2
Generating Functions

Recall that in Chapter 1, we introduce the following equation

1 n _ = (n k

(=3 (1)

and use it to prove some properties of binomial coefficients, such as
Propositions 1.3 and 1.4. Note that we transform binomial coefficients
into a function, allowing us to manipulate and analyze sequences
more effectively. This tool is called generating functions. Actually, in
addition to substitution, we can perform more algebraic operations,
such as addition, multiplication, and composition, which makes
generating functions a powerful tool to solve counting problems, find
closed-form expressions for sequences, derive recurrence relations,
and analyze the behavior of combinatorial structures.

2.1 Ordinary generating functions

Definition 2.1 (Ordinary generating function). Given a sequence
{an }n>0, the ordinary generating function (OGF) defined by {a,} is

G(x) =Y anx".

n>0

Remark 2.2. You may argue that OGF is not well-defined since for
some sequences, such a definition would lead to non-convergence. In
fact, the generating function is not actually regarded as a function. It
is a formal power series, and is not required to converge.

Example 2.3. Here are some introductory examples of generating
functions:

1. Fixm € N, and let a, = () for all n > 0. Then the corresponding
generating function is G(x) = ¥,,50 (;)x" = (1+x)™.
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2. Suppose {a,} is a constant sequence, e.g., a, = 1foralln > 0.
Then the corresponding generating function is

1

Gx)=1+x+22+x3+x*4+... = T

3. Suppose {a,} is a geometric progression, e.g., 1, = a” for some
constant a. Then the corresponding generating function is

1
G(x)=T1+4ax+a®x*> +a> - = .
1—ax

Given a sequence, it is easy to construct its generating function.
Although it is not easy to find its closed-form expression, we do not
usually need to do so. Conversely, if we are given a (closed-form)
generating function, how can we know its corresponding sequences?
The basic idea is to apply the well-known geometric series

1 . n
1—x_2x‘

n>0

It is useful when we can express the generating function in the form

of
5 a ag

T 1-bix 1—b2x+.”+1—bkx'
The coefficient of the x"-term is [x"|G(x) = a1b] + asby + - - - + axby}.
Generally, in principle, we can always use the Taylor series

(n)
Gx)=) ) x",

|
n>0 n.

G(x)

where G(")(0) is the value of the n-th derivative of evaluated at x =

0. In particular, note that the n-th derivative of (1 + x)" for some real

ris
rir=1)(r—=2)---(r—n+1)Q+x)""=(r),1+x)""".

Using the (generalized) definition of binomial coefficients, we have
the following theorem.

Theorem 2.4 (Newton’s generalized binomial theorem). If x is any
real number with |x| < 1 and r is any complex number, we have

aear=-£ (),

(")n

n! *

where () =

Example 2.5. For example, we have

1 1)™n!

= (1 x71: <_7
14+ x (1+x) ngﬁ n!

M=l—x+? -+t -4

Again, you may argue that the equality
holds only if |x| < 1. Indeed, the
closed form expression can often be
interpreted as a function that can be
evaluated at (sufficiently small) concrete
values of x, and which has the formal
series as its series expansion. However
such interpretation is not required to
be possible, and we can manipulate
the closed form expression without
worrying about convergence.

Give a polynomial G(x), denote by
[x""]G(x) the coefficient of x" term in
G(x).

Actually, the same generalization also
applies to complex exponents.
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2.2 Operations on generating functions

Translating sequences into polynomials is advantageous because
polynomial multiplication, in a sense, encodes both the multiplication
principle and the addition principle. Let F(x) = Y,>o fux" and

G(x) = Ly>08nX". Then

#)(FRIGE) = L fisner

Formally, the corresponding operations on coefficients is called con-
volution. It has a clear combinatorial meaning. Suppose we have two
disjoint sets F and G, and there are f, and g, ways to pick n ele-
ments from F and G, respectively. Then how many ways could we
pick n elements from F U G? The answer is the convolution of {f,}
and {gx }, since we can first enumerate the number of elements from
F, then count the number of ways to pick k elements from F and

n — k elements from G, and finally sum them up.

For example, suppose there are 5 (identical) blue balls, 3 (identical)
green balls, and 2 (identical) red balls. How many ways can we pick
6 balls among them? Of course you can count by enumerating all
possibilities. Now we apply generating functions. Let {b,}, {¢xn},
{rn} be the sequences of numbers of ways to pick blue, green, and
red balls, respectively. Then their corresponding generating functions
are

B(x) =1+4x+ x>+ +x* +x°,
G(x) =1+x+x*+°,
R(x) =1+x+x>.

Then we let

F(x) = B(x) - G(x) - R(x)
=(14+x+22 4+ 424+ 20) T+ + 224+ - (1 +x+2?)
=1+ 3x 4 6x2 +9x> + 11x* 4+ 12x° + 11x° 4 9x7 + 6x + 3x% + x10

and [x"]F(x) gives the numbere of ways to pick n balls among all 10
balls.
Now we can give an alternate proof of the claim in Case 7 of the

twelvefold way: the multiset number () is equal to (""" 1).

Proposition 2.6.

(=077

n+m-—1
m—1 '
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Proof. Recall that (7)) is the number of multisets (allowing multiple
copies of each elements) of size 1, with elements taken from [m]. Let
Si(x) be the generating function of the number of ways to select n
copies of element i. Clearly,

1
Si(x)=1+x+x*+--- = -
Thus the generating function of (7)) is
m
S(x) = (( ) x"
L
=51(x) - Sa(x) -+ - Sm(x)
= 1 1 ..... 1
S 1l-x 1-—x 1—x

Applying Theorem 2.4, we conclude that

() =t - = e e

_ (—m)(—m—l);l!~~(—m—n—i—l)(_l)n
mm+1)---(m+n—1) _ (n—i—m—l)'

n! n

Our final example of multiplication is the following theorem
proved by Leonhard Euler in 1748.

Theorem 2.7. For each positive n, the number of partitions of n into odd
parts equals the number of partitions of n into distinct parts.
Could you give a combinatorial proof?
Proof. Let 0, be the number of ways to partition # into odd parts,
d, be the number of ways to partition # into distinct parts, and let
O(x), D(x) be their generating functions respectively. For odd parts,
we have

O(x) = (1tx+a®+ - )1+ + ()P4 ) (142" + ()2 ) -

1 1 1
T 1—x 1—2% 1—x5
kmod2:11_xk

For distinct parts, we have

D(x)=(14+x)1+x)A+3)1+xH(1+2°) -
_l—x2 1—ax* 1—20 1—28 1—x10
T 1l—x 1-x2 1-x3 1-xF 1-25
1
1—xk’

k mod 2=1



So we conclude that O(x) = D(x), and thus 0o, = d,, foralln > 0. O

In addition to multiplication, there are more interesting operations
on generating functions, such as differentiation.

Proposition 2.8.
n n n n\ & (1) et
<1>+2(2)+3(3)+ +n<n> _k;]k<k> =n2" 1,

Proof. Let G(x) = (1+x)" = Yo (})x*. Then G/(x) = n(1+x)"1
Yo k(})x*~1. Substitute x = 1 into it.

0ol

We will not give more examples of differentiation, because we are
not going to involve differential equations in this course.

Let F(x) = Y0 fux" and G(x) = ¥,508nx". Here is a table
summarizing the common operations on the generating function and
their corresponding effects on the sequence.

sequence generating functions
shift multiple (by x%): x¥G(x) = ¥ g,_xx"
n>k
addition addition: F(x) + G(x) = ¥ (fu + gun)x"
n>0
convolution multiplication: F(x)G(x) = ¥ ( 3 fkgn_k) x"
n>0 k=0
multiple (by n) | differentiation: G'(x) = Y (n+1)g,11x"
n>0

2.3 Solving recurrence

One of the most important applications of generating functions is
to solve recurrence and find closed form. Now we introduce some
examples.

The well-known Fibonacci sequence 0,1,1,2,3,5,8,13, ... has the
following recurrence relation:

fo=0, fi=1, fuo=fo1+fu foralln>2.
Let F(x) be its generating function. Then we have

F(x):f0+f1x+f2x2+f3x3+f4x4+f5x5+...,
xF(x) = f0x+f1x2 +f2x3 +f3x4 +f4x5 4,
sz(x) = fox2 —I—f1x3 +f2x4 +f3x5 e,
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Could you give a combinatorial proof?
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By the recurrence, it follows that
F(x) = xF(x) + x*F(x) + x,

and thus F(x) = ;= To find the closed form of f,, we hope F(x)

have the form
ay ar

:1—b1x 1—b2x'

F(x)
Solving the equation
(1—byx)(1—byx) =1 —x — x?
we obtain b; = 1(1++/5) and b, = 1(1 — V/5). Solving the equation
a1(1 — byx) +az(1 — b1x) = x

we obtain a7 = % and a, = —%. Hence, the closed form of f, is

fn=

B ()

Next, we revisit the Catalan numbers. Recall that, the recurrence
relation for Catalan numbers is (cf. Theorem 1.18)

n—1
Co=1, Cu=Y CCy_1_ foralln>1.
k=0

Let G(x) = Co+ Cix + Cox? + - - - be the generating function of
Catalan numbers. The recurrence relation reveals that we should
consider multiplication. Since

n—1
G(x) =Co+ Y Y CiCurit”,

n>1k=0
2 n
G(x)?= (L Cr") = ¥ ¥ GGy,
>0 =0 k=0
n—1
xG(x)? =Y Y CCpqix",
n>1k=0

we have G(x) = xG(x)? + 1. Thus, solving xG(x)?> — G(x) +1 = 0, we
obtain
1+ V1 —4x
G(x) = ——.
2x
Only one of these solutions can be the generating function. Noting
that

lim G(x) = G(0) = Co = 1,

x—0



it is easy to check that G(x) = 1= VZ}(*“ is the correct one. Now we

expand 1 — /1 — 4x by Netwon’ generalized binomial formula:

1-(1-4x)2=1-Y (1/2> (—4x)"

n>0 n

=1-1-) (17/12>(4x)”

n>1

—a Y (;fl) (—dx)".

n>0

Thus, it follows that

6l =2 % (17) (-0,

n>0
and then
(172 W 2-(—4)" /1 -1 -3 —(2n—1)
c=2(, ) =TT )
C2-(=4)" (-D)"2n-11 2t (@2 1 (2n
CEE 2n+l T (n+1)! n2n n+1< )

Our final example is the Stirling numbers of the second kind, with
the recurrence relation

{8} =1, {Z} :k{”;1}+{z:i} for (n,k) # (0,0).

Since there are 2 indices, it is easy to find three natural candidates for
generating functions:

Axy) =Y. Y {Z}x”yk,

n>0k>0
B =T {1}
i) = {4}

Let’s develop some intuitions about which choice is likely to succeed.
First, A(x,y) is ruled out since we do not know how to deal with
multivariate generating functions. Then, if we choose C; (), the term
of k{";l} in recurrence relation is related to differentiation, which
becomes more complicated. So we try to find the function By (x).
Note that

=g (e e e
kxBy(x) = k{g}erk{ll(}xz +k{i}x3 +-,
xBr_1(x) = {kgl}x—i_{kil}xz—i_{kil}xg—i_”"

GENERATING FUNCTIONS
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So it is easy to find that
Bi(x) = kxBy(x) + xBy_1(x)

for all k > 1, and By(x) = 1. This leads to

X X X
By(x) = i Br_1(x) = T—kx 1= (k=1)x *Br_a(x)

Xk

T -0 -2x)(1-3%)---(1—kx) "

Our goal is to find an explicit formula of [x"]By(x). A natural idea is
to rewrite By(x) in the form of

-

_i ri-Xx
=1l-i-x

To find r;’s, we fix some j € [k] and multiply both sides by (1 —j - x).

i=11_

It gives that

x 1—j-x
le—z =T x+zl—zx ik
i#] i#]

Then let x = 1/j and we can get that

Y L e AN "
== === o=y = Y ()

Thus, it follows that

k
— n-17_ T
_Z[x ]1—i-x

1& k
w0 ()
2.4 Exponential generating functions

Usually, ordinary generating functions is useful for counting the
number of subsets. However, it may not work for counting permu-
tations or ordered / labeled elements. For example, what is the (or-
dinary) generating function for the number of permutations on [n]?
Clearly we have

Fx)=1+x+2x2+6x°+-- =) nlx".
n>0
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Now we try to find its closed-form expression. Since [x"]F(x) =
n[x"1|F(x), it suggests the differentiation operation:

F(x) =1+x+2x%+6x° +24x* + .-,
XF(x) = x+x% + 227 + 62t + 2425 + -+,
x(xF(x)) = x4+ 2x2 +6x3 +24xt .- -

Thus we have
F(x) =1+ x(xF(x)) =14 xF(x) + x*F'(x) .

Unfortunately, such type of differential equations does not have
closed-form solution in general.

We now introduce exponential generating functions, which is used to
deal with counting permutations or labeled elements.

Definition 2.9 (Exponential generating function). Given a sequence
{an }n>0, the exponential generating function (EGF) defined by {a,} is

G(x) = Za—"x”.

1
S0

Example 2.10 (Permutation). It is easy to see that the EGF defined by

=) x"=

n>0

n!is

Example 2.11 (Circular permutation). The number of ways to arrange
n (n > 1) distinct objects along a fixed circle is P, = (n — 1)!. It EGF

is given by
R —1)! n
P(x) = Z(ni')x”: ZJL
n>1 n: n>1 n
Note that P(0) = 0 and P'(x) = Yu>1 x"~1. So we find that Note that G(x) = exp P(x). It is NOT a

coincidence!
N 1 1
P = ") dx = /7d =In——.
) /(r;x> * 1—x * nl—x

To see why exponential generating functions counts the number of
ordered or labeled elements, we multiply two generating functions
again and see what happens to their coefficients. Let

Z x", and G(x 2
n>0 n>0

Then, it is easy to see that

n
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and thus
hy =n!- [x”](

6) = X i

Here {h,} is the corresponding sequence of the exponential generat-

fkgn k= i (Z) fe8n—k-

k=0

ing function (F(x)G(x)). Again, suppose we have two disjoint sets
F and G, and we would like to count the number of ways to pick n
elements from F U G. But now we enumerate not only the number of
elements chosen from F, but also the positions or labels of them.

We now consider an application of exponential generating func-
tions. Suppose there is a 1 x n board, and we would like to color each
square with color blue, green, and red. It is required that the number
of red squares is even and there is at least one blue square. Our goal
is to determine the number f,, of ways to color the board.

Let {b,}, {gn}, {rn} be the numbers of ways to color n squares
with single color blue, green, and red, respectively. Then their expo-
nential generating functions are

2 3 4 5
s x oxr o oxt o« o
R xz 3 x4 3 ;
G()_1+1'+*+§+*+§+"':e/
. x2 x* ef e ¥
R =1 - - e —
(x) +2| +4' + >

Thus the exponential generating function of {f,;} is

A

E(x) = B(x) - G(x) - R(x)

ex+e—x
X _ 1) 1 -
(e = 1) e¥ -

e3x_€2x_|_ex_1

2
1 3t —2"4+1 x"
30 n!
which gives that
. 0 n=20
=nt-[X'F(x) = § 50 '
fr 3241 >

Similarly, recall that, {}/} counts the number of ways to partition
[n] into k identical nonempty subsets. So k!{}} has the exponential
generating function

Moreover, unlike the operations on or-
dinary generating functions, now xG(x)
corresponds the product ng,_1, and the
differentiation G'(x) corresponds the
shift of {gn}nEOv
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