
Approximation 
Algorithms

Max-3SAT, Max-k-Coverage, Set Cover, Max-Cut



Max-3SAT

[Max-3SAT]

▪ Input: a 3-CNF Boolean formula 𝜙

▪ Output: an assignment satisfying maximum number of 
clauses

Assumption: 

1. Each clause contains exactly 3 literals

2. Each clause contains 3 distinct variables



What if we assign values randomly?

▪ For each 𝑥𝑖, assign
– 𝑥𝑖 = true with probability 0.5;

– 𝑥𝑖 = false with probability 0.5.

▪ What is the probability that a clause is satisfied?

▪ What is the number of satisfied clauses in expectation?



Linearity of Expectation

▪ Theorem. Let
– 𝑋1, … , 𝑋𝑛 be 𝑛 random variables that may be dependent, and 

– 𝑐1, … , 𝑐𝑛 be 𝑛 constants.

▪ We have

𝔼 ෍

𝑖=1

𝑛

𝑐𝑖𝑋𝑖 =෍

𝑖=1

𝑛

𝑐𝑖𝔼 𝑋𝑖 .



Max-3SAT Random Assignment

▪ For each 𝑖 = 1,… ,𝑚, define random variable

𝑌𝑖 = ቊ
1, if 𝑖th clause is satisfied
0, otherwise

▪ We have 𝔼 𝑌𝑖 = 1 × Pr 𝑌𝑖 = 1 + 0 × Pr 𝑌𝑖 = 0 =
7

8
.

▪ 𝑌 = σ𝑖=1
𝑚 𝑌𝑖: total number of satisfied clauses

▪ We want to compute 𝔼 𝑌 .

▪ By Linearity of Expectation:

𝔼 𝑌 = 𝔼 ෍
𝑖=1

𝑚

𝑌𝑖 =෍
𝑖=1

𝑚

𝔼[𝑌𝑖] =
7

8
𝑚.



A 
7

8
-Approximation Algorithm?

▪ 𝑚 is clearly an upper bound to OPT.

▪ If we can satisfied ≥
7

8
𝑚 clauses, we get a 

7

8
-Approximation 

Algorithm!



Let’s try to assign value to 𝑥1

▪ We have
𝔼 𝑌 = 𝔼 𝑌 𝑥1 = true ⋅ Pr 𝑥1 = true + 𝔼 𝑌 𝑥1 = false ⋅ Pr 𝑥1 = false

=
1

2
⋅ 𝔼 𝑌 𝑥1 = true +

1

2
⋅ 𝔼 𝑌 𝑥1 = false

▪ which implies
𝔼 𝑌 𝑥1 = true + 𝔼 𝑌 𝑥1 = false = 2 ⋅ 𝔼 𝑌 .

▪ Thus, either 𝔼 𝑌 𝑥1 = true ≥ 𝔼 𝑌 or 𝔼 𝑌 𝑥1 = false ≥ 𝔼 𝑌 .

▪ The two conditional expectations can be computed in 𝑂 𝑚 time.

▪ We can assign value to 𝑥1 with larger conditional expectation!



Example

▪ 𝜙 = 𝑥1 ∨ 𝑥3 ∨ ¬𝑥4 ∧ 𝑥1 ∨ 𝑥2 ∨ ¬𝑥3 ∧ (¬𝑥1 ∨ ¬𝑥2 ∨ 𝑥4)

▪ Assigning 𝑥1 = true results in
– 𝜙 = true ∧ true ∧ ¬𝑥2 ∨ 𝑥4

– 𝔼 𝑌 𝑥1 = true = 1 + 1 +
3

4
= 2.75

▪ Assigning 𝑥1 = false results in
– 𝜙 = 𝑥3 ∨ ¬𝑥4 ∧ 𝑥2 ∨ ¬𝑥3 ∧ true

– 𝔼 𝑌 𝑥1 = false =
3

4
+

3

4
+ 1 = 2.5

▪ We shall assign 𝑥1 = true.



Continue for 𝑥2…

▪ After assigning some value for 𝑥1: 

▪ 𝑥1 = 𝑣1 where 𝑣1 ∈ {true, false}

▪ We assign value for 𝑥2 by comparing

▪ 𝔼 𝑌 𝑥1 = 𝑣1, 𝑥2 = true ,𝔼 𝑌 𝑥1 = 𝑣1, 𝑥2 = false

▪ Assign 𝑥2 = 𝑣2 ∈ {true, false} with larger conditional 
expectation.



An Approximation Algorithm

1. for 𝑖 = 1,… , 𝑛:

2. compute 𝔼 𝑌 𝑥1 = 𝑣1, … , 𝑥𝑖−1 = 𝑣𝑖−1, 𝑥𝑖 = true , 𝔼 𝑌 𝑥1 = 𝑣1, … , 𝑥𝑖−1 = 𝑣𝑖−1, 𝑥𝑖 = false

3. assign 𝑥𝑖 = 𝑣𝑖 ∈ {true, false} with the larger conditional expectation

4. endfor



Expectation Monotonicity

In each iteration:
𝔼 𝑌 𝑥1 = 𝑣1, … , 𝑥𝑖−1 = 𝑣𝑖−1

=
1

2
𝔼 𝑌 𝑥1 = 𝑣1, … , 𝑥𝑖−1 = 𝑣𝑖−1, 𝑥𝑖 = true +

1

2
𝔼 𝑌 𝑥1 = 𝑣1, … , 𝑥𝑖−1 = 𝑣𝑖−1, 𝑥𝑖 = false

Thus, either 

▪ 𝔼 𝑌 𝑥1 = 𝑣1, … , 𝑥𝑖−1 = 𝑣𝑖−1, 𝑥𝑖 = true ≥ 𝔼 𝑌 𝑥1 = 𝑣1, … , 𝑥𝑖−1 = 𝑣𝑖−1 , or

▪ 𝔼 𝑌 𝑥1 = 𝑣1, … , 𝑥𝑖−1 = 𝑣𝑖−1, 𝑥𝑖 = false ≥ 𝔼 𝑌 𝑥1 = 𝑣1, … , 𝑥𝑖−1 = 𝑣𝑖−1

The algorithm always choose 𝑥𝑖 = 𝑣𝑖 ∈ {true, false} with larger expectation:
𝔼 𝑌 𝑥1 = 𝑣1, … , 𝑥𝑖−1 = 𝑣𝑖−1, 𝑥𝑖 = 𝑣𝑖 ≥ 𝔼 𝑌 𝑥1 = 𝑣1, … , 𝑥𝑖−1 = 𝑣𝑖−1

The conditional expectation for 𝑌 is non-decreasing!



Expectation Monotonicity

▪ The conditional expectation for 𝑌 is non-decreasing!

▪ Thus, 𝔼 𝑌 𝑥1 = 𝑣1, … , 𝑥𝑛 = 𝑣𝑛 ≥ 𝔼 𝑌 =
7

8
𝑚.

▪ 𝔼 𝑌 𝑥1 = 𝑣1, … , 𝑥𝑛 = 𝑣𝑛 is already deterministic.
– With assignment 𝑥1 = 𝑣1, … , 𝑥𝑛 = 𝑣𝑛, this is exactly the number of 

satisfied clauses!

▪ We have a 
7

8
-approximation algorithm!

▪ Running Time: 𝑂 𝑚𝑛



Possible Improvements?

▪ Can this algorithm do better than 
7

8
-approximation?

▪ No…

▪ Easy to come up with a tight example…



Possible Improvements?

▪ Exist other better algorithms?

▪ Assuming P ≠ NP, no…

▪ [Håstad, 2001] Max-3SAT is NP-hard to approximate to 
within 

7

8
+ 𝜀 for any 𝜀 > 0.



Maximum Independent Set (Clique)

▪ For any 𝜀 > 0, Maximum Independent Set/Clique is NP-
hard to approximate to within factor 𝑉 1−𝜀 .
– [Håstad, 1999], [Khot, 2001] and [Zuckerman, 2006]

▪ Can you give a |𝑉|-approximation algorithm?

▪ An 𝑂
𝑉 log log 𝑉 2

log 𝑉 3 -approximation algorithm…

– [Feige, 2004]



Greedy-Based Approximation Algorithm

▪ Greedy algorithm may not output optimal solutions for 
some optimization problems.

▪ However, it may be a good approximation algorithm!



Max-k-Coverage and Set Cover Problems

▪ Let 𝑈 = {1,… , 𝑛} be a ground set of elements.

▪ Let 𝑇 = 𝐴1, 𝐴2, … , 𝐴𝑚 be a collection of subsets of 𝑈 with 
𝐴𝑖∈𝑇ڂ

𝐴𝑖 = 𝑈.

▪ [Set Cover] Find a sub-collection 𝑆 ⊆ 𝑇 with minimum |𝑆|
such that ڂ𝐴𝑖∈𝑆

𝐴𝑖 = 𝑈.

▪ [Max-k-Coverage] Given 𝑘 ∈ ℤ+, find a sub-collection 𝑆 ⊆ 𝑇
with 𝑆 ≤ 𝑘 that maximizes 𝐴𝑖∈𝑆ڂ

𝐴𝑖 .



NP-Hardness

▪ Given 𝑘 ∈ ℤ+, it is NP-complete to decide if there exists 𝑆 ⊆
𝑇 with 𝑆 ≤ 𝑘 such that ڂ𝐴𝑖∈𝑆

𝐴𝑖 = 𝑈.

▪ Exercise: Prove it!

▪ Therefore, both max-k-coverage and set cover are NP-hard.



Notation

▪ Denote 𝑓 𝑆 = 𝐴𝑖∈𝑆ڂ
𝐴𝑖 : the number of elements covered 

by 𝑆.

▪ [Set Cover] Find minimum-sized 𝑆 with 𝑓 𝑆 = 𝑈 = 𝑛.

▪ [Max-k-Coverage] Maximize 𝑓 𝑆 subject to 𝑆 ≤ 𝑘.



Greedy Algorithm

1. Initialize 𝑆 ← ∅

2. Repeat the followings:

3. find 𝐴 ∈ 𝑇 ∖ 𝑆 that maximizes 𝑓 𝑆 ∪ 𝐴 − 𝑓 𝑆

4. update 𝑆 ← 𝑆 ∪ {𝐴}

5. Until:
– 𝑓 𝑆 = 𝑈 = 𝑛 (for set cover)

– 𝑆 = 𝑘 (for max-k-coverage)

6. Return 𝑆



Performance of Greedy Algorithm

▪ 𝑈 = {1,… , 𝑛}: ground set of elements

▪ 𝑇 = 𝐴1, 𝐴2, … , 𝐴𝑚 : a collection of subsets of 𝑈

The ground set 𝑈



Performance of Greedy Algorithm

Optimal solution:
5 subsets covers all 
elements

𝑆OPT



Performance of Greedy Algorithm

Greedy solution:
The 1st subset selected must 

cover  ≥
1

5
𝑓 𝑆OPT elements

𝑆OPT



Performance of Greedy Algorithm

Greedy solution:
The 2nd subset selected must 

cover  ≥
1

5
fraction of remaining 

uncovered elements

𝑆OPT



Performance of Greedy Algorithm

Greedy solution:
The 3rd subset selected must 

cover  ≥
1

5
fraction of remaining 

uncovered elements

𝑆OPT



Performance of Greedy Algorithm

Greedy solution:
And so for the 4th and the 5th

𝑆OPT



Performance of Greedy Algorithm

▪ Let 𝑆 = 𝐴1, … , 𝐴5 be the output of the greedy algorithm.

▪ {𝐴1} covers 
1

5
fraction

▪ {𝐴1, 𝐴2} covers 
1

5
+

1

5
1 −

1

5
= 1 − 1 −

1

5

2
fraction

▪ {𝐴1, 𝐴2, 𝐴3}: 1 − 1 −
1

5

2
+

1

5
1 − 1 − 1 −

1

5

2
= 1 − 1 −

1

5

3

▪ {𝐴1, 𝐴2, 𝐴3, 𝐴4}: 1 − 1 −
1

5

4

▪ {𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5}: 1 − 1 −
1

5

5



Performance of Greedy Algorithm

▪ Let 𝑆∗ = {𝑂1, 𝑂2, … , 𝑂𝑘} be any collection of 𝑘 subsets.

▪ Let 𝑆 = {𝐴1, 𝐴2, … , 𝐴ℓ} be the output of greedy after ℓ iterations.

▪ Lemma. 𝑓 𝑆 ≥ 1 − 1 −
1

𝑘

ℓ
𝑓 𝑆∗ .

▪ Greedy gives a 1 −
1

𝑒
-approximation for max-k-coverage:

– For optimal 𝑆∗, we have 𝑓 𝑆 ≥ 1 − 1 −
1

𝑘

𝑘
𝑓 𝑆∗ ≥ 1 −

1

𝑒
𝑓 𝑆∗ .

▪ Greedy gives a (ln 𝑛)-approximation for set cover:
– Suppose 𝑆∗ with 𝑆∗ = 𝑘 is optimal.

– For ℓ = 𝑘 ⋅ ln 𝑛, 𝑓 𝑆 ≥ 1 − 1 −
1

𝑘

𝑘⋅ln 𝑛
𝑓 𝑆∗ > 1 −

1

𝑒ln 𝑛 𝑓 𝑆∗ = 𝑛 − 1

– This implies 𝑓 𝑆 = 𝑛, as 𝑓 𝑆 ∈ ℤ+



Proving 𝑓 𝑆 ≥ 1 − 1 −
1

𝑘

ℓ
𝑓 𝑆∗

▪ Let 𝑆𝑡 = 𝐴1, … , 𝐴𝑡

▪ Prove lemma by Induction…

▪ Base Step ℓ = 1:

▪ By greedy nature, 𝑓 𝑆1 = {𝐴1} ≥ 𝑓 {𝑂𝑖} for all 𝑂𝑖.

▪ Thus, 𝑓 𝑆1 ≥
1

𝑘
σ𝑖=1
𝑘 𝑓 𝑂𝑖 ≥

1

𝑘
𝑓 𝑆∗ = 1 − 1 −

1

𝑘

1
𝑓 𝑆∗

▪ Middle inequality: Elements in more than one 𝑂𝑖 is counted more 
than once in σ𝑖=1

𝑘 𝑓 {𝑂𝑖} , and only once in 𝑓 𝑆∗ .



Proving 𝑓 𝑆 ≥ 1 − 1 −
1

𝑘

ℓ
𝑓 𝑆∗

▪ Now, 𝑆𝑡 = {𝐴1, … , 𝐴𝑡} after 𝑡 iterations.

▪ For each 𝑂𝑖, consider Δ 𝑂𝑖 𝑆𝑡) = 𝑓 𝑆𝑡 ∪ 𝑂𝑖 − 𝑓(𝑆𝑡).

▪ By greedy nature, Δ 𝐴𝑡+1 𝑆𝑡) ≥ Δ 𝑂𝑖 𝑆𝑡) for each 𝑂𝑖. 

▪ Δ 𝐴𝑡+1 𝑆𝑡) ≥
1

𝑘
σ𝑖=1
𝑘 Δ 𝑂𝑖 𝑆𝑡) ≥

1

𝑘
Δ 𝑆∗ 𝑆𝑡



Proving 𝑓 𝑆 ≥ 1 − 1 −
1

𝑘

ℓ
𝑓 𝑆∗

▪ We have Δ 𝐴𝑡+1 𝑆𝑡) ≥
1

𝑘
σ𝑖=1
𝑘 Δ 𝑂𝑖 𝑆𝑡) ≥

1

𝑘
Δ 𝑆∗ 𝑆𝑡

▪ Inductive step: 𝑓 𝑆𝑡+1 − 𝑓 𝑆𝑡 ≥
1

𝑘
𝑓 𝑆∗ ∪ 𝑆𝑡 − 𝑓 𝑆𝑡 (yellow)

▪ ≥
1

𝑘
𝑓 𝑆∗ − 𝑓 𝑆𝑡 (monotonicity of 𝑓)

▪ 𝑓 𝑆𝑡+1 ≥
1

𝑘
𝑓 𝑆∗ + 1 −

1

𝑘
𝑓 𝑆𝑡 (rearranging inequality)

▪ ≥
1

𝑘
𝑓 𝑆∗ + 1 −

1

𝑘
1 − 1 −

1

𝑘

𝑡
𝑓 𝑆∗ (induction hypothesis)

▪ = 1 − 1 −
1

𝑘

𝑡+1
𝑓 𝑆∗



Performance of Greedy Algorithm

▪ Greedy gives a 1 −
1

𝑒
-approximation for max-k-coverage.

– For optimal 𝑆∗, we have 𝑓 𝑆 ≥ 1 − 1 −
1

𝑘

𝑘
𝑓 𝑆∗ ≥ 1 −

1

𝑒
𝑓 𝑆∗ .

▪ Greedy gives a (ln 𝑛)-approximation for set cover.
– Suppose 𝑆∗ with 𝑆∗ = 𝑘 is optimal.

– For ℓ = 𝑘 ⋅ ln 𝑛, 𝑓 𝑆 ≥ 1 − 1 −
1

𝑘

𝑘⋅ln 𝑛
𝑓 𝑆∗ > 1 −

1

𝑒ln 𝑛 𝑓 𝑆∗ = 𝑛 − 1

– This implies 𝑓 𝑆 = 𝑛, as 𝑓 𝑆 ∈ ℤ+



Can greedy do better (by better analysis)?

This is also a Tight Example:

▪ Max-k-Coverage:

– Greedy can do at best 1 −
1

𝑒

▪ Set Cover:
– Greedy can do at best ln 𝑛



Better Algorithms? 

Max-k-Coverage

▪ No 1 −
1

𝑒
+ 𝜀 -approximation algorithm unless P = NP.

– [Feige, 1998]

Set Cover

▪ No 1 − 𝑜 1 ln 𝑛-approximation algorithm unless NP ⊆
DTIME 𝑛O(log log 𝑛) .
– [Feige, 1998]

▪ No 1 − 𝑜 1 ln 𝑛-approximation algorithm unless P = NP.
– [Moshkovitz, 2012] [Dinur & Steurer, 2014]



Local Search

▪ Start with an arbitrary solution.

▪ Improve it by “local updates”.

▪ Until no more update improves the objective.



Max-Cut

▪ [Max-Cut] Given an undirected graph 𝐺 = (𝑉, 𝐸), find a cut
(𝐴, 𝐵) with maximum value 𝑐 𝐴, 𝐵 = |𝐸(𝐴, 𝐵)|.

▪ [Karp, 1972] Max-Cut is NP-hard.



A Local Search Algorithm

1. Start with any partition (𝐴, 𝐵).

2. If moving a vertex 𝑢 from 𝐴 to 𝐵 or from 𝐵 to 𝐴 increases 
𝑐(𝐴, 𝐵), move it.

3. Terminate until no such movement is possible.



Example

𝐴 𝐵



Example

𝐴 𝐵



Example

𝐴 𝐵



Example

𝐴 𝐵



Example

𝐴 𝐵



Example

𝐴 𝐵



Example

𝐴 𝐵

No more update can improve.
Terminate…



Time Complexity?

▪ Each update searches for at most 𝑂 𝑉 vertices.

▪ For each vertex, decide if the update is beneficial takes at 
most 𝑂 𝐸 time.

▪ Total number of updates is at most |𝐸|.
– Each update increases the cut size by at least 1.

▪ Overall: 𝑂 𝑉 𝐸 2 - polynomial time!



Approximation Guarantee?

▪ Each vertex 𝑢: at least 
1

2
deg(𝑢) incident edges in the cut.

▪ Thus,

𝑐 𝐴, 𝐵 ≥
1

2
෍

𝑢∈𝑉

1

2
deg 𝑢 =

1

2
𝐸 .

▪ 𝐸 is an obvious upper bound to OPT.

▪ Therefore, the local search algorithm is a 0.5-approximation.



Can the algorithm do better than 0.5-
approximation?

▪ No…

▪ Can you give a tight example?



Are there better approximation algorithms?

▪ Yes!

▪ Next lecture...



Approximability Spectrum

▪ Poly-time Solvable: Shortest-Path, Max-Flow, Min-Cut, Matching, LP

▪ FPTAS (fully poly-time approximation scheme): Knapsack
– (1 ± 𝜀)-approximation for any 𝜀 > 0, running time poly(𝑛, 1/𝜀)

▪ PTAS (poly-time approximation scheme): Makespan minimization, Euclidean TSP
– (1 ± 𝜀)-approximation for any constant 𝜀 > 0, running time may be something like 𝑛1/𝜀

▪ Constant approximability: Max-3SAT, Vertex Cover, Metric TSP, Max-Cut, Max-k-
Coverage, k-Means

▪ Sub-linear approximability: Set Cover, Dominating Set

▪ (Almost-)linear inapproximability: Independent Set/Clique, Longest Path on 
Directed Graphs

▪ Totally inapproximable: IP, TSP

EASY

HARD



This Lecture

▪ More approximation Algorithms: 
– Max-3SAT

– Max-k-Coverage

– Set Cover

– Max-Cut

▪ Three techniques:
– Expectation boosting

– Greedy

– Local Search

▪ For maximization problem, there is a natural “maximum 
possible value” as upper bound to OPT.



Extra – Naming for P and NP

▪ P: polynomial-time

▪ NP: non-deterministic polynomial-time



▪ Deterministic Turing Machine (the normal TM we have seen): 
– Transition 𝛿: 𝑄 × Σ → 𝑄 × Σ × {𝐿, 𝑅}

▪ Non-deterministic Turing Machine
– Specify two transitions 𝛿1, 𝛿2 for each state-alphabet tuple.

Image from: https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine



Polynomial Time NTM

▪ A non-deterministic Turing machine runs in polynomial 
time if, upon receiving input 𝑥, all branches reach halting 
states within 𝑂 𝑥 𝑐 steps for some constant 𝑐 > 0.



Original Definition for NP

▪ Definition. A decision problem 𝑓: Σ∗ → {0,1} is in NP if there 
is a polynomial time NTM 𝒜 such that
– There is a branch of 𝒜(𝑥) that reaches the accepting state if 𝑓 𝑥 = 1

– All branches of 𝒜(𝑥) reach the rejecting state if 𝑓 𝑥 = 0

▪ This definition is equivalent to the “certificate definition”:
– Each bit of the certificate corresponds to the “instruction” for which 

of 𝛿1, 𝛿2 we are following.

– For the yes instance, the certificate “instructs” us to move along the 
branch that reach the accepting state.

– For the no instance, no “instruction” can help us reach the accepting 
state.



SAT ∈ NP

▪ We consider the NTM that enumerates the values of 𝑥1, … , 𝑥𝑛
in the first 𝑛 steps.

▪ Now we have 2𝑛 “terminals” after first 𝑛 steps.

▪ For each terminal, verify if 𝜙 is satisfied; go to the accepting 
state if it is, and go to the rejecting state if not.


