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Let’s Count!

Combinatorics is the art of counting. You may have learned the two
basic principles of counting, the addition principle (a.k.a. the rule of
sum) and the multiplication principle (a.k.a. the rule of product), in pri-
mary schools. Now, let’s start with these primary school mathemat-
ics.

1.1 The twelvefold way

Our first toy is the balls-and-urns model, which is simple but pow-
erful. In this model, there are n balls and m urns, and we would
like to count / enumerate how many ways to put these balls into
urns. However, these balls and urns may be distinct or identical,
and there may be some restrictions on the numbers of balls in each
urn, such as at most one ball in each urn, or at least one ball in each
urn. Depending on the different cases of balls, urns and restric- If you are familiar with the language of

functions or mappings, the twelvefold
way can be viewed as counting the
number of mappings from a set or an
indistinguishable set of size n, to a
set or an indistinguishable set of size
m, where the mappings are subject to
one of the three following restrictions:
unrestricted, injective, or surjective.

tions, we can classify the counting problem into 12 typical tasks:
{distinct balls, identical balls} × {distinct urns, identical urns} ×
{no restrictions, at least one ball per urn, at most one ball per urn}.

This classification is called the twelvefold way. The idea of the clas-
sification is credited to Gian-Carlo Rota, and the name was suggested
by Joel Spencer.

Figure 1.1: Some of you may have
known the twelvefold way in competi-
tive programming
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Formulas for the different cases of the twelvefold way are summa-
rized in the following table.

n balls m urns
# of balls in each urn

arbitrary ≤ 1 ≥ 1

distinct distinct mn (m)n m! {n
m}

identical distinct (n+m−1
m−1 ) (m

n) (n−1
m−1)

distinct identical ∑m
k=1 {n

k} [n ≤ m] {n
m}

identical identical pm(n + m) [n ≤ m] pm(n)

Table 1.1: The twelvefold way

Now we explain the details of each case.

1. Distinct balls, distinct urns, no restrictions: Each ball can be
put into any of m urns, so there is mn ways by the multiplication
principle.

2. Distinct balls, distinct urns, at most 1 ball in each urn: The first
ball can be put into any of m urns, and the second one can be put
into m − 1 urns except the urn containing the first ball, and so on.
So the number of ways in this case is

(m)n ≜ m × (m − 1)× (m − 2)× · · · × (m − n + 1) .

3. Identical balls, distinct urns, at most 1 ball in each urn: We
choose n unordered urns from all m urns and put one ball in each
urn. The number of ways in this case is the binomial coefficient The name comes from the binomial

theorem:

(a + b)n =
n

∑
k=0

(
n
k

)
an−kbk ,

and it usually read as “n choose k”.

(a.k.a. combination, or combinatorial number)(
m
n

)
≜

m!
n! (m − n)!

=
(m)n

n!
.

4. Distinct balls, identical urns, at most 1 ball in each urn: Clearly
if n > m there is no solution. If n ≤ m, since all urns are indis-
tinguishable, there is a unique way to put balls into urns. We use
notation [n ≤ m] to denote the indicator variable, that is,

[n ≤ m] ≜

1 n ≤ m

0 otherwise
.

5. Identical balls, identical urns, at most 1 ball in each urn: The
same as Case 4.
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6. Identical balls, distinct urns, at least 1 balls in each urn: The
number of ways in this case is equal to the number of solutions of
x1 + x2 + · · ·+ xm = n where x1, x2, . . . , xm are positive integers.
We can solve this task by the stars-and-bars technique. Suppose
there are n stars in a line. Then we can place m − 1 bars between
the stars and let x1 be the number of the first part of stars, x2 be
the number of the second part of stars, and so on. Because no urn
is allowed to be empty (all the variables are positive), there is at
most one bar between any pair of stars. For example, if n = 6
and m = 3, the following two bars give rise to the solution where
x1 = 3, x2 = 1, and x3 = 2.

⋆ ⋆ ⋆︸ ︷︷ ︸
x1

| ⋆︸︷︷︸
x2

| ⋆ ⋆︸︷︷︸
x3

The number of ways to put bars is the number of ways to choose
m − 1 positions from n − 1 ones, that is,(

n − 1
m − 1

)
.

7. Identical balls, distinct urns, no restrictions: The number of
ways in this case is equal to the number of solutions of x1 + x2 +

· · · + xm = n where x1, x2, . . . , xm are nonnegative integers. Let The number is also equal to the number
of multisets of cardinality m, with
elements taken from [n]. It is sometimes
called the multiset coefficient, or multiset
number.

yi = xi + 1 for all i ∈ [m]. Then it holds that y1 + y2 + · · ·+ yn =

m + n and all yi’s are positive integers. Because of the bijection
between xi and yi, the number of nonnegative solutions of x1 +

x2 + · · ·+ xm = n is equal to the number of positive solutions of
y1 + y2 + · · ·+ ym = n + m, which is, by Case 6, Sometimes we use the notation((

m
n

))
=

(
n + m − 1

n

)
=

(
n + m − 1

m − 1

)
.

(
n + m − 1

m − 1

)
.

8. Distinct balls, identical urns, at least 1 ball in each urn: The
number of ways in this case is equal to the number of partitions
of [n] into m nonempty subsets. This number is called the Stir- We will revisit Stirling numbers and

study its explicit formula of {n
m} in

Sections 2.3 and 3.2.
ling number of the second kind, denoted by S(n, m), or {n

m}. Stirling
numbers of the second kind obey the recurrence relation{

n
m

}
= m

{
n − 1

m

}
+

{
n − 1
m − 1

}
for 0 < m < n

with initial conditions Why?{
n
0

}
= 0 for n ≥ 1 and

{
n
n

}
= 1 for n ≥ 0 .

9. Distinct balls, distinct urns, at least 1 ball in each urn: We first
partition n distinct balls into m subsets, and then assign each urn
with a subset. The number of partitions is {n

m} and the number of
assignments is m!. So the number of ways in this case is m! {n

m}.
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10. Distinct balls, identical urns, no restrictions: We enumerate the
number of nonempty urns. So the number of ways in this case If m = n, the number is called the Bell

number:

Bn ≜
n

∑
k=0

{
n
k

}
.

is the sum of the number of ways to put n distinct balls into k
nonempty urns over k.

11. Identical balls, identical urns, at least 1 ball in each urn: The
number of ways in this case is equal to the number of ways to rep-
resent n as a sum of m positive integers. We use pm(n) to denote
this partition number, and pm(n) can be calculated using the recur-
rence relation pm(n) = pm−1(n− 1) + pm(n−m) with the base case
p1(n) = pn(n) = 1.

12. Identical balls, identical urns, no restrictions: The number of
ways in this case is equal to the number of ways to represent n as
a sum of m nonnegative integers. Similarly to Case 7, we can add
1 to each integer, so the number of ways in this case is equal to the
number of ways to represent n + m as a sum of m positive integers,
i.e., pm(n + m).

1.2 Binomial coefficients

In this section, we introduce more on binomial coefficients.

Proposition 1.1. Let n be a fixed number. Then(
n
k

)
<

(
n

k + 1

)
if and only if k + 1 ≤ n/2, and(

n
k

)
>

(
n

k + 1

)
if and only if k ≥ n/2.

We usually use the definition (n
k) =

(n)k
k!

instead of (n
k) = n!

k! (n−k)! . It will be
helpful for genearal n (n < k or n ̸∈ Z).

Proof.
(n

k)

( n
k+1)

=
(n)k

k!
(k + 1)!
(n)k+1

=
k + 1
n − k

.

Proposition 1.1 states that the binomial coefficients is a unimodal
sequence for any fixed n. In particular, it is further a log-concave se- A sequence {ak} is said to be concave

if it satisfies 2ak ≥ ak−1 + ak+1. A
positive sequence {bk} is said to be
logarithmically concave, or simply log-
concave, if {log bk} is concave.

quence.

Proposition 1.2. (
n
k

)2
>

(
n

k − 1

)(
n

k + 1

)
.
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Proof.
( n

k−1)(
n

k+1)

(n
k)

2 =
k(n − k)

(k + 1)(n − k + 1)
< 1 .

Proposition 1.3.
n

∑
k=0

(
n
k

)
= 2n .

Proof. Note that (1 + x)n = ∑n
k=0 (

n
k)xk. Let x = 1.

Proposition 1.4.
n

∑
k=0

(−1)k
(

n
k

)
= 0 .

Proof. Let x = −1 in (1 + x)n = ∑n
k=0 (

n
k)xk.

The following proposition gives an important recurrence for bino-
mial coefficients. You may have known that binomial

coefficients form the Pascal’s triangle

1
1

1
1

1
1

1
2

3
4

5

1
3

6
10

1
4

10
1

5 1

Proposition 1.5. (
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.

Proof.(
n − 1
k − 1

)
+

(
n − 1

k

)
=

(n − 1)k−1
(k − 1)!

+
(n − 1)k

k!

=
(n − 1)k−1

k!
· k +

(n − 1)k−1
k!

· (n − k)

=
(n − 1)k−1

k!
· n =

(
n
k

)
.

Sometimes the exact values of binomial coefficients are not nec-
essary; instead, their approximate values or values modulo Zp may
suffice.

To evaluate the value of binomial coefficients asymptotically, a
powerful tool is the Stirling’s approximation formula: Roughly, the formula can most simply

be derived by approximating the sum
over the terms of the factorial with an
integral, that is,

ln n! =
n

∑
k=1

ln k ≈
∫ n

1
ln x dx

= n ln n − n + 1 .

n! ≈
√

2πn
(n

e

)n
,

or more precisely,

lim
n→∞

n! en

nn√n
=

√
2π .

It yields the following simple but useful bound:(n
k

)k
≤

(
n
k

)
≤

( en
k

)k
.
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Further, a more precise approximation can be given by For even k, we have

(n)k ≤ n
(

n − k
2

)k−1
.

For odd k, we have

(n)k ≤
(

n − k − 1
2

)k
.

(
n
k

)
≈

√
n

2πk(n − k)
nn

kk (n − k)n−k ≥ 1√
2πk

nn

kk (n − k)n−k ,(
n
k

)
=

(n)k
k!

≤ 1√
2πk

n (n − k/2)k−1

(k/e)k ≤ 1√
2πk

nk

(k/e)k .

We may also concern the remainder of binomial coefficients di-
vided by some prime p. For example, consider the following exercise.

Question 1.6. How many odd entries in the n-th row of the Pascal’s
triangle?

To answer this kind of questions, we introduce the Lucas’ theorem. Lucas (1878)

Theorem 1.7 (Lucas’ Theorem). Let n, m be two nonnegative in-
tegers, and p be a prime. Suppose that m and n can be written as
n = nknk−1 · · · n0 and m = mkmk−1 · · ·m0 in terms of base p, namely,

n = nk pk + nk−1 pk−1 + · · ·+ n0 and

m = mk pk + mk−1 pk−1 + · · ·+ m0 ,

where nk, nk−1, . . . , n0, mk, mk−1, . . . , m0 ∈ {0, 1, . . . , p − 1}. Then it holds
that (

n
m

)
≡

k

∏
i=0

(
ni
mi

)
(mod p) .

Proof. It suffices to show that(
n
m

)
≡

(
n mod p
m mod p

)(
⌊n/p⌋
⌊m/p⌋

)
(mod p) .

For convenience we assume n ≥ m and n, m ∈ N. Let n = sp + r and
m = tp + w where 0 ≤ r, w ≤ p − 1. Note that

n! = (sp + r) · · · (sp + 1)
s−1

∏
i=0

(
(ip + 1) · · · (ip + p)

)
= (r! + α0 p) ·

s

∏
i=1

(
ip
(
(p − 1)! + αi p

))
= s! · ps · (r! + α0 p) ·

s

∏
i=1

(
(p − 1)! + αi p

)
= s! · ps ·

(
(−1)sr! + Ap

)
for some α0, . . . , αs, A ∈ N. Similarly, for m = tp + w! we have Here we apply the Wilson’s theorem,

which states that

(p − 1)! ≡ −1 (mod p) .m! = t! · pt ·
(
(−1)tw! + Bp

)

https://mathscinet.ams.org/mathscinet/article?mr=1505161
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for some B ∈ N, and for n − m = (s − t)p + (r − w), we have

(n − m)! =(s − t)! · ps−t ·
(
(−1)s−t(r − w)! + Cp

)
if r ≥ w

(s − t − 1)! · ps−t−1 ·
(
(−1)s−t−1(r + p − w)! + Cp

)
if r < w

for some C ∈ N. Now, if r ≥ w, it follows that(
n
m

)
≡ n!

m! · (n − m)!

≡
s! · ps ·

(
(−1)sr! + Ap

)
t! · pt ·

(
(−1)tw! + Bp

)
· (s − t)! · ps−t ·

(
(−1)s−t(r − w)! + Cp

)
≡ s!

t!(s − t)!
· (−1)sr! + Ap
(−1)sw!(r − w)! + Dp

≡
(

s
t

)(
r
w

)
(mod p) .

If r < w, we obtain (n
m) ≡ 0 (mod p) since the numerator has term

ps but the denominator only has term ps−1. But in this case we also
have ( r

w) = 0. Thus we conclude that (n
m) ≡ (s

t)(
r
w) (mod p).

A generalized version of binomial coefficients is the multinomial
coefficients in the multinomial theorem. Suppose n = r1 + · · · + rm

where r1, . . . , rm are nonnegative integers. Define the multinomial
coefficient as(

n
r1, . . . , rm

)
≜

(
n
r1

)(
n − r1

r2

)
· · ·

(
n − r1 − · · · − rm−1

rm

)
=

n!
r1! r2! · · · rm!

.

Then the multinomial theorem states that

(x1 + · · ·+ xm)
n = ∑

r1+···+rm=n

(
n

r1, . . . , rm

)
xr1

1 · · · xrm
m .

1.3 Combinatorial proofs and combinatorial identities

In the last section, we prove some properties of binomial coefficients
by explicit formulas. Now we introduce another type of proofs.

Alternative proof of Proposition 1.3. The right hand side counts the
number of all subsets of [n]. The left hand side counts the number of
subsets of size k and sums them up.

Alternative proof of Proposition 1.5. The left hand side counts the num-
ber of all size-k subsets of [n]. The right hand side counts the same
number by dividing subsets into two parts: (n−1

k−1) subsets containing
n and (n−1

k ) subsets not containing n.
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This kind of proofs is called combinatorial proofs, or double counting.
To prove a combinatorial identity, we find a counting problem that
can be able to answer in two ways, and then explain that the left
hand side counts in one way while the right hand side counts in the
other way.

Proposition 1.8.(
n
0

)2
+

(
n
1

)2
+ · · ·+

(
n
n

)2
=

(
2n
n

)
.

Proof. The right hand side is the number of ways of picking n un-
ordered balls from 2n distinct balls. The left hand side is(

n
0

)(
n
n

)
+

(
n
1

)(
n

n − 1

)
+ · · ·+

(
n
n

)(
n
0

)
=

n

∑
k=0

(
n
k

)(
n

n − k

)
,

counting the same number by enumerating the number of balls that
we pick from the first n balls.

In fact, it is a special case of the following Vandermonde’s identity, It is named after Alexandre-Théophile
Vandermonde.or Vandermonde’s convolution formula.

Theorem 1.9 (Vandermonde’s identity).(
n + m

k

)
=

k

∑
r=0

(
m
r

)(
n

k − r

)
.

Proposition 1.10.

n

∑
m=0

(
m
k

)(
n − m

r

)
=

(
n + 1

k + r + 1

)
.

Proof. The left hand side partitions all possibilities by enumerating
the position of the (k + 1)-th ball.

Our last two examples involves Stirling numbers of the second
kind.

Proposition 1.11. {
n
m

}
=

n−1

∑
k=0

(
n − 1

k

){
n − k − 1

k − 1

}
.
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Proof. Recall that the left hand side counts the number of ways to
partition [n] into m nonempty subsets. The right hand side counts
the same number by enumerating all elements in the same subset as
n.

Proposition 1.12.

mn =
n

∑
k=1

{
n
k

}
(m)k .

Proof. Recall the twelvefold way. The left hand side counts the number
in Case 1, while the right hand side counts the same number by
enumerating nonempty urns and then applying Case 9.

1.4 Catalan numbers

We now introduce an example with a more complicated combinato-
rial proof.

Question 1.13. In a n × n grid, how many paths from the bottom left
corner (0, 0) to the top right corner (n, n), consisting entirely of edges
pointing rightwards or upwards?

Clearly the answer is binomial coefficient (2n
n ). Now we add some

restrictions. This is a.k.a the Dyck path.

Question 1.14. In a n × n grid, how many paths from the left bottom
corner to the right top corner, consisting entirely of edges pointing
rightwards or upwards, which do not pass above the diagonal?

Figure 1.2: Diagram for the case n = 4,
from wikipedia

The answers to this question are called Catalan numbers, where the The sequence is named after Eugène
Charles Catalanexpression of the n-th Catalan number is

Cn =
1

n + 1

(
2n
n

)
.
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The first Catalan numbers for n = 0, 1, 2, 3, 4, 5, . . . are

1, 1, 2, 5, 14, 42, . . .

We now prove the formula of Catalan numbers.

Proof. We first claim that the number of invalid paths that pass above
the diagonal is ( 2n

n+1). Thus, the n-th Catalan number is given by

Cn =

(
2n
n

)
−

(
2n

n + 1

)
=

1
n + 1

(
2n
n

)
.

To prove our claim, consider an invalid path from (0, 0) to (n, n) that
passes above the diagonal. There is a smallest k that after the k-th
edge the path crosses the diagonal. By the minimality of k, the po-
sition after the k-th edge is ( k−1

2 , k+1
2 ). Now consider the effect of

reversing the direction of each of the next 2n − k edges, namely, right-
wards edges point upwards and upwards edges point rightwards.
Originally, the next 2n − k edges go from ( k−1

2 , k+1
2 ) to (n, n). After

reversing, they will terminate at (n − 1, n + 1). Note that this con-
struction is a bijection. For any path from (0, 0) to (n − 1, n + 1), it
must cross the diagonal of n × n grid. Reversing again the direction
of remaining edges after the first edge that passes above the diagonal,
we can obtain an invalid path from (0, 0) to (n, n). Thus, the number
of invalid paths that cross the diagonal is exactly the number of paths
from (0, 0) to (n − 1, n + 1), which is ( 2n

n+1).

There are many counting problems in combinatorics whose solu-
tion is given by the Catalan numbers. Here we give some examples.

The book Enumerative Combinatorics:
Volume 2 by combinatorialist Richard P.
Stanley contains a set of exercises which
describe 66 different interpretations of
the Catalan numbers.

Example 1.15 (Parenthesis sequences). A valid parenthesis sequence
is one in which every opening parenthesis “(” is matched with a cor-
responding closing parenthesis “)”. These sequences are also known
as balanced parentheses sequences. The number of valid parenthesis
sequences of length 2n is Cn.

Each valid sequence corresponds to a path in a grid of n × n
squares from the bottom left corner to the top right corner, where
moving up represents adding an open parenthesis “(” and moving
right represents adding a close parenthesis “)”.

Example 1.16 (Push-pop sequences). A push-pop sequence of a stack
is a sequence of operations where you can push elements onto the
stack and pop them off the stack. The number of ways to perform
push and pop operations on a stack without violating the LIFO (Last-
In-First-Out) property is equivalent to the number of valid parenthe-
sis sequences.
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Example 1.17 (Ordered trees). An ordered tree, also known as a
rooted tree, is a tree in which one vertex is designated as the root,
and every other vertex has a unique parent vertex. The vertices of
the tree are not labeled, but the children of each vertex (if exists)
are ordered. Then the number of ordered trees of size n + 1 is Cn,
because of the bijection of the DFS sequences starting from the root
and the push-pop sequences of a stack.

To see more appearance of the Catalan numbers, a useful tool is
the following recurrence relation of the Catalan numbers.

Theorem 1.18. The Catalan numbers satisfy the recurrence relation

Cn+1 = C0Cn + C1Cn−1 + · · ·+ CnC0 =
n

∑
k=0

CkCn−k .

Proof. Consider a Dyck path of length 2(n + 1). Let k + 1 be the
first nonzero x-coordinate where the path hits the diagonal, then
0 ≤ k < n. The path breaks up into two pieces, the part to the
left of 2(k + 1) and the part to its right. The part to the right is a
Dyck path of length 2(n − k), so it is counted by Cn−k. The left part
is a path from (0, 0) to (k + 1, k + 1) that does not pass above or
hit the diagonal. So it must pass through (1, 0) and (k + 1, k), and
between these two points, it never goes over the diagonal from (1, 0)
to (k + 1, k), that is, a rightwards edge, then a Dyck path of length 2k,
and then an upwards edge. Hence, there are a total of CkCn−k paths
so that the first hit with the diagonal is at position (k + 1, k + 1).
Summing these terms up gives the recurrence relation.

This recurrence can give more examples of the Catalan numbers.

Example 1.19 (Binary trees). The number of different forms of binary
trees with n vertices is Cn, since they satisfy the same recurrence It also describes the number of full

binary trees with n internal vertices.relation.

Example 1.20 (Polygon triangulations). A convex polygon triangula-
tion is to cut a convex polygon with n + 2 sides into n triangles, by
drawing n − 1 non-crossing lines between vertices of the polygon.
The number of convex polygon triangulation of an (n + 2)-gon is Cn.

Figure 1.3: All triangulations for n = 4
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