“Approximation
Algorithms

1. One more example of reduction: k-means
2. approximation algorithms

Proving f is NP-complete

= Prove f € NP.

= Find an NP-complete problem g and prove g <, f.

Reduction: A 'compute“s g <k f ‘

= x >y under p'oly—ti‘m.e ™A
= x isyes = yisyes

= x isno = yisno

yes instances yes instances

no instances no instances

Reduction: A4 computes g < f -

— - e = s —_— - S — e SIS e

= x » y under p'OIy—ti‘m‘e ™A « A poly-time TM B solving f
= x Isyes = y isyes | | » = The TM Bo A solves g

= x isno = yisno

Given any g instance x,
Compute the f instance.

y = A(x).

Reduction: A .compute‘s g < f '

‘-:! — s - - —— = I S = 5 -

= x » y under pbly-timé ™M A = A poly-time TM B solving f
- x is yes = yisyes | » = The TM Bo A solves g

= x isno = yisno

B(y) = yes? no?

Decide if y is ayes
instance for f using B.

Reduction: A 'compute‘s g < f '

—— = ==

= x » y under p»oly-ti‘m'e ™™ A = A poly-time TM B solving f
Ex Isyes= yis-yes | » = The TM Bo A solves g

= x-isno = yisno

This is crucial fora B(y) = yes? no?
reduction to work! ~

Yy isyes = xisyes
yisno = xisno

Four Steps for a NP-completeness Proof

——— - = - —

' 1 Prove f € NP.

2. Construct the reduction g <, f. |
- Fix an instance x of g. Describe the corresponding f instance y.

3. [Completeness] x Is yes = y Is yes

4. [Soundness] x IS no = y IS no.
- Proving the contrapositive "y is yes = x is yes” is often easier.

NP-hardness for Optimization Problems ’

E——

Optimization to Decision:
= Maximization - decide whether OPT > k

. Mihimization — decide whether OPT < k

= A maximization problem is NP-hard if there exists k € R
such that deciding whether OPT = k is NP-hard.

= A minimization problem is NP-hard if there exists k € R
such that deciding whether OPT < k is NP-hard.

= —— - — —

k-Means

Input: § = {x:x € R%} and k € Z* et e

= QOutput: . A

1. Partition of S = C; U C2 U--UC Tuster i Cluster2
2. A"center” c; € R? for each cluster ¢; T

that minimizes %1, Yyec,lIx — ¢l

e Points
+ Cluster Center

Only need to specify either output
1 or output 2: =

- Given clusters, Optimal centers are easy https://www.osapublishing.org/oe/fulltext. cfm7ur| o
to compute... e-25-22-27570&id=375887

- Same holds for giving centers.

Proving k-Means Is NP-Hard

et = - —e—

Decision verS|on

« We will show the decision problem is NP-complete.
- NP-hardness would be suffice, but it is NP-complete anyway...

« We will define the threshold @ later,

Step 1: k-Means € NP

= This is obvious...

= Certificate can be
e Or
Eh]y =y Gl or

- both

Step 2: Define Construction

——— = . = = - — —— — e -

* Reduce from VertexCover

= Given any VertexCover instance (G = (V,E), k),

. construct the k-means instance (S = {x:x € R4}, k,0) as follows:
- Same parameter k in the two instances

= Threshold: 6 = |E| — k (you will see the reason later...)

= Dimensiond = |V] |

= For each e = (i,j) € E, construct a data point
x, = (0,..,0,1,0,...,0,1,0, ..., 0)

1 1
i-th j-th

An Example |

Intuition for Step 3 & 4

= - = . —

= edges covered by a vertex form a star

= correspondmg data points only differ by one entry, they
are “very close”

o %, =(1,1,0,0,0,0)

.X s | x, = (1,0,1,0,0,0)
_ * f %3 =(1,0,0,1,0,0)
— , Xs=(1,0,0,0,1,0)
= x5 = (1,0,0,0,0,1)

Compute the Cost of a Cluster

et = - —

= For Cluster C, Iet GC = (V E¢) be the subgraph where E are
- the edges whose corresponding data points are in C.

» Let d (i) be the degree of i in C.

« Lemma. The cost of a cIusteerlc IS

2|C| —mi(dc(z))

Provmg cost(Cr=C=—%'2 (dc(l))

s —— - ————— e~ — - 5

= Letu= ﬁercx be the center of C.

» By thinking about G¢, we have pu[i] = I%ldc(l')-

+ cOSHC) = Teerlixe — P = Toer, 217k (xe[i] = Lde(®))

; 2
i ZeEEC ZlVl ((Xe [i])z = er [l] %dc(i) + (|C| dCO)))

_ N\ 2
= Yoere Dion XeliD)? = Teer, Tily 2%e[il i de (D) + Teer, Zilh (m dca))

Proving cost(C) = 2|C| = — Z'Vll(dC(L))

r ~ — — N — T — = == - = ~ = =

-cost<c>—zeegcz'v' (e [i])? = zeegcz'” 2%, il = dc<z>+zeegcz'” (mdcm) .

= red = ZeEECZ o8 2|C|

+ blue = 5,7, Neer, 2% [i];5dc (D) = H z'V'l(dcm)
= purple = |C| -W : Zlizll(dc(i)) = |C| IV' (dc(l))
 Putting together: &

cost(C) = 2/C]| - ITIz(dc(o)

Part 3: yes to yes

Suppose (G =-(V, E), k) is a yes instance and S is a vertex cover.
Let S = {1,2,...,k} WLOG.

Let C; be those X, Where e Is covered by vertex i
- Ifi,j € S for e = (i,)), include x, in any one of C;, C; (not both!)

G, Is a star: .
- one vertex with degree |C;|, and |C;| vertices with degree 1

1
|Cil

Overall cost: ¥, cost(G;) = (Z,1Gl) —k = |E| —k =6

cost(C;) = 2|C;| — = (|G;|> + 1?2 + -+ 1%) = |C;| — 1

The k-means instance is yes!

>, X ' V— i 5 = i ——— == -— = - =

Part 4: no to no (contrapositive)

— - : ——— : e I Y e e s !

= Suppose the k-means instance is a yes instance, and the
~ cost of {Cy, ...,Cy} is at most 6 = |E| —

: Prop05|t|on cost(C;) = |C;| = 1, and cost(C)) = |C;| — 1 only |f

G, Is a star.
= Suppose G, Is nol’g a star for some C;. It's a contradiction:
OverallCost = Ecost(Ci) P E(ICL-I —1)=|E| -k =06.
| =1 =1 :

= Thus, each G, is a star.

= Those k “central vertex” of the k stars form a vertex cover!

Stronger Hardness Results for k-Means

— - e = - —— - —_——

= k-means Is NP' hard even when k = 2

- [Aloise, Deshpande Hansen & Popat, 2009] [Dasgupta & Freund
- 2009]

: k—means is NP-hard even for R?
- [Mahajan, Nimbhorkar & Varadarajan, 2009]

« There exists a constant & > 0 such that k-means is NP-hard
to approximate within factor (1 — ¢).

- [Awasthi, Charikar, Krishnaswamy & Sinop,-201 5]

Positive Results for k-Means

— - e - = - —— - —————

g There exists a poly-time (9 + &)-approximation algorithm.
- - [Kanungo, Mount, Netanyahu, Piatko, Silverman & Wu, 2003]
= Lloyd's heuristic, EM-heuristic

- No theoretical approximation guarantee

0-1 Integer Programming

>, X ' V— i 5 = i ——— == -— = - =

maximize c¢'x
subjectto Ax<b
Xi (& {O, 1}

= 0-1 Integer Programming is NP-hard. |
= It can formulate many NP-complete p'roblems, e.g., VertexCover

minimize E X

VeV
subjectto x, +x, =1 V(u,v) EE

x, € {0,1} VveVlV

I (Feasibility)'

— - : ——— : e e s

= Deciding whether the feasible region of an IP is non- empty
1S NP- complete

= VertexCover:

Exvsk

veV
X F %, =1 V(u,v) EE

v el01) =0 Vv EV

IP: Hardness of Approximation |

—

= Even if we only allow feasible IP as input, IP is still hard to
~ approximate (just like TSP).

minimize 1000000000y

subjectto x, +x,+y =1 V(u,v) EE
2 Xy, < k
VEV '
x, € {0,1} Vv eV

y €{0,1}

Web of NP-Complete Problemsu |

S

Note: Optimization'problems are
formulated as decision problems.

e - = = — - s 5 -« o e e e R

Deal with NP-hard Optimization Problems

S ————

Three approaches to handle NP-hard problems:
1. Approximation algorithms
2. Assumption on inputs

3. Heuristics

— Heuristics: “algorithms” without theoretical support; their
performances are normally justified by experiments/simulations

- NP-hardness is about worst-case analysis. Heuristics may do WeII on
most of the “practical instances”.

Appr_oximatioh Algorithm for Min-VertexCover

s = - —— - ——— o — — -

= Input: an undirected graph ¢ = (V,E)

= Output: a vertex cover S with minimum |S|

Maximal I\/Iatching

—

» A matching M is maximal if no more edge can be added to M
while still forming a matching.

: Finding a maximal matching is simple: just iteratively add an
edge until no more edges can be added!

= —_— —————— s — —

Finding a maximal matching

— - e - = - S —————

. Iteratively add an édge ‘Uhtil no more edges can be added! o

Finding a maximal matching

— S — EE——— B =

- lteratively add an édge until no more edges can be added!

‘llll'lllllllllllllllllllIllllllllIlIllIlIlIllllllllllIllllllllllllll
= =
4
4
L4 L 4
S h. -----lll
D e smmut®
= mmn
« b LA
@ -----l'l: .0
(B L 4
punms@nt® % &
puns IS o
TR . R4
pammmn® o *% L7
amns ; L4 . o
L/ 3 L4
. o * »
® 4
*
S
*
*

.

Finding a maximal matching

- Iteratively add an edge until no more edges can be added! ‘

- ‘.-..V....I.................-............... 3 A
3 ; s nu L] ‘ﬂ 0’
: ..' - asmummm® .'.. ** .' *
o '.., gamuuuunt® : Py “‘ b "
mn ‘ -~ . '
- snnnnfe] U . te, et % s
& . Ty . a X
> . Ya, ** o .
& . '.“ N .
.) *
an® = o ", : X
. K 3 3
L4 “ E " » “
2 * e 2
a0 . . i 2
X ‘ F o*) il *
" @, . . A ... 7.
ny N *, . * o, .
Sag, IS . % o A
.l..i 8 2
e, v . » T, .
----' % S
...illlIIIIIIIII.Il.....lllll..........l......
)
)
o
) 3
)
)
)
s

L4
v
na,
vy
"aa, -
“an,
LR}
ay
Ny
Ly}
T,
LN}
Ny
Ly]
ay
Ny
-ll'iﬁ‘

.

Finding a maximal matching

EE———

l-ll'.l.lIl.ll.lllII.II.IIl-IIIIIIII.I.IIIIIIIIIIIIl.ll.llllllllllll‘
- .
L 4 . LR 2
0 ° 3
“ ammm a . a
0 o, amns r o, . -
« SYRguuunnt® r3aea “ay .* o .
~ annuunnfes S o, R) S
punnm .. . 4, . S 7 *
.---ll' 'S 2 S *
smmun® o o, U] * .
guumuuns o * 0 i3 ‘e, ** o *
guamns - 0 L) > b I -
. S < . *® Ya, U .
. S ., 7~ . ® “ay) .
* : N LS . . a, [*
* rs . * 4, *
- K +* oy .
’. ‘.. : '.. » “ ** .'.... “
LR Ta,, nagy AR . * . Yo, b4
. gy "ra, 3 . . .
° . T, gy 'y LSOt U e
. ., Ya,l = S 'l.... * .) o, ‘0
‘e *e bl T ."'."-‘ L Ay, b
3 i hd W
.. Q“ - ll.llIIIIIIIIIIIIIl.l.l.llIIIIII.II.IIIIIII.I..
S . ay a
., Lo . TS 0
* L4 L } .4. L]
* * ay
P * u T, & .
* * - LN B 4
. . ", S
LR . . Naa, »
]
‘e 54 = e,
.’IIIIIIIIIIII“I.I-I ..IIl.llll.ll.........lll.l...l
* .
4 =
3
| |
-------I"'-
u
samunt®
mumun®
sumum®
'l---.-

Maximal vs Maximum

« A maximal matching may not be maximum!

o

v,

y L 2 -l‘
L] 2 llll--‘--- e
& L munt 3
guuuunnsé® %
{ B L]
.kul""

L]
)
u o

L4
N * .
R : * ¥ L)
75 . .
&
*
- *

P
[]
[]
]
o
[]
.0
! J
2 .,

*
*
[]

.
L TR
®)
®
Yy

*

"'llllll‘.“.

gmus “.
@

agfunuunt®

l?‘lll.lll.llllll.l.llii

‘.....

Lemma 1. The set of endpoints for all edges in a maximal matchlng fener
a vertex cover. - &
e .

Proof. Let M < E be a maximal matching.

&

o~

* For any edge e = (u, v), one or both of u, v must be an endpoiht of an
edge in M. (Otherwise, M U {e} is still a matching, and M is not maX|maI)

* This already implies endpoints of M is a vertex cover!

Lemma 2. For any maximal matching M, the size of any vertex cover s
at least |M| .

o
Proof.
* Edges in M must be covered
* A vertex cannot cover two edges in M
~» We need |M]| vertices to at least cover edges in M

A 2—approximation algorithm

Algorithm 1:

+ Find a maximal matching M

. Let S be the endpoints of all edges in M
= Output s

Given an undirected graph G = (V,E), let
- * OPT(G) be the size of a minimum vertex cover
* S(G) be the vertex set output by Algorithm 1

Theorem: For any undirected graph G, we have |S(G)| < 2 -
OPT(G) - grap NI

VG: |S_(C)| <2-0PT(G)

Lemma 1. The set of endpoints for all edges in a maximal
‘matching is a vertex cover. |

= S(G) is a vertex cover
(@) = 2|M| '

Lemma 2: For any maximal matching M, the size of any vertex
cover Is at least |M|.

= OPT(G) = |M|

OPT(G) |S(G)] ,

0 |M] 2|M|

e— . - - —_— . pa MR & STV e e i 4

Approximation Algorithm

——— = . = = - — —— — e -

+ Definition. Consider a minimization problem and an algorithm
A for it. Given a instance I, let A(I) be the value output by A
- forinput I, let OPT(I) be the optimal solution for I. A is an a-

approximation algorithm if
- A(l)
- oPT(D) = ©

~« Definition. For maximization problem A is an a-approximation

algorithm if
A(l)

VI:
OPT(I) =

General Framework for Designing
ApprOX|mat|on Algorithms

— : = : e : i e e xS

| ‘ = OPT(I) A

= 0 e L) a - L(I)

» Find a lower bound L(I) for OPT(I) (that is easy to calculate)

» Design algorithm A and flnd some «a such that vI: .ﬂ(l) <a-
L(I)

Revisiting our'2—appro>‘<imationalgorithm

E————

~ Algorithm 1:

~* Find a maximal matching M

 Let S be the endpoints of all edges in M
* OQutput §

Question: Can we do better than 2—approximation?
- = Idea 1: same algorithm with a more careful analysis?

= ldea 2: another more clever algorithm?

Idea 1 doesn't work

B o.j_o- 9 _ ?
e ¢ o0 o &

. Suppose G has 2n vertices and n edges as above.
= OPT(G) =n
= AG) =2n

Idea 2 Is unlikély to work

=, X - V— p— 4 — i ——— —— -

= [Khot & Regev, 2008] Assuming ,
If minimum vertex cover has a polynomial time (2 — ¢)-
- approximation algorithm for some € > 0, then P = NP.

« [Khot, Minzer & Safra, 2017] If minimum vertex cover has a

polynomial time (V2 — €)- apprOX|mat|on algorlthm for
some € > 0, then P = NP.

Once we have an a—ap‘proximation algorithm...

e = = - - — Do ieSes — e s

Two natural directions for improving a:
= A more careful analysis

. A new approximation algorithm

Approximation Algorithms Based on
LP-Relaxation

>, X ' V— —— 5 = i ——— == -— = - =

= Integer Programmmg Is NP-complete, even for 0-1 case
= Vit x; €40, 1}

. Use the fact that LP is polynomial-time solvable to de5|gn
approximation algorithm.

= Relax x; € {0,1}to 0 < x; < 1.

= Then “round” the fractional solution to integral one:
- E.g., x; = 0.7 isrounded to x; = 1, x; = 0.2 is rounded to x; = 0.

« and show that the rounded solution is feasible and
achieves good approximation guarantee.

LP-Relaxation Example: Vertex Cover

et = - —e—

= Minimum Vertex Cover Formulation by integer program:
- - x, = 1represents u € V is selected in the cover; x,, = 0 otherwise.

minimize E =Xss

vev
subjectto x, +x, =1 V(u,v) EE

x, € {0,1} Vv eV

LP-Relaxation Example: Vertex Cover

et = - —

= Relax it to a linear program below:

minimize E =Xss

vev
subjectto x, +x, =1 V(u,v) EE

0<x,<1 Vv EV

LP-Relaxation Example: Vertex Cover

— - : ——— : e e s

= OPT(IP) — optimal objective value ¥,y x,, for IP

~ - Thisis the obj-ective we want for vertex cover
. OPT(LP) — optimal objective value ¥, x, for LP
= OPT(IP) = OPT(LP): because LP has a larger feasible regioh.

minimize E Xy, | minimize E X5

veEV veV _
subjectto x, + x, =1 V(u,v) EE ~ subjectto x,+x,=>1 V(u,v)€E
x, € {0, 1} Vv eV =x =1 Nyel

Ihteger Program (IP) Linear Program (LP)

LP-Relaxation Example: Vertex Cover

——— = - —e—

An approximation algorithm for vertex cover:

= Formulate the problem as an integer program and obtain its LP—
relaxation.

= Solve the linear program and obtain its optimal solution (0 er.

« Return § = (v | x; =)

Correctness

—_—= < - - ———

S returned by the algorithm is a vertex cover.

= Proof. Con5|der an arbitrary edge (u,v) € E.

. We have xu + x; = 1 by feasibility, which implies we have
either x;; > or e 1, or both.

. By our algorlthm,_ we have either u € S or v € S, or both.

The algorithm IS a 2—approximation.

— - e = - — - —_— e e 5

E The algorithm is'a Z—épproximation algorithm: [S| < 2 OPT(IP)

- Proof. Since we have OPT(IP) > OPT(LP), it suffices to prove
S| < 2 - OPT(LP).

The optimal solution

for vertex cover - We will prove |S| is within here.

0 OPT(LP) < OPT(IP) 20PT(LP) 2_OPT(IP)'
. £ | .
‘ |
To show 2-approximation, |S| is required to be within here.

The algorithm is @ 2-approximation.

— - = - e —

' The algorithm is a Z—approximation algorithm: |S] < 2- OPT(IP).

= Proof. Since we have OPT(IP) > OPT(LP), it suffices to prove
S| < 2 - OPT(LP).

= OPT(LP) = > = Zv_x*<1x§ oy 1xv

X <3 vxv2
2 a0 Y, =S

= which implies |S| < 2 - OPT(LP).

Let's Come Back to our two guestions

Question: Can we do‘better than 2-approximation?
= Idea 1: same algorithm with a more careful analysis?

= |ldea 2: another more clever algorithm?

= We know the answer to 2 is probably no...
~» Let's forget about this for a moment...

= LP-Relaxation: how to analyze “it more carefully”?

Integrality Gap

OPTV(IP)
OPT(LP)

. IntegralityGap =

+ If you analyze your approximation algorithm based on
OPT(LP)...

= the best approximation ratio you can ever get is the
integrality gap!

Integrality Gap for Vertex Cover

E——

= Consider a complete graph with n vertices.

= OPT(IP) = n — 1: you need n — 1 vertices to cover all edges
= OPT(LP) = g:just assign x,, = % forallveV.

= Integrality gap Is 2.

Metric TSP

FISP] | |

= Input: a complete weighted graph ¢ = (V,E =V xV,w)
" Output: a Hamiltonian cycle with minimum weight
[I\/Ietric TSP]

= Input: a complete weighted graph ¢ = (V,E =V x V,w) such
that w(u,v) + w(v,w) = w(u,w) forany u,v,w e V'

= Output: a Hamiltonian cycle with minimum weight

Metric TSP is NP-hard

et = - —e—

= HamiltonianCycle instance ¢" = (V,E")

= TSP instance G = (V,E =V x V,w) with
e ' = = (u,v) EE
w(u,v) = f(x) = {2, (w,v) €

= Yes HamiltonianCycle instance = OPTsp = |V|

= No HamiltonianCycle instance = OPTsp = V] + 1

Approximation Algorithm for TSP

' 1 Find a minimum Weight spanning tree T.

Approximation Algorithm for TSP

1. Find a minimum w_eight spanning tree T.

2. Find a tour C in T that visit each edge exactly twice.

Approximation Algorithm for TSP

1. Find a minimum Weight spanning tree T.
2. Find a tour C' in T that visit each edge exactly twice.

3. Shortcut ¢ to get C by skipping visited vertices.
- So we get a valid Hamiltonian cycle...

4. Return C.

=

2—Ap,proximat'ion

OPTrgp = W(T) ‘
- AHamiltonian path is a spanning tree.
- Min spanning tree < min Hamiltonian Path < min Hamiltonian Cycle

W(C’) = ZW(T) < ZOPTTSP

w(C) < w(C')
- Triangle inequality

Putting together: w(C) < 20PTrsp

Christofides algorithm

1. Find a minimum Weight spanning tree T.

2. Find a minimum weight perfect matching ¥ on U € V,
~where U are odd- degree vertices in T.

AT

Christofides algorithm

1. Find a minimum Weight spanning tree T.

2. Find a minimum weight perfect matching ¥ on U € V,
‘Where U are odd- degree vertices in T.

3. Find a Eulerian tour ¢’ on T U M.

Christofides algorithm

1. Find a minimum Weight spanning tree T.

2. Find a minimum weight perfect matchlng MonUcYV,
‘where U are odd- degree vertices in T. |

3. Find a Eulerian tour ¢’ on T U M.

4. Shortcut ¢’ to C by skipping visited vertices.

1 .5—Approximation

- Same as before: OPTTSP > w(T)
= w(C) < w(C) = w(T) +w(M)
. We aim to show w(M) < 0.5 OPTygp

 w(M) < 0.50PTygp

S _ —

£ Let 0 be the thimél cycle.

~ w(M) < 0.5 OPTrep

— - ——— - ——

£ Let 0 be the thimél cycle.

= Let 0’ shortcut those vertices not in the matching.

~ w(M) < 0.5 OPTrep

: Let 0 be the thimél cycle.
= Let O shortcut those vertices not in the matching.
. Two disjoin-t matchings M,, M, in O’

= w(My) +w(M;) = w(0") < w(0) (triangle inequality)
. One of M, or M, has weight at most O..SW(O)

w(M) < 0.5 OPTyqp

——— - —

= Let 0 be the optimal cycle.

= Let 0’ shortcut those vertices not in the matching.
. Two disjoin.t matchings M, M, in O’

= w(M,;) +w(M,) =w(0") <w(0) (triangle inequality)
= One of M; or M, has weight at most 0.'5w(0)

= Since M has minimum weight... |

Metric TSP Results

S

EE———

- A (1.5 — 107°°)-approximation algorithm
- - [Karlin, Klein, Gharan, 2020]

« NP-hard to approximaté with factor

123
=
- [Karpinski, Lampis & Schmied, 2015]

122

This Lecture '

NP-Hardness: _
= One more reduction: NP-hardness of k-means
Approximation Algorithms:

= Example:
- VertexCover (2-approximation)
- TSP (1.5-approximation)

= Framework:

- find an approachable lower bound L (or upper bound in the
maximization case) of OPT;

- Show that ALG < «a - L

= Two techniques for designing approximation algorithms:
- Combinatorial
- LP-relaxation (Integrality Gap to analyze approximation ratio)

