LP-Related Algorithms

Hungarian Algorithm
Metric Facility Location

Part I:

Hungarian Algorithm

Problem

— - s = - ==

. [Maximum Weight Pérfect Matching (MWPM)]

+ Given a weighted complete bipartite graph 6 = (4, B, E = -
A X B,w:E = R<), find a maximum weight perfect matching.

- Perfect Matching: all the vertices must be matched!

« Need to assume:'|A|= |B| = n.

Hungarian Algorithm — High-Level

= Assign a “potential” to each vertex p: (AU B) - R,
= Throughout the algorithm, maintain:
1. Dominance: vu,v:ip(u) + p(v) = w(u, v)

2. Tightness: for any (u,v) selected in the matching M,
p(uw) +p(v) =w(u,v)

Hungarian’AIgorithm—' “at the End of the Day” ;

———— - = - —— - —— SR e e 5

= Suppose we have found
- amatching M with size |[M| = n, and .
- A potential assignment p such that dominance and tightness hold,

 then we are done!

» Lemma (Kuhn & Munkres). If' we have a matching.M with
size [M| = n and a potential assignment p such that
dominance and tightness hold, then M is a MWPM.

Proof. For any perfect matching M,

w(M) = z w(u,v) = Z p(u) = 2 W(u,v)=-W(M’)'

(u,v)EM - quAUB | f(u,v

tightness dominance

An “Academic Interpretation”

i — . > = = — —————— s

Each edge (u, v): a research project with cost/value w(u, v)
A: set of female researchers
B: set of male researchers

Every female-male pair of researchers can jointly work on a project.
- Each project only requires a female and a male
- Each researcher can only work on one project

p(u): research funding allocated to researcher u

Dominance: sufficient funding so that researchers can freely paired and
work on the project they prefer . .

Tiggtness:just adequate funding so that n most valuable projects can
é done

Objective: properjy allocate (minimum) funding to researchers so that
their optimal choice is to work out n most valuable projects

Initialization

~Initialize:
*M=0¢
- Vu € A:p(u) = maxw(u, v)
vEB

" Vv € B:p(v) =0

p(uy) : 3 p(vy) =

p(u,) =4 p(v,) =0

Two Types of Updates

et = - —

- Update 1: increase [M| with only tight edges.
= Update 2: adjust funding to make more tight edges.

» Hungarian Algorithm:
- Do 1 while possible.
- If 1 is impossible, do 2.

- Very Important: throughout the algorithm, dominance and’
tightness always hold! '
- In particular, M always only contain tight edges.

Augmenting Path

— - : ——— : e D T s T

= We will only work on subgraph G* = (A* U B, E*) with tight
~ edges!

= Alternative path path with edges alternates between E¢ \ M
and M

= Free vertex: vertex not in M

= Augmenting path: an aIternatlng path with two free
vertices as the two endpoints.

Example

= Orange Edges: Current M

Example

» Yellow Vertices; free vertices

Example

= an augmenting path...

Example

= an augmenting path...

Example

« not an augmenting path...

Example

« not an augmenting path...

Increase |M| on an Aug‘menting Path

— - s - = - ==

If we have an augmenting path We can increase |M| by
“swopping”. A

Increase |M| on an Aug‘menting Path

— - s - = - ==

If we have an augmenting path We can increase |M| by
“swopping”. A

Reachable Set S and Search Graph

« Initialize S = A" UB" with A" =B' = ¢

= Start by including all free vertices of 4 to A'.
« Ifu e 4, add all v with (u,v) € E* to B'.

* If v € B, add u to A’ where (u,v) € M.

= This is like a “alternative version” of BFS (or DFS, which also
works).

Search Gra'ph'— Example 1

— S — = g — s — - == g . 2

Search Gra'ph'— Example 2

— S — = g — s — - == g . 2

Search Gra'ph' _

— s - ==

= Aforest span on reachable set S = A'UB'
= All roots are free vertices in A. |
= Edges on each path alternates between Et \ M and M.

« All middle vertices are not free.

Vertices on each path alternates between females and males.

- —

Update 1 i'ncrease M using tight edges.

—— = S — — - = ——— = — e . L9

If a path on the search graph ends at a free vertex, we have
- an augmentmg path.

v
B il

Update 1: i'ncrease |M| using tight edges.‘

S — S —_—

. If 3 path on the search graph ends at a free vertex, we have
- an augmentmg path.

= We can do “swopping”, which increases |M|

< —

Update 1: increase |M| using tight edges.l

E——

- If a path on the search graph ends at a free vertex, we have
~an augmenting path.

« We can do “swopping”, which increases |M|.

= Then, start over for another "Update 1°.

e ———— == = e

Update 2: adest “funding”p

S ——

- ‘When all endp'oints. are not free, they should be “females”.

Update 2: adjust “funding” p

S —_—

- ‘When all endpoints are not free, they should be “females”.

+ Choose a “suitable” A > 0 and adjust the “funding” as shown.

Update 2: adjust “funding” p

S —_—

= When all endp'oints. are not free, they should be “females”.
+ Choose a “suitable” A > 0 and adjust the “funding” as shown.

: The tight edges remains tight.

Update 2: adest “funding”p

—

» When all endpoints are not free, they should be “temales”.
= Choose a “suitable” A > 0 and adjust the “funding” as shown.

« The tight edges remains tight.

= Three types of “loose” edges (u, v):
— 1)uEA\AtvEB\Bt 2)uEA\AtvEBt 3)u€AtvEB\Bt

oo
__

Update 2: adest “funding”p

» When all endpoints are not free, they should be “temales”.
= Choose a “suitable” A > 0 and adjust the “funding” as shown.

« The tight edges remains tight.

= Three types of “loose” edges (u, v):
- NDueA\A,veB\B! 2)uEA\AtvEBt 3)u€AtvEB\Bt

“Dominance” cIearIy continue to holds for type 1) and 3)

oo
__

Update 2: adest “funding”p

» When all endpoints are not free, they should be “temales”.
= Choose a “suitable” A > 0 and adjust the “funding” as shown.

« The tight edges remains tight.

= Three types of “loose” edges (u, v):
- NueA\A,veB\Bt 2)uecA\A,veBt 3)u€AtvEB\Bt

“Dominance” cIearIy continue to holds for type 1) and 3)

= For 2), we choose A just enough to “tighten” a loose edge
while guaranteemg dominance. S
- _é +A

Update 2: adest “funding” p

= When all endpoints are not free, they should be “females”.
= Choose a "suitable” A > 0 and adjust the "funding” as shown.

« The tight edges remains tight.

= Three types of “loose” edges (u, v):
- NueA\A,veB\Bt 2)uecA\A,veBt 3)u€AtvEB\Bt

“Dominance” clearly continue to holds for type 1) and 3)

» For 2), we choose A just enough to “tighten” a loose edge
while guaranteeing dominance.

A = minslack[u] where slack|u] = min (p(u) + p(v) — w(u, v))
- ueA’ vEB\B'

Update 2: adest “funding”p

S ——

. ;After A—adjus'tment; continue to explore the search graph.

Update 2: adjust “funding” p

S ——

. After A—adjus'tment; continue to explore the search graph.

+ If still no augmenting path, do another “Update 2"

Update 2: adjust “funding” p

S

—_—

e After A—adjus'tment; continue to explore the search graph.
= If still no augm'enting path, do another “"Update 2"
. Otherwise, do “Update 1”

Update 2: adjust “funding” p

S

—_—

e After A—adjus'tment; continue to explore the search graph.
= If still no augm'enting path, do another “"Update 2"
. Otherwise, do “Update 1”

~ Hungarian Algorithm — Examplé'

S — - S

= |nitialization

Hungarian*AIgorithm ~ Examplé

S _ —

-+ Solid Edges are tight.

Hungarian Algorithm — Examplé"

S — - S

= Construct the search graph

' >

Hungarian Algorithm — Example

— = ! ” s ‘ ; k3 ‘ g S g

= augmenting paths, choose an arbitrary one (say, 15t)_

' =

Hungarian Algorithm — Examplé"

S — - S

= = Add the edge toM

Hungarian Algorithm — Examplé'

S — - S

~« Start over... |

Hungarian Algorithm — Examplé"

S — - S

= and construct the search graph again.

Hungarian Algorithm — Examplé'

S — - S

= Two augmenting paths, choose an arbitrary one.

v

Hungarian Algorithm — Examplé

S — = S

. Update M and start over...

Hungarian Algorithm — Examplé'

S — - S

= Construct the search graph

Hungarian Algorithm — Examplé'

S — - S

= No more augmenting path

Hungarian Algorithm — Example

— == : — : T A

- = Circle has slackness 2 and Triangle has sIackneSs 1, so we
choose A =1

Hungarian Algorithm — Examplé"

S — - S

. Update p

Hungarian Algorithm - Examplé"

S — ————

= We see one more tight edge_TriangIe—CircIe.

Hungarian Algorithm — Example

~ + We see one more tight edge_TriangIe—CircIe.
. Apperlmd it in the search graph
2 @i 90 |

Hungarian Algorithm — Example

S _ =

~ » Now we have one more augmenting path

Hungarian Algorithm — Examplé’

S — - S

. Update M

Hungarian Algorithm — Example

S _ —

= Now M = 3. We are done!

Correctness

E————

» Aslong as M is not“perfect, we can always do either
- Update 1 or Update 2.

- Dominance and Tightness hold all the time.

= At the end, Lemma (Kuhn & Munkres) implies we have a |
MWPM.

Time COmpIeXity

“+ Number of “Update 1" 0(n) |
= Time complexity of each “Update 1" 0(n?)
- Overall time complexity for all “Update 1": 0(n3)

Time COmpIeXity

— - : ——— : e D T s T

- Compute time complexity for those “Update 2" between every two “Update 1",
For those intermediate “Update 2" between two “update 17,

- Overall time for search graph: 0(n?)

Overall time for updating p: 0(n?)
- Each update takes 0(n) time, and
- there can be at most n mtermedlate ‘Update 2" between two ’ Update 1% (why?)

Overall time for computing A in all intermediate “Update 2" O(nz)
- We will prove it later...

Since there are at most n “Update 1°, overall time for all “Update 2" 0(n3)

Overall time complexity for Hungarian Algorithm: 0(n?) + 0(n?) = 0(n?)

Overall time for computing A in all intermediate
”Update 2" O(nz)

—— = - = = - —— - — — -

We maintain slack[] for each u € A throughout the algorithm

Compute A = mlAn slack[u]: 0(n?)
S
- Each search g?aph expan5|on takes 0(n) time.

- = Search graph can expand at most n times.

Each time the search graph expands, two types of updates for slack[u]:
- Easy update: slack[u] « slack[u] — A if slack[u] — A >0
- Advanced update: check every neighbor of u to update slack[u] if slack[u] —A=0

Time for all easy updates: 0(n?)

- Each update 0(1); at most 0(n) updates for each expansion; at most n expansions.

Time for all advanced updates: 0(n?)
- Each update 0(n)

‘- an advanced update corresponds to an edge in M added into the search graph (why?)
~ so0 there are at most n advanced updates

Similar Problems

— - s = - == - —_————

E Similar problems that can be solved by Hungarian Algorithm:

= Minimum Welght Perfect Matching:

- Just negate the weights of all edges (and add a large number to
make them non-negative)

« Maximum Weight Matching:

- Add vertices and zero-weight edges

)

History for Huhgarian Algorithm

e— - ' —_— . e e e T s %

: Invented by Harold Kuhn in 1955.

= Kuhn names it “Hungarian Method” as it is based on two
Hungarian mathematicians Denes Konig and Jeno Egervary.

= James Munkres provves that the algorithm is polynomial time.
= Thus, the algorithm is also called Kuhn-Munkres algorithm.

- Jack Edmonds and Richard Karp: reduce the time complexity
from 0(n*) to 0(n3).

Primal-Dual Method

? Hungarian Algorithm’ “anticipates” primal-dual method.

MWPM (primal) minimizing “"funding” (dual)
maximize z Wy * Xy | ~ minimize Z Dy
(u,v) & , : uEAUB' v
subjectto Vu: z X, = 1 | subjectto V(u,v):p, + vy = Wy
v

V(u,v)ix,, =0

— s = : e : L XY S Sy e ,

Part II Metric FaC|I|ty
Locatlon

Metric Faci'Iity' Location

———— - = - —

A complete p05|t|vely welghted undirected graph ¢ =
(V,E,d:E - R")

- - Weights with triangle inequality: d(u, v) + d(v,w) = d(u, w)

. Vertices partitioned toV =FUC:
- F: set of possible locations for building facilities
- C: set of locations for clients

= Building a facility i € F requires a building cost f;.

~» Connecting a client j € C to a facility i € F requires a connection
cost dl] = d(l,]) .

= Objective: open facilities S € F minimizing the overall cost

> fi+) d(.S)

i€S jec

IP Formulation

et = - ——

x; € {0,1}: whether facility at i is open

y;; € {0,1}: whether client j is connected to facility i

Overall cost: ¥cs fixi + X jec dijyij

Each client j must be connected: } ;- v;; =1

The facility i must be open if béing connected: y;; < x;

IP Formulation

mlnlmlze - Zfixi+ z dl]yl]

i€S i€F,jEC
subject to Zyij =1, Vji€eC
i€F - |
Yiiji f VieF,jeC
yijE{O,l} , ViEF,jEC

Xi S {0,1} Vi €EF

LP Relaxation

minimiz-e ' Zfixi+ z dijyij

i€S i€F,jEC
subject to Zyij =1, Vji€eC
i€F - |
Yiiji , ViEF,jEC’
OSyijS1 - vVieF,je(l

OSXL'S1 Vi €EF

LP Relaxation

et = - ——

= Let {x;,;;} be the optimal LP solution.

* Let F* = Y;cr fix; be the LP building cost.

= Let D* = ¥cr jec dijyi; be the LP connection cost.

Our objective: construct an integral solutic)n S and compare
its cost to the optimal LP cost F* + D*

Let L; = ¥;crd;i;y;; be the LP connection cost for j.

L; can be viewed as the “weighted-average distance” toall
facilities.

Balls

e = x = = - — — Aah s SLTRS e £

B(v,r): the set of all vertices within distance r from vertex v
- A"ball" centered at v with radius r

Choose a parameter a > 1 (to be decided later)

For each client j, let B; = B(j, aL;)

B; should contain most “mass” of facilities connected to j, if
a is large.

Algorithm

1. SorttheclientsasL; <L, < < Ly

2. Greedily choose a maximal subset of disjoint balls in order
'1,2,..,|C|. Let I € C encode the chosen balls {B;:j € I}.

3. Build the cheapest facility n(j) in each chosen ball.

4. Return S containing all the opened facilities.

s = - —— - ——— - — — -

Bound the Connection Cost

E——

= For each j € I, the connection cost is at most alL;
- Since =(j) is opened in B; = B(j, aL;)

Bound the Connection Cost

et = - —

= For each j € I, the connection cost is at most alL;

= For each j ¢ I, there exists j' € I with
- J'<J
= L]’ S L]

- By nB; # 0 B; (Not Chosen, Larger)

°j

l,.

J

B;r (Chosen, Smaller)

Bound the Connection Cost

=, : - V— p— 4 —_— i ———— — -

For each j € I, the connection cost is at most al;

For each j ¢ I, there exists j’ € I with
- <)
= L]’ S L]

- By nB; # 0 B; (Not Chosen, Larger)

Connection cost for j is at most /1’
dn.(jl)j < dT[(j')j' + djjl < C(le + C(Lj -+ CKL]-/] '

B;r (Chosen, Smaller)

Bound the Connection Cost

S — = S

= Connection cost for each j € C: at most 3al;

« QOverall Con‘n‘ec'tion Cost is at most:

2 3aL — 3azzduyu = 3aD*

JEC]EC IEF

Bound the'BuiIding Cost

= B; should contain most “mass” of facilities connected to j, if
- alislarge. ‘
= |n particular, Yithdi =L
1
= O.W., Zkijykj > Z, and

- L = Yier dijyij = Zkij dijyrj > al; Zkij Yrj > Lj, a contradiction!

— - ' = . e N e e S < %

Bound theBuiIding Cost

—————

et = - —

B; should contain most "mass” of facilities connected to j, if
~alislarge.
£

In particular, Ykeni Vi = L==

For each opened facility (j),

f - ZREijk)’kj T | 2 f
(j) kEFNB, : ZkijYRj 1_1 i

min<weighted-average yellow

Bound the'BuiIding Cost

= - = ' —

B; should contain most "mass” of facilities connected to j, if
~alislarge. ‘

In particular, Yih i =L

For each opened facility n()),

= <Zk63jfk3’kj T e Z |
fr() = kgll:lr%j fr < ZkEBj Vii T .fkykj

Overall Building Cost:

| Zf”(j) S%Z Z fieVij = %Z 2 fiexie < %F*

el fl—gja KEB; '1__161 KEB,; P =
orange LP constraint balls are disjoint

Summarizing

:-‘ = - 7_ —

Overall Connection Cost < 3aD*

Overall Building Cost < — F*
4 : - e

(04

Overall Cost < 3aD* + iF* = max (ﬁ Ba) (F*+ D)

(04

s q= g = Overall Cost < 4(F* + D*)

LP optimum F* + D* is a lower bound to OPT

We have a 4-approximation algorithm!

Results for Metric Facility Location

— - = - —

This algorithm (Grexe_dy + LP-relaxation): 4-approximation
= Primal-Dual Schema: 3-approximation -
3 ;Li, 2011] 1;488—approximation

= [Guha & Khuller, 1999] 1.463- apprOX|mat|on Is NP-hard

_ Reduction from Set Cover

- At that time, the (1 — 0(1))Inn |napprOX|mab|I|ty for Set Cover is only
known to be based on NP & DTIME(n¢U0glogn))

- Thus, Guha & Khuller concludes 1.463 inapproximability for Metric
Facility Location based on NP ¢ DTIME(nC!cglogn)) '

- But now we know 1.463-approximation is NP-hard since (1 —
0(1)) Inn NP-hardness of approximation is now known for Set Cover

