝑇 ∪ 𝑀.

4. Shortcut 𝐶′ to 𝐶 by skipping visited vertices.



1.5-Approximation

▪ Same as before: OPTTSP ≥ 𝑤(𝑇)

▪ 𝑤 𝐶 ≤ 𝑤 𝐶′ = 𝑤 𝑇 + 𝑤(𝑀)

▪ We aim to show 𝑤 𝑀 ≤ 0.5 OPTTSP



𝑤 𝑀 ≤ 0.5 OPTTSP

▪ Let 𝑂 be the optimal cycle.



𝑤 𝑀 ≤ 0.5 OPTTSP

▪ Let 𝑂 be the optimal cycle.

▪ Let 𝑂′ shortcut those vertices not in the matching.



𝑤 𝑀 ≤ 0.5 OPTTSP

▪ Let 𝑂 be the optimal cycle.

▪ Let 𝑂′ shortcut those vertices not in the matching.

▪ Two disjoint matchings 𝑀1, 𝑀2 in 𝑂′

▪ 𝑤 𝑀1 + 𝑤 𝑀2 = 𝑤 𝑂′ ≤ 𝑤 𝑂 (triangle inequality)

▪ One of 𝑀1 or 𝑀2 has weight at most 0.5𝑤 𝑂



𝑤 𝑀 ≤ 0.5 OPTTSP

▪ Let 𝑂 be the optimal cycle.

▪ Let 𝑂′ shortcut those vertices not in the matching.

▪ Two disjoint matchings 𝑀1, 𝑀2 in 𝑂′

▪ 𝑤 𝑀1 + 𝑤 𝑀2 = 𝑤 𝑂′ ≤ 𝑤 𝑂 (triangle inequality)

▪ One of 𝑀1 or 𝑀2 has weight at most 0.5𝑤 𝑂

▪ Since 𝑀 has minimum weight…

▪ 𝑤 𝑀 ≤ 0.5𝑤 𝑂 = 0.5OPTTSP



Metric TSP Results

▪ A 1.5 − 10−36 -approximation algorithm
– [Karlin, Klein, Gharan, 2020] 

▪ NP-hard to approximate with factor 
123

122
.

– [Karpinski, Lampis & Schmied, 2015] 



This Lecture

NP-Hardness:

▪ One more reduction: NP-hardness of 𝑘-means

Approximation Algorithms:

▪ Example: 
– VertexCover (2-approximation)
– TSP (1.5-approximation)

▪ Framework: 
– find an approachable lower bound 𝐿 (or upper bound in the 

maximization case) of OPT;
– Show that ALG ≤ 𝛼 ⋅ 𝐿

▪ Two techniques for designing approximation algorithms:
– Combinatorial
– LP-relaxation (Integrality Gap to analyze approximation ratio)


