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Part I:
Hungarian Algorithm



Problem

[Maximum Weight Perfect Matching (MWPM)]

▪ Given a weighted complete bipartite graph 𝐺 = ሺ
ሻ

𝐴, 𝐵, 𝐸 =
𝐴 × 𝐵,𝑤: 𝐸 → ℝ≥0 , find a maximum weight perfect matching.

▪ Perfect Matching: all the vertices must be matched!

▪ Need to assume: 𝐴 = 𝐵 = 𝑛.



Hungarian Algorithm – High-Level

▪ Assign a “potential” to each vertex 𝑝: 𝐴 ∪ 𝐵 → ℝ≥0

▪ Throughout the algorithm, maintain:

1. Dominance: ∀𝑢, 𝑣: 𝑝 𝑢 + 𝑝 𝑣 ≥ 𝑤ሺ𝑢, 𝑣ሻ

2. Tightness: for any ሺ𝑢, 𝑣ሻ selected in the matching 𝑀, 
𝑝 𝑢 + 𝑝 𝑣 = 𝑤ሺ𝑢, 𝑣ሻ



Hungarian Algorithm – “at the End of the Day”

▪ Suppose we have found 
– a matching 𝑀 with size 𝑀 = 𝑛, and

– A potential assignment 𝑝 such that dominance and tightness hold,

▪ then we are done!

▪ Lemma (Kuhn & Munkres). If we have a matching 𝑀 with 
size 𝑀 = 𝑛 and a potential assignment 𝑝 such that 
dominance and tightness hold, then 𝑀 is a MWPM.

Proof. For any perfect matching 𝑀′,

𝑤 𝑀 = ෍

𝑢,𝑣 ∈𝑀

𝑤ሺ𝑢, 𝑣ሻ = ෍

𝑢∈𝐴∪𝐵

𝑝ሺ𝑢ሻ ≥ ෍

𝑢,𝑣 ∈𝑀′

𝑤 𝑢, 𝑣 = 𝑤 𝑀′

tightness dominance



An “Academic Interpretation”

▪ Each edge 𝑢, 𝑣 : a research project with cost/value 𝑤ሺ𝑢, 𝑣ሻ

▪ 𝐴: set of female researchers

▪ 𝐵: set of male researchers

▪ Every female-male pair of researchers can jointly work on a project.
– Each project only requires a female and a male
– Each researcher can only work on one project

▪ 𝑝ሺ𝑢ሻ: research funding allocated to researcher 𝑢

▪ Dominance: sufficient funding so that researchers can freely paired and 
work on the project they prefer

▪ Tightness: just adequate funding so that 𝑛 most valuable projects can 
be done

▪ Objective: properly allocate (minimum) funding to researchers so that 
their optimal choice is to work out 𝑛 most valuable projects



Initialization

Initialize:

▪ 𝑀 = ∅

▪ ∀𝑢 ∈ 𝐴: 𝑝 𝑢 = max
𝑣∈𝐵

𝑤ሺ𝑢, 𝑣ሻ

▪ ∀𝑣 ∈ 𝐵: 𝑝 𝑣 = 0
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Two Types of Updates

▪ Update 1: increase |𝑀| with only tight edges.

▪ Update 2: adjust funding to make more tight edges.

▪ Hungarian Algorithm: 
– Do 1 while possible. 

– If 1 is impossible, do 2.

▪ Very Important: throughout the algorithm, dominance and 
tightness always hold!
– In particular, 𝑀 always only contain tight edges.



Augmenting Path

▪ We will only work on subgraph 𝐺𝑡 = 𝐴𝑡 ∪ 𝐵𝑡 , 𝐸𝑡 with tight 
edges!

▪ Alternative path: path with edges alternates between 𝐸𝑡 ∖ 𝑀
and 𝑀

▪ Free vertex: vertex not in 𝑀

▪ Augmenting path: an alternating path with two free 
vertices as the two endpoints.



Example

▪ Orange Edges: Current 𝑀



Example

▪ Yellow Vertices: free vertices



Example

▪ an augmenting path…



Example

▪ an augmenting path…



Example

▪ not an augmenting path…



Example

▪ not an augmenting path…



Increase |𝑀| on an Augmenting Path

▪ If we have an augmenting path, we can increase |𝑀| by 
“swopping”.



Increase |𝑀| on an Augmenting Path

▪ If we have an augmenting path, we can increase |𝑀| by 
“swopping”.



Reachable Set 𝑆 and Search Graph

▪ Initialize 𝑆 = 𝐴′ ∪ 𝐵′ with 𝐴′ = 𝐵′ = ∅

▪ Start by including all free vertices of 𝐴 to 𝐴′.

▪ If 𝑢 ∈ 𝐴′, add all 𝑣 with 𝑢, 𝑣 ∈ 𝐸𝑡 to 𝐵′.

▪ If 𝑣 ∈ 𝐵′, add 𝑢 to 𝐴′ where 𝑢, 𝑣 ∈ 𝑀.

▪ This is like a “alternative version” of BFS (or DFS, which also 
works).



Search Graph – Example 1
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Search Graph – Example 2
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Search Graph

▪ A forest span on reachable set 𝑆 = 𝐴′ ∪ 𝐵′

▪ All roots are free vertices in 𝐴.

▪ Edges on each path alternates between 𝐸𝑡 ∖ 𝑀 and 𝑀.

▪ All middle vertices are not free.

▪ Vertices on each path alternates between females and males.



Update 1: increase 𝑀 using tight edges.

▪ If a path on the search graph ends at a free vertex, we have 
an augmenting path.



Update 1: increase |𝑀| using tight edges.

▪ If a path on the search graph ends at a free vertex, we have 
an augmenting path.

▪ We can do “swopping”, which increases |𝑀|



Update 1: increase |𝑀| using tight edges.

▪ If a path on the search graph ends at a free vertex, we have 
an augmenting path.

▪ We can do “swopping”, which increases |𝑀|.

▪ Then, start over for another “Update 1”.



Update 2: adjust “funding” 𝑝

▪ When all endpoints are not free, they should be “females”.



Update 2: adjust “funding” 𝑝

▪ When all endpoints are not free, they should be “females”.

▪ Choose a “suitable” Δ > 0 and adjust the “funding” as shown.
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Update 2: adjust “funding” 𝑝

▪ When all endpoints are not free, they should be “females”.

▪ Choose a “suitable” Δ > 0 and adjust the “funding” as shown.

▪ The tight edges remains tight.
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Update 2: adjust “funding” 𝑝

▪ When all endpoints are not free, they should be “females”.

▪ Choose a “suitable” Δ > 0 and adjust the “funding” as shown.

▪ The tight edges remains tight.

▪ Three types of “loose” edges ሺ𝑢, 𝑣ሻ:
– 1) 𝑢 ∈ 𝐴 ∖ 𝐴𝑡, 𝑣 ∈ 𝐵 ∖ 𝐵𝑡 2) 𝑢 ∈ 𝐴 ∖ 𝐴𝑡, 𝑣 ∈ 𝐵𝑡 3) 𝑢 ∈ 𝐴𝑡, 𝑣 ∈ 𝐵 ∖ 𝐵𝑡
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Update 2: adjust “funding” 𝑝

▪ When all endpoints are not free, they should be “females”.

▪ Choose a “suitable” Δ > 0 and adjust the “funding” as shown.

▪ The tight edges remains tight.

▪ Three types of “loose” edges ሺ𝑢, 𝑣ሻ:
– 1) 𝑢 ∈ 𝐴 ∖ 𝐴𝑡, 𝑣 ∈ 𝐵 ∖ 𝐵𝑡 2) 𝑢 ∈ 𝐴 ∖ 𝐴𝑡, 𝑣 ∈ 𝐵𝑡 3) 𝑢 ∈ 𝐴𝑡, 𝑣 ∈ 𝐵 ∖ 𝐵𝑡

▪ “Dominance” clearly continue to holds for type 1) and 3)
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Update 2: adjust “funding” 𝑝

▪ When all endpoints are not free, they should be “females”.

▪ Choose a “suitable” Δ > 0 and adjust the “funding” as shown.

▪ The tight edges remains tight.

▪ Three types of “loose” edges ሺ𝑢, 𝑣ሻ:
– 1) 𝑢 ∈ 𝐴 ∖ 𝐴𝑡, 𝑣 ∈ 𝐵 ∖ 𝐵𝑡 2) 𝑢 ∈ 𝐴 ∖ 𝐴𝑡, 𝑣 ∈ 𝐵𝑡 3) 𝑢 ∈ 𝐴𝑡, 𝑣 ∈ 𝐵 ∖ 𝐵𝑡

▪ “Dominance” clearly continue to holds for type 1) and 3)

▪ For 2), we choose Δ just enough to “tighten” a loose edge 
while guaranteeing dominance.
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Update 2: adjust “funding” 𝑝

▪ When all endpoints are not free, they should be “females”.

▪ Choose a “suitable” Δ > 0 and adjust the “funding” as shown.

▪ The tight edges remains tight.

▪ Three types of “loose” edges ሺ𝑢, 𝑣ሻ:
– 1) 𝑢 ∈ 𝐴 ∖ 𝐴𝑡, 𝑣 ∈ 𝐵 ∖ 𝐵𝑡 2) 𝑢 ∈ 𝐴 ∖ 𝐴𝑡, 𝑣 ∈ 𝐵𝑡 3) 𝑢 ∈ 𝐴𝑡, 𝑣 ∈ 𝐵 ∖ 𝐵𝑡

▪ “Dominance” clearly continue to holds for type 1) and 3)

▪ For 2), we choose Δ just enough to “tighten” a loose edge 
while guaranteeing dominance.

Δ = min
𝑢∈𝐴′

slack[𝑢] where slack 𝑢 = min
𝑣∈𝐵∖𝐵′

ሺ𝑝 𝑢 + 𝑝 𝑣 − 𝑤ሺ𝑢, 𝑣ሻሻ



Update 2: adjust “funding” 𝑝

▪ After Δ-adjustment, continue to explore the search graph.



Update 2: adjust “funding” 𝑝

▪ After Δ-adjustment, continue to explore the search graph.

▪ If still no augmenting path, do another “Update 2”



Update 2: adjust “funding” 𝑝

▪ After Δ-adjustment, continue to explore the search graph.

▪ If still no augmenting path, do another “Update 2”

▪ Otherwise, do “Update 1”



Update 2: adjust “funding” 𝑝

▪ After Δ-adjustment, continue to explore the search graph.

▪ If still no augmenting path, do another “Update 2”

▪ Otherwise, do “Update 1”



Hungarian Algorithm – Example

▪ Initialization
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Hungarian Algorithm – Example

▪ Solid Edges are tight.
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Hungarian Algorithm – Example

▪ Construct the search graph
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Hungarian Algorithm – Example

▪ Three augmenting paths, choose an arbitrary one (say, 1st)
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Hungarian Algorithm – Example

▪ Add the edge to 𝑀
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Hungarian Algorithm – Example

▪ Start over…
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Hungarian Algorithm – Example

▪ and construct the search graph again.
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Hungarian Algorithm – Example

▪ Two augmenting paths, choose an arbitrary one.
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Hungarian Algorithm – Example

▪ Update 𝑀 and start over…
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Hungarian Algorithm – Example

▪ Construct the search graph
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Hungarian Algorithm – Example

▪ No more augmenting path
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Hungarian Algorithm – Example

▪ Circle has slackness 2 and Triangle has slackness 1, so we 
choose Δ = 1
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Hungarian Algorithm – Example

▪ Update 𝑝
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Hungarian Algorithm – Example

▪ We see one more tight edge Triangle-Circle.
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Hungarian Algorithm – Example

▪ We see one more tight edge Triangle-Circle.

▪ Append it in the search graph

3

1
2

2

2

2
3
0

12

2

2

0

0

1



Hungarian Algorithm – Example

▪ Now we have one more augmenting path
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Hungarian Algorithm – Example

▪ Update 𝑀
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Hungarian Algorithm – Example

▪ Now 𝑀 = 3. We are done!
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Correctness

▪ As long as 𝑀 is not perfect, we can always do either 
Update 1 or Update 2.

▪ Dominance and Tightness hold all the time.

▪ At the end, Lemma (Kuhn & Munkres) implies we have a 
MWPM.



Time Complexity

▪ Number of “Update 1”: 𝑂 𝑛

▪ Time complexity of each “Update 1”: 𝑂 𝑛2

▪ Overall time complexity for all “Update 1”: 𝑂 𝑛3



Time Complexity

▪ Compute time complexity for those “Update 2” between every two “Update 1”.

For those intermediate “Update 2” between two “update 1”, 

▪ Overall time for search graph: 𝑂 𝑛2

▪ Overall time for updating 𝑝: 𝑂 𝑛2

– Each update takes 𝑂 𝑛 time, and 
– there can be at most 𝑛 intermediate “Update 2” between two “Update 1”. (why?)

▪ Overall time for computing Δ in all intermediate “Update 2”: 𝑂 𝑛2

– We will prove it later…

▪ Since there are at most 𝑛 “Update 1”, overall time for all “Update 2”: 𝑂 𝑛3

▪ Overall time complexity for Hungarian Algorithm: 𝑂 𝑛3 + 𝑂 𝑛3 = 𝑂 𝑛3



Overall time for computing Δ in all intermediate 
“Update 2”: 𝑂 𝑛2

▪ We maintain slack[𝑢] for each 𝑢 ∈ 𝐴 throughout the algorithm

▪ Compute Δ = min
𝑢∈𝐴′

slack[𝑢]: 𝑂 𝑛2

– Each search graph expansion takes 𝑂 𝑛 time.
– Search graph can expand at most 𝑛 times.

▪ Each time the search graph expands, two types of updates for slack[𝑢]:
– Easy update: slack 𝑢 ← slack 𝑢 − Δ if slack 𝑢 − Δ > 0
– Advanced update: check every neighbor of 𝑢 to update slack 𝑢 if slack 𝑢 − Δ = 0

▪ Time for all easy updates: 𝑂 𝑛2

– Each update 𝑂ሺ1ሻ; at most 𝑂 𝑛 updates for each expansion; at most 𝑛 expansions.

▪ Time for all advanced updates: 𝑂 𝑛2

– Each update 𝑂 𝑛
– an advanced update corresponds to an edge in 𝑀 added into the search graph (why?)
– so there are at most 𝑛 advanced updates



Similar Problems

Similar problems that can be solved by Hungarian Algorithm:

▪ Minimum Weight Perfect Matching:
– Just negate the weights of all edges (and add a large number to 

make them non-negative)

▪ Maximum Weight Matching:
– Add vertices and zero-weight edges
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History for Hungarian Algorithm

▪ Invented by Harold Kuhn in 1955.

▪ Kuhn names it “Hungarian Method” as it is based on two 
Hungarian mathematicians Dénes Kőnig and Jenő Egerváry.

▪ James Munkres proves that the algorithm is polynomial time.

▪ Thus, the algorithm is also called Kuhn-Munkres algorithm. 

▪ Jack Edmonds and Richard Karp: reduce the time complexity 
from 𝑂 𝑛4 to 𝑂 𝑛3 .



Primal-Dual Method

▪ Hungarian Algorithm “anticipates” primal-dual method.

MWPM (primal) minimizing “funding” (dual)

maximize ෍

𝑢,𝑣

𝑤𝑢𝑣 ⋅ 𝑥𝑢𝑣

subject to ∀𝑢:෍

𝑣

𝑥𝑢𝑣 = 1

∀ 𝑢, 𝑣 : 𝑥𝑢𝑣 ≥ 0

minimize ෍

𝑢∈𝐴∪𝐵

𝑝𝑢

subject to ∀ 𝑢, 𝑣 : 𝑝𝑢 + 𝑝𝑣 ≥ 𝑤𝑢𝑣



Part II: Metric Facility 
Location



Metric Facility Location

▪ A complete positively weighted undirected graph 𝐺 =
ሺ𝑉, 𝐸, 𝑑: 𝐸 → ℝ+ሻ
– Weights with triangle inequality: 𝑑 𝑢, 𝑣 + 𝑑 𝑣,𝑤 ≥ 𝑑ሺ𝑢, 𝑤ሻ

▪ Vertices partitioned to 𝑉 = 𝐹 ∪ 𝐶:
– 𝐹: set of possible locations for building facilities
– 𝐶: set of locations for clients

▪ Building a facility 𝑖 ∈ 𝐹 requires a building cost 𝑓𝑖.

▪ Connecting a client 𝑗 ∈ 𝐶 to a facility 𝑖 ∈ 𝐹 requires a connection 
cost 𝑑𝑖𝑗 = 𝑑ሺ𝑖, 𝑗ሻ.

▪ Objective: open facilities 𝑆 ⊆ 𝐹 minimizing the overall cost

෍

𝑖∈𝑆

𝑓𝑖 +෍

𝑗∈𝐶

𝑑ሺ𝑗, 𝑆ሻ



IP Formulation

▪ 𝑥𝑖 ∈ {0,1}: whether facility at 𝑖 is open

▪ 𝑦𝑖𝑗 ∈ {0,1}: whether client 𝑗 is connected to facility 𝑖

▪ Overall cost: σ𝑖∈𝑆 𝑓𝑖𝑥𝑖 +σ𝑗∈𝐶 𝑑𝑖𝑗𝑦𝑖𝑗

▪ Each client 𝑗 must be connected: σ𝑖∈𝐹 𝑦𝑖𝑗 = 1

▪ The facility 𝑖 must be open if being connected: 𝑦𝑖𝑗 ≤ 𝑥𝑖



IP Formulation

minimize ෍

𝑖∈𝑆

𝑓𝑖𝑥𝑖 + ෍

𝑖∈𝐹,𝑗∈𝐶

𝑑𝑖𝑗𝑦𝑖𝑗

subject to ෍

𝑖∈𝐹

𝑦𝑖𝑗 = 1 ∀𝑗 ∈ 𝐶

𝑦𝑖𝑗 ≤ 𝑥𝑖 ∀𝑖 ∈ 𝐹, 𝑗 ∈ 𝐶

𝑦𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝐹, 𝑗 ∈ 𝐶

𝑥𝑖 ∈ {0,1} ∀𝑖 ∈ 𝐹



LP Relaxation

minimize ෍

𝑖∈𝑆

𝑓𝑖𝑥𝑖 + ෍

𝑖∈𝐹,𝑗∈𝐶

𝑑𝑖𝑗𝑦𝑖𝑗

subject to ෍

𝑖∈𝐹

𝑦𝑖𝑗 = 1 ∀𝑗 ∈ 𝐶

𝑦𝑖𝑗 ≤ 𝑥𝑖 ∀𝑖 ∈ 𝐹, 𝑗 ∈ 𝐶

0 ≤ 𝑦𝑖𝑗 ≤ 1 ∀𝑖 ∈ 𝐹, 𝑗 ∈ 𝐶

0 ≤ 𝑥𝑖 ≤ 1 ∀𝑖 ∈ 𝐹



LP Relaxation

▪ Let {𝑥𝑖 , 𝑦𝑖𝑗} be the optimal LP solution.

▪ Let 𝐹∗ = σ𝑖∈𝐹 𝑓𝑖𝑥𝑖 be the LP building cost.

▪ Let 𝐷∗ = σ𝑖∈𝐹,𝑗∈𝐶 𝑑𝑖𝑗𝑦𝑖𝑗 be the LP connection cost.

▪ Our objective: construct an integral solution 𝑆 and compare 
its cost to the optimal LP cost 𝐹∗ + 𝐷∗

▪ Let 𝐿𝑗 = σ𝑖∈𝐹 𝑑𝑖𝑗𝑦𝑖𝑗 be the LP connection cost for 𝑗.

▪ 𝐿𝑗 can be viewed as the “weighted-average distance” to all 
facilities.



Balls

▪ 𝐵ሺ𝑣, 𝑟ሻ: the set of all vertices within distance 𝑟 from vertex 𝑣
– A “ball” centered at 𝑣 with radius 𝑟

▪ Choose a parameter 𝛼 > 1 (to be decided later)

▪ For each client 𝑗, let 𝐵𝑗 = 𝐵 𝑗, 𝛼𝐿𝑗

▪ 𝐵𝑗 should contain most “mass” of facilities connected to 𝑗, if 
𝛼 is large.



Algorithm

1. Sort the clients as 𝐿1 ≤ 𝐿2 ≤ ⋯ ≤ 𝐿|𝐶|

2. Greedily choose a maximal subset of disjoint balls in order 
1, 2, … , |𝐶|. Let 𝐼 ⊆ 𝐶 encode the chosen balls 𝐵𝑗: 𝑗 ∈ 𝐼 .

3. Build the cheapest facility 𝜋 𝑗 in each chosen ball.

4. Return 𝑆 containing all the opened facilities.



Bound the Connection Cost

▪ For each 𝑗 ∈ 𝐼, the connection cost is at most 𝛼𝐿𝑗
– Since 𝜋 𝑗 is opened in 𝐵𝑗 = 𝐵 𝑗, 𝛼𝐿𝑗



Bound the Connection Cost

▪ For each 𝑗 ∈ 𝐼, the connection cost is at most 𝛼𝐿𝑗

▪ For each 𝑗 ∉ 𝐼, there exists 𝑗′ ∈ 𝐼 with 
– 𝑗′ < 𝑗

– 𝐿𝑗′ ≤ 𝐿𝑗

– 𝐵𝑗′ ∩ 𝐵𝑗 ≠ ∅

𝐵𝑗′ (Chosen, Smaller)

𝐵𝑗 (Not Chosen, Larger)

𝑗

𝑗′



Bound the Connection Cost

▪ For each 𝑗 ∈ 𝐼, the connection cost is at most 𝛼𝐿𝑗

▪ For each 𝑗 ∉ 𝐼, there exists 𝑗′ ∈ 𝐼 with 
– 𝑗′ < 𝑗

– 𝐿𝑗′ ≤ 𝐿𝑗

– 𝐵𝑗′ ∩ 𝐵𝑗 ≠ ∅

▪ For 𝑘 ∈ 𝐵𝑗′ ∩ 𝐵𝑗 , we have 𝑑𝑗𝑗′ ≤ 𝑑𝑗𝑘 + 𝑑𝑘𝑗′ ≤ 𝛼𝐿𝑗 + 𝛼𝐿𝑗′

▪ Connection cost for 𝑗 is at most

▪ 𝑑𝜋 𝑗′ 𝑗 ≤ 𝑑𝜋 𝑗′ 𝑗′ + 𝑑𝑗𝑗′ ≤ 𝛼𝐿𝑗′ + 𝛼𝐿𝑗 + 𝛼𝐿𝑗′

▪ 𝐿𝑗′ ≤ 𝐿𝑗 ⟹ 𝑑𝜋 𝑗′ 𝑗 ≤ 3𝛼𝐿𝑗
𝐵𝑗′ (Chosen, Smaller)

𝐵𝑗 (Not Chosen, Larger)

𝑗

𝑗′

𝑘



Bound the Connection Cost

▪ Connection cost for each 𝑗 ∈ 𝐶: at most 3𝛼𝐿𝑗

▪ Overall Connection Cost is at most:

෍

𝑗∈𝐶

3𝛼𝐿𝑗 = 3𝛼෍

𝑗∈𝐶

෍

𝑖∈𝐹

𝑑𝑖𝑗𝑦𝑖𝑗 = 3𝛼𝐷∗



Bound the Building Cost

▪ 𝐵𝑗 should contain most “mass” of facilities connected to 𝑗, if 
𝛼 is large.

▪ In particular, σ𝑘∈𝐵𝑗
𝑦𝑘𝑗 ≥ 1 −

1

𝛼
:

– O.w., σ𝑘∉𝐵𝑗
𝑦𝑘𝑗 >

1

𝛼
, and 

– 𝐿𝑗 = σ𝑖∈𝐹 𝑑𝑖𝑗𝑦𝑖𝑗 ≥ σ𝑘∉𝐵𝑗
𝑑𝑖𝑗𝑦𝑘𝑗 > 𝛼𝐿𝑗 σ𝑘∉𝐵𝑗

𝑦𝑘𝑗 > 𝐿𝑗, a contradiction!



Bound the Building Cost

▪ 𝐵𝑗 should contain most “mass” of facilities connected to 𝑗, if 
𝛼 is large.

▪ In particular, σ𝑘∈𝐵𝑗
𝑦𝑘𝑗 ≥ 1 −

1

𝛼

▪ For each opened facility 𝜋 𝑗 , 

𝑓𝜋 𝑗 = min
𝑘∈𝐹∩𝐵𝑗

𝑓𝑘 ≤
σ𝑘∈𝐵𝑗

𝑓𝑘𝑦𝑘𝑗

σ𝑘∈𝐵𝑗
𝑦𝑘𝑗

≤
1

1 −
1
𝛼

෍

𝑘∈𝐵𝑗

𝑓𝑘𝑦𝑘𝑗

min<weighted-average        yellow



Bound the Building Cost

▪ 𝐵𝑗 should contain most “mass” of facilities connected to 𝑗, if 
𝛼 is large.

▪ In particular, σ𝑘∈𝐵𝑗
𝑦𝑘𝑗 ≥ 1 −

1

𝛼

▪ For each opened facility 𝜋 𝑗 , 

𝑓𝜋 𝑗 = min
𝑘∈𝐹∩𝐵𝑗

𝑓𝑘 ≤
σ𝑘∈𝐵𝑗

𝑓𝑘𝑦𝑘𝑗

σ𝑘∈𝐵𝑗
𝑦𝑘𝑗

≤
1

1 −
1
𝛼

෍

𝑘∈𝐵𝑗

𝑓𝑘𝑦𝑘𝑗

▪ Overall Building Cost:

෍

𝑗∈𝐼

𝑓𝜋 𝑗 ≤
1

1 −
1
𝛼

෍

𝑗∈𝐼

෍

𝑘∈𝐵𝑗

𝑓𝑘𝑦𝑘𝑗 ≤
1

1 −
1
𝛼

෍

𝑗∈𝐼

෍

𝑘∈𝐵𝑗

𝑓𝑘𝑥𝑘 ≤
1

1 −
1
𝛼

𝐹∗

orange LP constraint               balls are disjoint         



Summarizing

▪ Overall Connection Cost ≤ 3𝛼𝐷∗

▪ Overall Building Cost ≤
1

1−
1

𝛼

𝐹∗

▪ Overall Cost ≤ 3𝛼𝐷∗ +
1

1−
1

𝛼

𝐹∗ = max
𝛼

𝛼−1
, 3𝛼 𝐹∗ + 𝐷∗

▪ 𝛼 =
4

3
⟹ Overall Cost ≤ 4 𝐹∗ + 𝐷∗

▪ LP optimum 𝐹∗ + 𝐷∗ is a lower bound to OPT

▪ We have a 4-approximation algorithm!



Results for Metric Facility Location

▪ This algorithm (Greedy + LP-relaxation): 4-approximation

▪ Primal-Dual Schema: 3-approximation

▪ [Li, 2011] 1.488-approximation

▪ [Guha & Khuller, 1999] 1.463-approximation is NP-hard
– Reduction from Set Cover

– At that time, the 1 − 𝑜 1 ln 𝑛 inapproximability for Set Cover is only 
known to be based on 𝐍𝐏 ⊈ DTIME 𝑛𝑂 log log 𝑛

– Thus, Guha & Khuller concludes 1.463 inapproximability for Metric 
Facility Location based on 𝐍𝐏 ⊈ DTIME 𝑛𝑂 log log 𝑛

– But now we know 1.463-approximation is NP-hard since ൫
൯

1 −
𝑜 1 ln 𝑛 NP-hardness of approximation is now known for Set Cover


