Approximation
Algorithms

Max-3SAT, Max-k-Coverage, Set Cover, Max-Cut



Max—_BSAT |

AMacISATE -
= Input: a 3-CNF Boolean formula ¢

: Output: an assignment satisfying maximum number of
clauses

- Assumption:
1. Each clause contains exactly 3 literals

2. Each clause contains 3 distinct variables



What if we asSign values randomly?

EE————— ~ —

= For each x;, assign
- x; = true with probability 0.5;
- x; = false with probability 0.5.

- What is the probability that a clause is satisfied?

= What is the number of satisfied clauses in expectaltion?



Linearity of Expectation

—— _ ==

E ?_Theorem Let

- - XX, ben random variables that may be dependent, and
20y o e constants

: We have

3 n
c;Xi| = 2 c; E[X;].

. 'MQ'




Max-3SAT Random Assignment

e —————

Foreachi=1,.. m, define random variable
o ] if ith clause is satisfied
Y= | _
: 0, otherwise

We have E[Y;] = 1 x Pr(Y; = 1) + 0 X Pr(Y; = 0) = g ‘

Y = Y, Y;: total number of satisfied clauses

We want to compute E|Y].

By Linearity of Expectation:

E[Y] = E [2214 = EzliE[Yi] = gm.



A g—Approximation Algorithm? "

et = - —

= m is clearly an upper bound to OPT.

= If we can satlsfled > 8m clauses, we get a ——ApprOX|mat|on
AlgorlthmI



Let's try toasSign value to x;

— - : ——— : e D T s T

= We have
~ E[Y] = E[Y|x; = true] - Pr(x; = true) + E[Y|x; = false] - Pr(x; = false)

e =
= E - [E[-Y|x1 = true] + E . [E[Y|x1 = false]

which implies | |
E[Y|x; = true] + E[Y]|x; = false] = 2 - E[Y].

Thus, either E[Y|x; = true] = E[Y] or E[Y]|x, = false] = E[Y].

The two conditional expectations can be computed in 0(m) time.

We can assign value to x; with larger conditional expectation!



Example

N . — - ——

b =(x1 Vg Vaxy) A(xg Vg Vaxg) A(—xg Vaxg Vixg)

Assigning x; = true results in
- ¢ =true Atrue A (=x; V x4)
- E[Y|x; =true] =1+ 1'+% =2.75

Assigning x; = false results In
- ¢ = (x3V xy) A (X3 V —x3) Atrue
~ E[Y]|x; = false] = % = % +1=25

We shall assign x; = true.



Continue for x,...

= - = ' —

« After assigning sorhe value for x;:

N — Vg Where v; € {true,false}

. We assign value for x, by comparing

= E[Y|x; = vy, %, = truel,[E[Y|x; = vy, x, = false]

= Assign x, = v, € {true, false} with Iarger conditional
expectatlon



An Approximation Algorithm

= - = ' —

fofEi=1_.n
Compute ]E[lelz -vl, ...,xl'_l_ 2 vl'_l,xi = true],E[lel =V ...,xi_l == vi._l,xl' == false]

asSign x; = v; € {true, false} with the larger conditional expectation

endfo'r



Expectation Monotonicity

— - ' —_— . e N e e S < %

In each iteration:
]E[lel = Vi en Xj—1 : vi—l]

= EII_E[YIxI =Vq .0, X1 = Vi3, X; = true] + fE[lel = Vi, Xio1 = Vij_1;x; = false]

Thus, either
B e X =V e B =, = O

= E[Y|x; = vq, o, X0 = v, x; = false] =2 E[Y|x; = vy, e =]

The algorithm always choose x; = v; € {true, false} with larger expectation:
E[Y|x1 = vy, i, im0 = vi_q, % = V] 2 E[Y|xy = vy, .., %21 = V4]

The conditional expectatibn for Y is non-decreasing!



Expectation Monotonicity

et = - —

The conditional expectation for Y is non-decreasing!

ThUS, E[le]_: vl, v X Un] = ]E[Y] = gm.

E[Y|x; = vy, ...,x, = 1,] Is already deterministic.

- With assignment x;, = v, ..., x, = v,,, this is exactly the number of
satisfied clauses! ‘ -

We have a g—approximation algorithm!

Running Time: O (mn)



Possible Improvements?

———— = - —

= Can this algorithm do better than g—approximation?
= No... '

= Easy to come up with a tight example...



Possible Improvements?

— - = < = . =

? Exist other better a-lgorithms?
= Assummg P = NP, no..

: [Hastad 2001] Max-3SAT is NP-hard to apprOX|mate to
within = +e~:for any & > 0. |



Maximum Independent Set (Clique)

— _ E—— ——

= For any € > 0, Maximum Independent Set/Clique is NP-
-~ hard to approximate to within factor (|V|*~%).
- [Hastad, 1999], [Khot, 2001] and [Zuckerman, 2006]
. Can you give a |V|-approximation algorithm?

- [VI(oglog|v)?
80 0 ( (log|V])*
- [Feige, 2004]

)—approximati‘on algorithm...



Greedy—Based Approximation Algorithm'

E—— ——

= Greedy algorithm may not output optimal solutions for
- some optimization problems.

« However, it may be a good approximation algorithm!



Max—_k—Coverage and Set Cov_erProbIemS

= - = ' —

- Let U ={1,...,n} be ‘a} ground set of elements.

= Let T = {4,,4,, .., 4,,} be a collection of subsets of U with
Ugerdi = U.

= [Set Cover] Find a sub collection S € T with minimum |S|
such that U,,es4; = U.

= [Max-k-Coverage] Given k € Z+ find a sub-collection S cT
with [S| < k that maximizes |UA es Ail-



NP—Hardness '

= - = . e

= Given k € ZF, it is NP- -complete to decide if there exists S
- T with [§] < k such that Ua,es4; = U.

- Exercise: Prove it!

= Therefore, both maX-k—coverage and set cover are NP-hard.



Notation

N . — - ——

- Denote f(S) = |Uy.es4;|: the number of elements covered
- by S. - |

: ':'Set Cover] Find minimum-sized S with FSIT=1U= n

= [Max-k-Coverage] Maximize f(S) subject to |S| < k.



Greedy Algori'thm

1. Initialize S < ¢ |

2. Repeat the followings:

3. find A € T \ S that maximizes f(S U {4}) — f(S)
4 update S « S U {4} | |
5

. Until:
- f(S) = |U| = n (for set cover)
- |S| = k (for max-k-coverage)

6. Return s



E——

,n}. ground set of eI_ements“

{Al,Az, -

Performance of Greedy Algorithm

- U={1,..

=T

.,An}: a collection of subsets of U

»

4m The groundset U



~ Performance of Greedy Algorithm

Optimal solution:
4m ;5 subsets covers all
elements




- Performance of Greedy Algorithm

Greedy solution:
The 15t subset selected must

1
cover > Ef(SOPT) elements




Performance of Greedy Algorithm

Greedy solution: .
The 2" subset selected must.

e A
cover = Efractlon of remaining
uncovered elements




Performance of Greedy Algorithm

Greedy solution: |
The 39 subset selected must

1 . S
cover = Efract|on of remaining
uncovered elements




Performance of Greedy Algorithm

- Greedy solution: .
And so for the 4 and the 5th




Performance of Greedy Algorithm

et = - ——

- Let S = (4, ..., 45) be the output of the greedy algorithm.

= {4} covers% fraction

= {A,,A,} covers §+ % (1 — 1) 1— (1 — %)2 fraction

5 ‘
P R e
+ (A1, Az A, A 1= (1= %)4

= fALASAS A Al — (1 = %)5



Performance of Greedy Algorithm

S — < - - ———

. Lets* = {05050 Ok} be any collection of k subsets.
= LetS = {Al,Az,';..,A{)} be the output of greedy after ¢ iterations. |

= femma 7(5) > (1 = (1 = %){))f(S*).

= Greedy gives a (_1 — l)—approximation for.max-k-coverage:

e

»

- For optimal s*, we have f(S) 2(1 — (1 — %)k)f(s*) > (1 — i) f(5).
. Greedy gives a (Inn)-approximation for set cover:
- Suppose S* with |S*| = k is optimal. ,
1\ kInn 1 :
- For¢=k-Inn, f(5) > (1 -(1-3) )f(S*) >(1- o) f(8) =n-1
- This implies f(S) =n, as f(S) € Z*




Provmg f(S) = (1 = (1 ——) >f(5 3

N . — - ——

« LetS, = {Ay, .., A}

= Prove lemma by Induction...

. Base Step {’ =

» By greedy nature, f(S; = {41}) = f({0;}) for all 0;.

« Thus, £(5) 2 25K, F(0) 2 1659 = (1= (1-2) ) F57

- Middle mequallty Elements in more than one 0; is counted more
than once in ¥¥ 1f({O D, and only once in f(5*). :




Provmg S = (1 — (1 ——) )f(S 3

? Now, S, = {4, ...,At}.after t iterations.
= For each 0;, consider A(0; | S;) = f (S, U {0;}) — F(Sp).
. By greedy nature, A(4;411 S;) = A(0; | S;) for each 0;.

1 1 -
* AAesal S 2 B A0 |S) 2 A7 Sy)



Proving Sz (1 — (1 — %){))f(s*) ‘

= = - —— - —————————— = = — X

= | "1 : 1 :
= We have A(4;44] Sp) = ;Z?ﬂA(Oi | S¢) = ;A(S | S¢)

. I'nd'uct_ive step:'f(SHl) — Fgo (f(S* US,) —f(Sp)) | ‘ (yellow)
' %(f(s )—f(S))  (monotonicity of f) |
i) > S f(5%) + (1 = l)f(gt) . | (rearranging inequality)

f(S ) + (1 — —) (1 = (1 — —) )f(S ) (induction hypothesis)

=(1-(1-37) 559



Performance of Greedy Algorithm

= Greedy gives a (1 — i)—approkimation for max-k-coverage.
- For optimal S*,We have f(S) > <1 — (1 — %)k> f(s") = (1 — i) f(S").
- Greedy gives a (Inn)-approximation for set cover.

- Suppose S* with |S*| = k is optimal.

1

- For £ = k-Inn, f(5) > (1 - (1- i)k'm") 59> (1- ) F5) =n -1
_ This implies £(S) = n, as f(S) € Z* |




Can greedy do better (by better analysis)?

S — S — —_—

This is also a Tight Example:
» Max-k-Coverage: |
- Greedy can do at best 1 —i

- Set Cover: |
- Greedy can do at best Inn




~ ~ Better Algdrithms?r

: Max—k—Coverage
No (1 — i —!—'e)—'approximation algorithm unless P-= NP..
- [Feige, 1998] '
Set Cover

+ No (1 — o(1)) Inn-approximation algorlthm unless NP ¢
DTIME(nCUoglogm)) .. |
- [Feige, 1998]

- No (1 = 0(1)) Inn-approximation algorithm unless P = NP.
- [Moshkovitz, 2012] [Dinur & Steurer, 2014] ;



Local Search '

E——

= Start with an arbitrary solution.
= Improve it by “local updates”.

. Until no more update improves the objective.



I\/IaxfCut

N . — - ——

[Max Cut] leen an undlrected graph ¢ = (V,E), find a cut
(A B) with maX|mum value ¢(4,B) = |E(A, B))|.

« [Karp, 1972] Max-Cut is NP-hard.



A Local Search Algorithm

1. Start with any partition (4, B).

2. If moving a vertex u from A to B or from B to A increases
¢(4,B), move It.

3. Terminate until no such movement is possible.



Example




Example




Example




Example




- Example




- Example |




Example

A

No more update can improve.
Terminate...



Time COmpIeXity?

et = - ——

Each update searches for at most 0(|V]|) vertices.

For each vertex, decide if the update is beneficial takes at
most O(|E|) time.

Total number of updates is at most |E]|.
- Each update increases the cut size by at least 1.

Overall: 0(|V||E|?) - polynomial time!



Approximation Guarantee?

et = - ——

= Each vertex u: at least %deg(u} Incident edges in the cut.

= Thus, |
‘ AB)>lzld ()—EIEI
c(A4, =7 ) deg(u) =< I

uev

= |E| is an obvious upper bound to OPT.

= Therefore, the local search algorithm is a 0.5-approximation.



Can the algorithm do better than 0.5-
approximation?

? No...

= Can you give a tight example?



Are there better approximation algorithms?

= Yes!

= Next lecture...



'EASY : — .
= Poly-time Solvable: Shortest-Path, Max-Flow, Min-Cut, Matching, LP

Appr_oximability Spectrum

e— - - - — | EACATRA B S T S s

= FPTAS (fully poly-time approximation scheme): Knapsack

- (1 £ &)-approximation for any € > 0, running time poly(n, 1/¢)

- PTAS (poly—time approximation scheme): Makespan minimization, Euclidean TSP

- (1 £ &)-approximation for any constant € > 0, running time may be something like s

= Constant apprOX|mab|I|ty Max-3SAT, Vertex Cover, Metric TSP, Max-Cut, Max-k-

Coverage, k-Means

= Sub-linear approximability: Set Cover, Dominating Set

* (Almost-)linear inapproximability: Independent Set/Clique, Longest Path on

Directed Graphs

- Totally inapproximable: IP, TSP

HARD



This Lecture '

= More approximation Algorithms:
- Max-3SAT |
- Max-k-Coverage

- Set Cover

- Max-Cut

= Three techniques:
- Expectation boosting
- Greedy
- Local Search

= For maximization problem, there is a natural “maximum
possible value” as upper bound to OPT.



Extra — Namihg for P and NP

= P polynomial—time.‘

= NP: non-deterministic polynomial-time



Deterministic Turing Machine (the normal TM we have seen):
- Transition 6:0 XX > Q0 X X X {L,R}

Non-deterministic Turing Machine |
- Specify two transitions 6§, 6, for each state-alphabet tuple.

Deterministic Non-Deterministic

l/.\l
v N
accept— o .
v N\

i l e — reject
. 4
‘L * — accept

accept or
.-""" reject

Image from: https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine



Polynomial Time NTM

———— = - ——

= A non-deterministic Turing machine runs in polynomial
time if, upon receiving input x, all branches reach halting
~ states within 0(|x|¢) steps for some constant ¢ > 0.



Original Definition for NP

X ' V— e S = i ———— == -— = - =

= Definition. A decision problem f:2* - {0,1} is in NP if there
Is a polynomial time NTM A such that

g - There is a branch of A (x) that reaches the accepting state if f(x) = 1
- All branches of A(x) reach the rejecting state if f(x) =0

« This definition is equivalent to the “certificate definition”:

- Each bit of the certificate corresponds to the “instruction” for which
of 6;,8, we are following.

- For the yes instance, the certificate “instructs” us to move alohg the
branch that reach the accepting state. :

- For the no instance, no “instruction” can help us reach the accepting .
state.



SAT € NP

E——

———— =

= We consider the NTM that enumerates the values of x;, ..., x,,
- in the first n steps.

: Now we have 2" “terminals” after first n steps.

= For each terminal, verify if ¢ is satisfied; go to the accepting
state if it is, and go to the rejecting state if not.



