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Let’s Count!

Combinatorics is the art of counting. You may have learned the two
basic principles of counting, the addition principle (a.k.a. the rule of
sum) and the multiplication principle (a.k.a. the rule of product), in pri-
mary schools. Now, let’s start with these primary school mathemat-
ics.

1.1 The twelvefold way

Our first toy is the balls-and-urns model, which is simple but pow-

erful. In this model, there are n balls and m urns, and we would

like to count / enumerate how many ways to put these balls into

urns. However, these balls and urns may be distinct or identical,

and there may be some restrictions on the numbers of balls in each

urn, such as at most one ball in each urn, or at least one ball in each

urn. Depending on the different cases of balls, urns and restric-

tions, we can classify the counting problem into 12 typical tasks:

{distinct balls, identical balls} x {distinct urns, identical urns} x

{no restrictions, at least one ball per urn, at most one ball per urn}.
This classification is called the twelvefold way. The idea of the clas-

sification is credited to Gian-Carlo Rota, and the name was suggested

by Joel Spencer.
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If you are familiar with the language of
functions or mappings, the twelvefold
way can be viewed as counting the
number of mappings from a set or an
indistinguishable set of size n, to a

set or an indistinguishable set of size
m, where the mappings are subject to
one of the three following restrictions:
unrestricted, injective, or surjective.

Figure 1.1: Some of you may have
known the twelvefold way in competi-
tive programming
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Formulas for the different cases of the twelvefold way are summa-

rized in the following table.

# of balls in each urn
n balls m urns
arbitrary <1 >1
distinct distinct m" (m)y m!{ ;’11 }
identical distinct (n;niI 1 ) (711) ( :1:11 )
distinct identical | Y, {Z} [n < m] { ;:1}
identical identical | pm(n+ m) [n < m] pm(n)

Now we explain the details of each case.

. Distinct balls, distinct urns, no restrictions: Each ball can be
put into any of m urns, so there is m" ways by the multiplication
principle.

. Distinct balls, distinct urns, at most 1 ball in each urn: The first
ball can be put into any of m urns, and the second one can be put
into m — 1 urns except the urn containing the first ball, and so on.
So the number of ways in this case is

(my2mx(m—1)x(m—=2)x--x(m—n+1).

. Identical balls, distinct urns, at most 1 ball in each urn: We
choose n unordered urns from all m urns and put one ball in each
urn. The number of ways in this case is the binomial coefficient
(a.k.a. combination, or combinatorial number)

. Distinct balls, identical urns, at most 1 ball in each urn: Clearly
if n > m there is no solution. If n < m, since all urns are indis-
tinguishable, there is a unique way to put balls into urns. We use
notation [n < m| to denote the indicator variable, that is,

1 n<m

0 otherwise

. Identical balls, identical urns, at most 1 ball in each urn: The
same as Case 4.

Table 1.1: The twelvefold way

The name comes from the binomial
theorem:

n SN ik
(a+0)" =Y L v,
k=0

and it usually read as “n choose k”.



6. Identical balls, distinct urns, at least 1 balls in each urn: The

number of ways in this case is equal to the number of solutions of
X1+ X2 4 -+ -+ x,y = n where x1,xp,...,x, are positive integers.
We can solve this task by the stars-and-bars technique. Suppose
there are 7 stars in a line. Then we can place m — 1 bars between
the stars and let x; be the number of the first part of stars, xp be
the number of the second part of stars, and so on. Because no urn
is allowed to be empty (all the variables are positive), there is at
most one bar between any pair of stars. For example, if n = 6
and m = 3, the following two bars give rise to the solution where
x1=3,x=1,and x3 = 2.

* ok ok | ok | xx
——
X1 X2 X3
The number of ways to put bars is the number of ways to choose
m — 1 positions from n — 1 ones, that is,

(n1)

. Identical balls, distinct urns, no restrictions: The number of
ways in this case is equal to the number of solutions of x; + x; +
-+ xy, = n where xq,xy,..., X, are nonnegative integers. Let
yi = x;+1foralli € [m]. Thenitholds that y; +y2+ - +yn =
m + n and all y;’s are positive integers. Because of the bijection
between x; and y;, the number of nonnegative solutions of x; +
Xy + -+ x;; = nis equal to the number of positive solutions of
y1+y2+ - +ym = n+ m, which is, by Case 6,

n+m-—1
m—1 )
. Distinct balls, identical urns, at least 1 ball in each urn: The
number of ways in this case is equal to the number of partitions
of [n] into m nonempty subsets. This number is called the Stir-

ling number of the second kind, denoted by S(n,m), or {,}. Stirling
numbers of the second kind obey the recurrence relation

n n—1 n—1
{ }:m{ }—i—{ } forO<m<n
m m m—1

with initial conditions

{n}:O forn>1 and {n}zl forn>0.
0 n

. Distinct balls, distinct urns, at least 1 ball in each urn: We first
partition n distinct balls into m subsets, and then assign each urn
with a subset. The number of partitions is {,,} and the number of
assignments is m!. So the number of ways in this case is m! {;} }.

LET’S COUNT! 5

The number is also equal to the number
of multisets of cardinality m, with
elements taken from [n]. It is sometimes
called the multiset coefficient, or multiset
number.

Sometimes we use the notation

(£)-C72)- )

We will revisit Stirling numbers and
study its explicit formula of {}} in
Sections 2.3 and 3.2.

Why?
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10. Distinct balls, identical urns, no restrictions: We enumerate the
number of nonempty urns. So the number of ways in this case
is the sum of the number of ways to put n distinct balls into k
nonempty urns over k.

11. Identical balls, identical urns, at least 1 ball in each urn: The
number of ways in this case is equal to the number of ways to rep-
resent 1 as a sum of m positive integers. We use p,, (1) to denote
this partition number, and p;,(n) can be calculated using the recur-
rence relation py,(n) = pp_1(n —1) 4+ pm(n — m) with the base case

p1(n) = pu(n) = 1.

12. Identical balls, identical urns, no restrictions: The number of
ways in this case is equal to the number of ways to represent n as
a sum of m nonnegative integers. Similarly to Case 7, we can add
1 to each integer, so the number of ways in this case is equal to the
number of ways to represent n + m as a sum of m positive integers,
ie., pm(n+m).

1.2 Binomial coefficients

In this section, we introduce more on binomial coefficients.

Proposition 1.1. Let n be a fixed number. Then

G><QZJ

ifand only if k +1 < n/2, and

G>>Q10

if and only if k > n /2.

Proof.
(1) (i (k+1)1 k+1

(1) K (e n—k

Proposition 1.1 states that the binomial coefficients is a unimodal

sequence for any fixed n. In particular, it is further a log-concave se-
quence.

Proposition 1.2.

() = () )

If m = n, the number is called the Bell

number:
A [0
B,£Y" {k}

k=0

We usually use the definition (}) = (';c?"

instead of (}) = ﬁlk)' It will be

helpful for genearal n (n < k or n ¢ Z).

A sequence {a;} is said to be concave
if it satisfies 2a; > ax_1 + apy1. A
positive sequence {by} is said to be
logarithmically concave, or simply log-
concave, if {log by} is concave.



Proof.
(1) (1) _ k(n —k) <1
(2)2 (k+1)(n—k+1) '

Proposition 1.3.
()
i=o \k

Proof. Note that (14 x)" = Y7, (")x*. Let x = 1.
k=0 \k

Proposition 1.4.

Proof. Letx = —1in (1+x)" = Y}_, (})xk.

The following proposition gives an important recurrence for bino-

mial coefficients.

Proposition 1.5.

B-C0+):

() (1) -

k! k!
_(n _kl!)k—l o (Z) ‘

Sometimes the exact values of binomial coefficients are not nec-
essary; instead, their approximate values or values modulo Z, may

suffice.

To evaluate the value of binomial coefficients asymptotically, a
powerful tool is the Stirling’s approximation formula:

n
n! =~ v2nn (Z) ,

or more precisely,
nle”

lim
n—ro0 n”\/ﬁ

It yields the following simple but useful bound:

(1) =) =()"

= V2.

(n— 1)k k4 (n— 1)1

LET'S COUNT!

You may have known that binomial
coefficients form the Pascal’s triangle

Roughly, the formula can most simply
be derived by approximating the sum
over the terms of the factorial with an
integral, that is,

n

n
Inn! = lnkz/ Inxdx
k=1 J1

=nlnn—n+1.

7
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Further, a more precise approximation can be given by For even k, we have
ke k-1
(n) Nﬁ n" S 1 n" (n)k§”<n*£> .
k 21tk(n — k) kk (n —k)r=k = \/27k kk (n —k)n—k’ For odd k, we have

(n> (n) 1 n(n—k/2)k1 1 nk k—l)k.

k)T R S ek (keF S Vank (ke (e < (n =5

We may also concern the remainder of binomial coefficients di-

vided by some prime p. For example, consider the following exercise.

Question 1.6. How many odd entries in the n-th row of the Pascal’s
triangle?

To answer this kind of questions, we introduce the Lucas’ theorem. Lucas (1878)

Theorem 1.7 (Lucas’ Theorem). Let n,m be two nonnegative in-
tegers, and p be a prime. Suppose that m and n can be written as
n = Nhy_q1 - - Mg and m = mymy_q - - - My in terms of base p, namely,

n= nkpk I nk,lpkfl +---4ny and
m = mp* +m_pF 4+ mo,

where ng, Ng_1, ..., 0o, My, Mg_1,...,mg € {0,1,...,p — 1}. Then it holds

that )
()=T1(2) i

=0

Proof. It suffices to show that

<n> _ <nmod p> (Ln/pj) (mod p).

m mmod p/) \|m/p]

For convenience we assume n > m and n,m € IN. Let n = sp +r and
m = tp + w where 0 <, w < p — 1. Note that

s—1

n!z<sp+r>~--<sp+1>1j0(<ip+1>~--<z'p+p>)

= (r!' + agp) -E(ip((p —1)! +zxip))

=sl-p° (rl + ap) 'H((P— 1! +a;p)

=sl-p*- ((=1)°rt+ Ap)
for some «ay, ..., a5, A € IN. Similarly, for m = tp 4+ w! we have Here we apply the Wilson’s theorem,
which states that
mt =t p'- ((~1)"w! + Bp) (p~1)!=-1 (mod p).


https://mathscinet.ams.org/mathscinet/article?mr=1505161

for some B € N, and for n —m = (s —t)p + (r — w), we have

(n—m)! =
(s—8)l-p - ((=1)"(r —w)! + Cp) ifr>w
(s—t—1D-p= 1 (1) r+p—w)!+Cp) ifr<w

for some C € IN. Now, if r > w, it follows that

o (<14 Ap)

t-pt ((=1)tw!+ Bp) - (s —t)! - p>=t- ((=1)*~H(r —w)! + Cp)
st (=1)sr!+ Ap
t(s—t)! (=1)w!(r —w)!+ Dp

() e

If r < w, we obtain (,;) = 0 (mod p) since the numerator has term

p® but the denominator only has term p*~!. But in this case we also
have () = 0. Thus we conclude that (,;) = ()(;,) (mod p). O

w

A generalized version of binomial coefficients is the multinomial
coefficients in the multinomial theorem. Suppose n = r1 + -+t
where 14, ..., 1, are nonnegative integers. Define the multinomial

)

n!

coefficient as

< ; )
", Tm

Then the multinomial theorem states that

n
n } : r r
(xl++xm) = (7 r)xll...x.”rln-
ri+-+rm=n 17--+s"'m

(1>

rlrpl !

1.3 Combinatorial proofs and combinatorial identities

In the last section, we prove some properties of binomial coefficients
by explicit formulas. Now we introduce another type of proofs.

Alternative proof of Proposition 1.3. The right hand side counts the
number of all subsets of [n]. The left hand side counts the number of
subsets of size k and sums them up. O

Alternative proof of Proposition 1.5. The left hand side counts the num-
ber of all size-k subsets of [n]. The right hand side counts the same
number by dividing subsets into two parts: ({ 1) subsets containing

n and (";1) subsets not containing n. O

LET'S COUNT!

9
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This kind of proofs is called combinatorial proofs, or double counting.
To prove a combinatorial identity, we find a counting problem that
can be able to answer in two ways, and then explain that the left
hand side counts in one way while the right hand side counts in the
other way.

Proposition 1.8.
n 2+ n 2+ n n 2_ 2n
0 1 n) \n)’

Proof. The right hand side is the number of ways of picking n un-
ordered balls from 2#n distinct balls. The left hand side is

@) () GG )+ 06 =50

counting the same number by enumerating the number of balls that
we pick from the first n balls. O

In fact, it is a special case of the following Vandermonde’s identity,
or Vandermonde’s convolution formula.

Theorem 1.9 (Vandermonde’s identity).
n+m K m n
(") =5(6E)
Proposition 1.10.
i (m) (n—m) B < n+1 )
=\ k r ) \k+r+1)°

Proof. The left hand side partitions all possibilities by enumerating
the position of the (k + 1)-th ball. 0O

Our last two examples involves Stirling numbers of the second
kind.

Proposition 1.11.

It is named after Alexandre-Théophile
Vandermonde.
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Proof. Recall that the left hand side counts the number of ways to
partition [n] into m nonempty subsets. The right hand side counts
the same number by enumerating all elements in the same subset as
n. O

Proposition 1.12.

m" = i {Z} (m)g .

k=1

Proof. Recall the twelvefold way. The left hand side counts the number
in Case 1, while the right hand side counts the same number by
enumerating nonempty urns and then applying Case 9. O

1.4 Catalan numbers

We now introduce an example with a more complicated combinato-
rial proof.

Question 1.13. Ina n X n grid, how many paths from the bottom left
corner (0,0) to the top right corner (1, n), consisting entirely of edges
pointing rightwards or upwards?

Clearly the answer is binomial coefficient (2; ). Now we add some
restrictions. This is a.k.a the Dyck path.

Question 1.14. In a n X n grid, how many paths from the left bottom
corner to the right top corner, consisting entirely of edges pointing
rightwards or upwards, which do not pass above the diagonal?

Figure 1.2: Diagram for the case n = 4,
i s L i from wikipedia
The answers to this question are called Catalan numbers, where the The sequence is named after Eugene

expression of the n-th Catalan number is Charles Catalan

1 2n
C”_n—i-l (n)
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The first Catalan numbers for n = 0,1,2,3,4,5, ... are
1,1,2,5, 14, 42, ...
We now prove the formula of Catalan numbers.

Proof. We first claim that the number of invalid paths that pass above
2n
n+1

Cn = (2:> B <n2—1:1> :nlﬁ(zD

To prove our claim, consider an invalid path from (0,0) to (1, n) that

the diagonal is (7). Thus, the n-th Catalan number is given by

passes above the diagonal. There is a smallest k that after the k-th
edge the path crosses the diagonal. By the minimality of k, the po-
sition after the k-th edge is (’%1, '%1) Now consider the effect of
reversing the direction of each of the next 2n — k edges, namely, right-
wards edges point upwards and upwards edges point rightwards.
Originally, the next 21 — k edges go from (551, 1) to (n,n). After
reversing, they will terminate at (n — 1,7 + 1). Note that this con-
struction is a bijection. For any path from (0,0) to (n —1,n + 1), it
must cross the diagonal of n x n grid. Reversing again the direction
of remaining edges after the first edge that passes above the diagonal,
we can obtain an invalid path from (0,0) to (n,n). Thus, the number
of invalid paths that cross the diagonal is exactly the number of paths
from (0,0) to (n —1,n + 1), which is (nzfl). O
There are many counting problems in combinatorics whose solu-
tion is given by the Catalan numbers. Here we give some examples.

Example 1.15 (Parenthesis sequences). A valid parenthesis sequence
is one in which every opening parenthesis “(” is matched with a cor-
responding closing parenthesis “)”. These sequences are also known
as balanced parentheses sequences. The number of valid parenthesis
sequences of length 2n is Cj,.

Each valid sequence corresponds to a path in a grid of n x n
squares from the bottom left corner to the top right corner, where
moving up represents adding an open parenthesis “(” and moving
right represents adding a close parenthesis “)”.

Example 1.16 (Push-pop sequences). A push-pop sequence of a stack
is a sequence of operations where you can push elements onto the
stack and pop them off the stack. The number of ways to perform
push and pop operations on a stack without violating the LIFO (Last-
In-First-Out) property is equivalent to the number of valid parenthe-
sis sequences.

Enumerative
Combinatorics

Volume 2
Second Edition

RICHARD STANLEY

The book Enumerative Combinatorics:
Volume 2 by combinatorialist Richard P.
Stanley contains a set of exercises which
describe 66 different interpretations of
the Catalan numbers.
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Example 1.17 (Ordered trees). An ordered tree, also known as a
rooted tree, is a tree in which one vertex is designated as the root,
and every other vertex has a unique parent vertex. The vertices of
the tree are not labeled, but the children of each vertex (if exists)
are ordered. Then the number of ordered trees of size n + 1 is C,,
because of the bijection of the DFS sequences starting from the root
and the push-pop sequences of a stack.

To see more appearance of the Catalan numbers, a useful tool is
the following recurrence relation of the Catalan numbers.

Theorem 1.18. The Catalan numbers satisfy the recurrence relation

n
Crnt1=CoCn + C1C1+ -+ CuCo = Z CkCrk -
k=0

Proof. Consider a Dyck path of length 2(n + 1). Let k + 1 be the

first nonzero x-coordinate where the path hits the diagonal, then

0 < k < n. The path breaks up into two pieces, the part to the

left of 2(k + 1) and the part to its right. The part to the right is a
Dyck path of length 2(n — k), so it is counted by C,,_x. The left part
is a path from (0,0) to (k + 1,k + 1) that does not pass above or

hit the diagonal. So it must pass through (1,0) and (k + 1,k), and
between these two points, it never goes over the diagonal from (1,0)
to (k+1,k), that is, a rightwards edge, then a Dyck path of length 2k,
and then an upwards edge. Hence, there are a total of C;C,,_j paths
so that the first hit with the diagonal is at position (k + 1,k + 1).
Summing these terms up gives the recurrence relation. O

This recurrence can give more examples of the Catalan numbers.

Example 1.19 (Binary trees). The number of different forms of binary
trees with n vertices is C,, since they satisfy the same recurrence It also describes the number of full
relation.

Example 1.20 (Polygon triangulations). A convex polygon triangula-
tion is to cut a convex polygon with 7 4 2 sides into n triangles, by
drawing n — 1 non-crossing lines between vertices of the polygon.
The number of convex polygon triangulation of an (n + 2)-gon is Cy,.

binary trees with n internal vertices.
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