LP-Related Algorithms

Hungarian Algorithm Metric Facility Location

Part I: Hungarian Algorithm

Problem

[Maximum Weight Perfect Matching (MWPM)]
Given a weighted complete bipartite graph G = (A, B, E = A × B, w: E → ℝ_{≥0}), find a maximum weight perfect matching.

Perfect Matching: all the vertices must be matched!

• Need to assume: |A| = |B| = n.

Hungarian Algorithm – High-Level

Assign a "potential" to each vertex p: (A ∪ B) → ℝ_{≥0}
Throughout the algorithm, maintain:
1. Dominance: ∀u, v: p(u) + p(v) ≥ w(u, v)
2. Tightness: for any (u, v) selected in the matching M, p(u) + p(v) = w(u, v)

Hungarian Algorithm – "at the End of the Day"

- Suppose we have found
 - a matching M with size |M| = n, and
 - A potential assignment p such that dominance and tightness hold,
- then we are done!
- Lemma (Kuhn & Munkres). If we have a matching M with size |M| = n and a potential assignment p such that dominance and tightness hold, then M is a MWPM.

Proof. For any perfect matching M',

$$w(M) = \sum_{(u,v)\in M} w(u,v) = \sum_{u\in A\cup B} p(u) \ge \sum_{(u,v)\in M'} w(u,v) = w(M')$$

tightness dominance

An "Academic Interpretation"

- Each edge (u, v): a research project with cost/value w(u, v)
- A: set of female researchers
- B: set of male researchers
- Every female-male pair of researchers can jointly work on a project.
 - Each project only requires a female and a male
 - Each researcher can only work on one project
- *p(u)*: research funding allocated to researcher *u*
- Dominance: sufficient funding so that researchers can freely paired and work on the project they prefer
- Tightness: just adequate funding so that n most valuable projects can be done
- Objective: properly allocate (minimum) funding to researchers so that their optimal choice is to work out n most valuable projects

Initialization

Initialize: • $M = \emptyset$ • $\forall u \in A: p(u) = \max_{v \in B} w(u, v)$ • $\forall v \in B: p(v) = 0$ 1 $p(u_1) = 3$ $p(v_1)=0$ 3 2 $p(u_2) = 4$ $p(v_2) = 0$ 4

Two Types of Updates

Update 1: increase |*M*| with only tight edges.
Update 2: adjust funding to make more tight edges.

- Hungarian Algorithm:
 - Do 1 while possible.
 - If 1 is impossible, do 2.

- Very Important: throughout the algorithm, dominance and tightness always hold!
 - In particular, *M* always only contain tight edges.

Augmenting Path

- We will only work on subgraph $G^t = (A^t \cup B^t, E^t)$ with tight edges!
- Alternative path: path with edges alternates between $E^t \setminus M$ and M
- Free vertex: vertex not in M
- Augmenting path: an alternating path with two free vertices as the two endpoints.

• Orange Edges: Current M

Yellow Vertices: free vertices

an augmenting path...

not an augmenting path...

Increase |*M*| on an Augmenting Path

 If we have an augmenting path, we can increase |M| by "swopping".

Increase |*M*| on an Augmenting Path

 If we have an augmenting path, we can increase |M| by "swopping".

Reachable Set *S* and Search Graph

- Initialize $S = A' \cup B'$ with $A' = B' = \emptyset$
- Start by including all free vertices of A to A'.
- If $u \in A'$, add all v with $(u, v) \in E^t$ to B'.
- If $v \in B'$, add u to A' where $(u, v) \in M$.
- This is like a "alternative version" of BFS (or DFS, which also works).

Search Graph – Example 1

Search Graph – Example 2

Search Graph

- A forest span on reachable set $S = A' \cup B'$
- All roots are free vertices in A.
- Edges on each path alternates between $E^t \setminus M$ and M.
- All middle vertices are not free.
- Vertices on each path alternates between females and males.

Update 1: increase *M* using tight edges.

 If a path on the search graph ends at a free vertex, we have an augmenting path.

Update 1: increase |*M*| using tight edges.

- If a path on the search graph ends at a free vertex, we have an augmenting path.
- We can do "swopping", which increases |M|

Update 1: increase |*M*| using tight edges.

- If a path on the search graph ends at a free vertex, we have an augmenting path.
- We can do "swopping", which increases |*M*|.
- Then, start over for another "Update 1".

When all endpoints are not free, they should be "females".

When all endpoints are not free, they should be "females".
Choose a "suitable" Δ > 0 and adjust the "funding" as shown.

When all endpoints are not free, they should be "females".
Choose a "suitable" △ > 0 and adjust the "funding" as shown.
The tight edges remains tight.

- When all endpoints are not free, they should be "females".
- Choose a "suitable" $\Delta > 0$ and adjust the "funding" as shown.
- The tight edges remains tight.
- Three types of "loose" edges (u, v):
 - 1) $u \in A \setminus A^t, v \in B \setminus B^t$ 2) $u \in A \setminus A^t, v \in B^t$ 3) $u \in A^t, v \in B \setminus B^t$

- When all endpoints are not free, they should be "females".
- Choose a "suitable" $\Delta > 0$ and adjust the "funding" as shown.
- The tight edges remains tight.
- Three types of "loose" edges (u, v):
 - 1) $u \in A \setminus A^t, v \in B \setminus B^t$ 2) $u \in A \setminus A^t, v \in B^t$ 3) $u \in A^t, v \in B \setminus B^t$
- "Dominance" clearly continue to holds for type 1) and 3)

- When all endpoints are not free, they should be "females".
- Choose a "suitable" $\Delta > 0$ and adjust the "funding" as shown.
- The tight edges remains tight.
- Three types of "loose" edges (u, v):
 - 1) $u \in A \setminus A^t, v \in B \setminus B^t$ 2) $u \in A \setminus A^t, v \in B^t$ 3) $u \in A^t, v \in B \setminus B^t$
- "Dominance" clearly continue to holds for type 1) and 3)
- For 2), we choose Δ just enough to "tighten" a loose edge while guaranteeing dominance.

 $+\Delta$

 $+\Delta$

- When all endpoints are not free, they should be "females".
- Choose a "suitable" $\Delta > 0$ and adjust the "funding" as shown.
- The tight edges remains tight.
- Three types of "loose" edges (u, v):
 - 1) $u \in A \setminus A^t, v \in B \setminus B^t$ 2) $u \in A \setminus A^t, v \in B^t$ 3) $u \in A^t, v \in B \setminus B^t$
- "Dominance" clearly continue to holds for type 1) and 3)
- For 2), we choose ∆ just enough to "tighten" a loose edge while guaranteeing dominance.

 $\Delta = \min_{u \in A'} \operatorname{slack}[u] \quad \text{where } \operatorname{slack}[u] = \min_{v \in B \setminus B'} (p(u) + p(v) - w(u, v))$

After Δ-adjustment, continue to explore the search graph.

After ∆-adjustment, continue to explore the search graph.
If still no augmenting path, do another "Update 2"

After Δ-adjustment, continue to explore the search graph.
If still no augmenting path, do another "Update 2"
Otherwise, do "Update 1"

After Δ-adjustment, continue to explore the search graph.
If still no augmenting path, do another "Update 2"
Otherwise, do "Update 1"

Hungarian Algorithm – Example

Initialization

Solid Edges are tight.

Construct the search graph

Three augmenting paths, choose an arbitrary one (say, 1st)

Start over...

and construct the search graph again.

Two augmenting paths, choose an arbitrary one.

• Update *M* and start over...

Construct the search graph

No more augmenting path

- Circle has slackness 2 and Triangle has slackness 1, so we choose $\Delta = 1$

+1

• Update *p*

• We see one more tight edge Triangle-Circle.

- We see one more tight edge Triangle-Circle.
- Append it in the search graph

2

Now we have one more augmenting path

• Update *M*

• Now M = 3. We are done!

Correctness

- As long as *M* is not perfect, we can always do either Update 1 or Update 2.
- Dominance and Tightness hold all the time.
- At the end, Lemma (Kuhn & Munkres) implies we have a MWPM.

Time Complexity

- Number of "Update 1": O(n)
- Time complexity of each "Update 1": $O(n^2)$
- Overall time complexity for all "Update 1": $O(n^3)$

Time Complexity

- Compute time complexity for those "Update 2" between every two "Update 1".
 For those intermediate "Update 2" between two "update 1",
- Overall time for search graph: $O(n^2)$
- Overall time for updating $p: O(n^2)$
 - Each update takes O(n) time, and
 - there can be at most n intermediate "Update 2" between two "Update 1". (why?)
- Overall time for computing ∆ in all intermediate "Update 2": O(n²)
 We will prove it later...
- Since there are at most n "Update 1", overall time for all "Update 2": $O(n^3)$
- Overall time complexity for Hungarian Algorithm: $O(n^3) + O(n^3) = O(n^3)$

Overall time for computing Δ in all intermediate "Update 2": $O(n^2)$

• We maintain slack[u] for each $u \in A$ throughout the algorithm

- Compute Δ = min slack[u]: O(n²)
 Each search graph expansion takes O(n) time.
 - Search graph can expand at most *n* times.
- Each time the search graph expands, two types of updates for slack[u]:
 - Easy update: slack[u] \leftarrow slack[u] Δ if slack[u] $\Delta > 0$
 - Advanced update: check every neighbor of u to update slack[u] if slack[u] $-\Delta = 0$
- Time for all easy updates: $O(n^2)$
 - Each update O(1); at most O(n) updates for each expansion; at most *n* expansions.
- Time for all advanced updates: $O(n^2)$
 - Each update O(n)
 - an advanced update corresponds to an edge in *M* added into the search graph (why?)
 - so there are at most *n* advanced updates

Similar Problems

Similar problems that can be solved by Hungarian Algorithm:

- Minimum Weight Perfect Matching:
 - Just negate the weights of all edges (and add a large number to make them non-negative)
- Maximum Weight Matching:
 - Add vertices and zero-weight edges

History for Hungarian Algorithm

- Invented by Harold Kuhn in 1955.
- Kuhn names it "Hungarian Method" as it is based on two Hungarian mathematicians Dénes Kőnig and Jenő Egerváry.
- James Munkres proves that the algorithm is polynomial time.
- Thus, the algorithm is also called Kuhn-Munkres algorithm.
- Jack Edmonds and Richard Karp: reduce the time complexity from $O(n^4)$ to $O(n^3)$.

Primal-Dual Method

Hungarian Algorithm "anticipates" primal-dual method.

MWPM (primal)

maximize
$$\sum_{(u,v)} w_{uv} \cdot x_{uv}$$
subject to
$$\forall u: \sum_{v} x_{uv} = 1$$
$$\forall (u,v): x_{uv} \ge 0$$

minimizing "funding" (dual)

minimize $\sum_{u \in A \cup B} p_u$ subject to $\forall (u, v): p$

$$\forall (u,v): p_u + p_v \ge w_{uv}$$

Part II: Metric Facility Location

Metric Facility Location

- A complete positively weighted undirected graph $G = (V, E, d: E \rightarrow \mathbb{R}^+)$
 - Weights with triangle inequality: $d(u, v) + d(v, w) \ge d(u, w)$
- Vertices partitioned to $V = F \cup C$:
 - F: set of possible locations for building facilities
 - C: set of locations for clients
- Building a facility $i \in F$ requires a building cost f_i .
- Connecting a client *j* ∈ *C* to a facility *i* ∈ *F* requires a connection cost *d_{ij}* = *d(i,j)*.

 $\sum f_i + \sum d(j,S)$

• Objective: open facilities $S \subseteq F$ minimizing the overall cost

IP Formulation

- $x_i \in \{0,1\}$: whether facility at *i* is open
- $y_{ij} \in \{0,1\}$: whether client *j* is connected to facility *i*
- Overall cost: $\sum_{i \in S} f_i x_i + \sum_{j \in C} d_{ij} y_{ij}$
- Each client *j* must be connected: $\sum_{i \in F} y_{ij} = 1$
- The facility *i* must be open if being connected: $y_{ij} \le x_i$

IP Formulation

minimize
$$\sum_{i \in S} f_i x_i + \sum_{i \in F, j \in C} d_{ij} y_{ij}$$
subject to
$$\sum_{i \in F} y_{ij} = 1$$
 $\forall j \in C$ $y_{ij} \leq x_i$ $\forall i \in F, j \in C$ $y_{ij} \in \{0,1\}$ $\forall i \in F, j \in C$ $x_i \in \{0,1\}$ $\forall i \in F$

LP Relaxation

minimize
$$\sum_{i \in S} f_i x_i + \sum_{i \in F, j \in C} d_{ij} y_{ij}$$
subject to
$$\sum_{i \in F} y_{ij} = 1$$
 $\forall j \in C$ $y_{ij} \leq x_i$ $\forall i \in F, j \in C$ $0 \leq y_{ij} \leq 1$ $\forall i \in F, j \in C$ $0 \leq x_i \leq 1$ $\forall i \in F$

LP Relaxation

- Let {x_i, y_{ij}} be the optimal LP solution.
- Let $F^* = \sum_{i \in F} f_i x_i$ be the LP building cost.
- Let $D^* = \sum_{i \in F, j \in C} d_{ij} y_{ij}$ be the LP connection cost.
- Our objective: construct an integral solution S and compare its cost to the optimal LP cost $F^* + D^*$
- Let $L_j = \sum_{i \in F} d_{ij} y_{ij}$ be the LP connection cost for *j*.
- L_j can be viewed as the "weighted-average distance" to all facilities.

Balls

B(v,r): the set of all vertices within distance r from vertex v
 A "ball" centered at v with radius r

- Choose a parameter $\alpha > 1$ (to be decided later)
- For each client *j*, let $B_j = B(j, \alpha L_j)$
- *B_j* should contain most "mass" of facilities connected to *j*, if *α* is large.

Algorithm

- 1. Sort the clients as $L_1 \leq L_2 \leq \cdots \leq L_{|C|}$
- 2. Greedily choose a maximal subset of disjoint balls in order 1, 2, ..., |C|. Let $I \subseteq C$ encode the chosen balls $\{B_j : j \in I\}$.
- 3. Build the cheapest facility $\pi(j)$ in each chosen ball.
- 4. Return S containing all the opened facilities.

For each *j* ∈ *I*, the connection cost is at most *αL_j* Since π(*j*) is opened in *B_j* = *B*(*j*, *αL_j*)

• For each $j \in I$, the connection cost is at most αL_j

- For each $j \notin I$, there exists $j' \in I$ with
 - j' < j $L_{j'} \le L_j$
 - $B_{j'} \cap B_j \neq \emptyset$

 B_i (Not Chosen, Larger)

0]

 $B_{j'}$ (Chosen, Smaller)

- For each $j \in I$, the connection cost is at most αL_j
- For each $j \notin I$, there exists $j' \in I$ with
 - -j' < j
 - $-L_{j'} \leq L_j$
 - $B_{j'} \cap B_j \neq \emptyset$

- B_j (Not Chosen, Larger)
- For $k \in B_{j'} \cap B_j$, we have $d_{jj'} \leq d_{jk} + d_{kj'} \leq \alpha L_j + \alpha L_{j'}$
- Connection cost for j is at most
- $d_{\pi(j')j} \le d_{\pi(j')j'} + d_{jj'} \le \alpha L_{j'} + \alpha L_j + \alpha L_{j'}$
- $L_{j'} \leq L_j \implies d_{\pi(j')j} \leq 3\alpha L_j$

 $B_{j'}$ (Chosen, Smaller)

 Connection cost for each *j* ∈ *C*: at most 3*αL_j* Overall Connection Cost is at most:
 Σ 3*αL* = 3*α* Σ Σ *d* · *ν* · · = 3*α* D*

$$\sum_{j\in C} 3\alpha L_j = 3\alpha \sum_{j\in C} \sum_{i\in F} d_{ij} y_{ij} = 3\alpha$$
Bound the Building Cost

- *B_j* should contain most "mass" of facilities connected to *j*, if *α* is large.
- In particular, $\sum_{k \in B_i} y_{kj} \ge 1 \frac{1}{\alpha}$:
 - O.w., $\sum_{k \notin B_j} y_{kj} > \frac{1}{\alpha}$, and
 - $L_j = \sum_{i \in F} d_{ij} y_{ij} \ge \sum_{k \notin B_j} d_{ij} y_{kj} > \alpha L_j \sum_{k \notin B_j} y_{kj} > L_j$, a contradiction!

Bound the Building Cost

- *B_j* should contain most "mass" of facilities connected to *j*, if *α* is large.
- In particular, $\sum_{k \in B_j} y_{kj} \ge 1 \frac{1}{\alpha}$
- For each opened facility $\pi(j)$, $f_{\pi(j)} = \min_{k \in F \cap B_j} f_k \leq \frac{\sum_{k \in B_j} f_k y_{kj}}{\sum_{k \in B_j} y_{kj}} \leq \frac{1}{1 - \frac{1}{\alpha}} \sum_{k \in B_j} f_k y_{kj}$ min<weighted-average yellow

Bound the Building Cost

- *B_j* should contain most "mass" of facilities connected to *j*, if *α* is large.
- In particular, $\sum_{k \in B_j} y_{kj} \ge 1 \frac{1}{\alpha}$
- For each opened facility $\pi(j)$, $f_{\pi(j)} = \min_{k \in F \cap B_j} f_k \le \frac{\sum_{k \in B_j} f_k y_{kj}}{\sum_{k \in B_j} y_{kj}} \le \frac{1}{1 - \frac{1}{\alpha}} \sum_{k \in B_j} f_k y_{kj}$
- Overall Building Cost:
 $\sum_{j \in I} f_{\pi(j)} \leq \frac{1}{1 \frac{1}{\alpha}} \sum_{j \in I} \sum_{k \in B_j} f_k y_{kj} \leq \frac{1}{1 \frac{1}{\alpha}} \sum_{j \in I} \sum_{k \in B_j} f_k x_k \leq \frac{1}{1 \frac{1}{\alpha}} F^*$ orange
 LP constraint

Summarizing

- Overall Connection Cost $\leq 3\alpha D^*$
- Overall Building Cost $\leq \frac{1}{1-\frac{1}{2}}F^*$
- Overall Cost $\leq 3\alpha D^* + \frac{1}{1-\frac{1}{\alpha}}F^* = \max\left(\frac{\alpha}{\alpha-1}, 3\alpha\right)(F^* + D^*)$

• $\alpha = \frac{4}{3} \implies \text{Overall Cost} \le 4(F^* + D^*)$

- LP optimum $F^* + D^*$ is a lower bound to OPT
- We have a 4-approximation algorithm!

Results for Metric Facility Location

- This algorithm (Greedy + LP-relaxation): 4-approximation
- Primal-Dual Schema: 3-approximation
- [Li, 2011] 1.488-approximation
- [Guha & Khuller, 1999] 1.463-approximation is NP-hard
 - Reduction from Set Cover
 - At that time, the $(1 o(1)) \ln n$ inapproximability for Set Cover is only known to be based on NP \nsubseteq DTIME $(n^{O(\log \log n)})$
 - Thus, Guha & Khuller concludes 1.463 inapproximability for Metric Facility Location based on NP ⊈ DTIME(n^{O(log log n)})
 - But now we know 1.463-approximation is NP-hard since (1 o(1)) ln n NP-hardness of approximation is now known for Set Cover