3
The Principle of Inclusion and Exclusion

Let A and B be two disjoint finite sets. The addition principle states
that [AUB| = |A| + |B|. If AN B # @, then we have

|AUB| = |A|+|B|—|ANB|.

But what happens if there are more sets?
3.1 The principle and proofs

Theorem 3.1 (Principle of inclusion and exclusion). For any collection
of finite sets Ay, Ay, ..., Ay, it holds that
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Proof. We prove the principle by noticing that each element x con-
tributes the same number to each side of the equation.

Fix x and let I C [n] be the set of i for whichx € A;. If I = @,
clearly x contributes 0 to both sides. Otherwise, x contributes 1 to
the left hand side and 1 to every |N;csA;|-term of the right hand side
where S C I. Applying the equation

) Ee ()

we can complete the proof. O
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In combinatorics, we usually use the complement form, where
B1, By, ..., B, can be viewed as a family of “bad events” and we hope
to count the number of “good” elements so that none of the bad
events happens.

Corollary 3.2. For any collection of subsets By, By, ..., By of some finite
universal set U, the number of elements of which lie in none of the subsets is
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where we set NjcpB; = U conventionally.

3.2 Surjections, derangements and permanents

Now we consider problem of counting mappings under some special
restrictions.

The first example is to count the number of surjections. Actually, A mapping f : [n] — [m] is a surjection
if forally € [m], there exists x € [n]

the number of surjections [n] — [m] is counted in the Case 9 of the uch that £(x) =y

twelvefold way, which is m! {, }. We now find its explicit formula by
the inclusion and exclusion principle.

Let U be the set of all mappings from [n] to [m], and B; be the
set of all mappings where no element is mapped to i. Then we have
|U| = m", and
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= (m—|S|)" forall S C [m].

Applying Corollary 3.2, it follows that
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which is the same as the result in Section 2.3.

Another example is the number of bijections with no fixed points.
Let f : [n] — [n] be a bijection (or permutation) on n. A fixed point of
f is an element x € [n] such that f(x) = x. If f has no fixed point, it
is known as a derangement. We would like to count the number D, of
derangements over [n].

We apply the complement form of the inclusion and exclusion
principle. Let U be the set of all bijections / permutations, and B;
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be the set of bijections with f(i) = i. It is not difficult to find that

|U| = n! and

(B
i€S
Thus, Corollary 3.2 yields that

D= £ (08IN5 =3 (5)

= (n—s|)!.
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The expression of D, tells us that if
we pick a bijection f over all possi-

bilites uniformly at random, then as
n — oo, the probability of f being a

n kn!
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SC[n] i€S k=0 derangement is
In fact, we can also find the closed form of D, by the exponential i (=" _1
generating function. First, we give a recurrence relation of D,,. Sup- = ¢

pose f is a derangement and f(n) = k (k # n). Then there are two
cases: f(k) = nor f(k) # n. If f(k) = n then f subject on [n] \ {k,n}
is also a derangement. So there are D,,_, such f’s. If f(k) # n, then
f subject on [n — 1] is a function satisfying f(i) € [n] \ {k} for all i,
f(j) # jforallj # k,and f(k) # n. It can be viewed as a derange-

ment on domain 1 — 1]. Consequently, we obtain

D, = (n - 1)(Dn—1 + Dn72) .

Then we solve D, by its exponential generating function. Let
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Since D, y1 = nD,, + nD,_1, we obtain that

Note that the recurrence relation is
equivalent to

Dn — nDn,l = 7(Dn71 — (1’1 — 1)Dn72) .

Hence, we also have another form of
recurrence

Dy —nDy1 = (_1);1 .
Similarly, we will have

D(x) —xD(x) =e™*.
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Note that the left hand side is (In D(x))’. Hence we conclude that

e—x

D(x) = exp(./ -1+ 1ixdx) =

1—x"

Another idea is to consider the number of fixed points in all bijec-

tions / permutations. Clearly the number of bijections on [n] with

exactly k fixed points is (}})D,_k. So we have

i (Z) D, = n!.

k=0
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Comparing with the multiplication of exponential generating func-
tions, we know that the EGF of (1,1,2,6,...,n!,...) is the product of
the EGF of (Dy, D1, D3, ...,Dy,...) and the EGF of (1,1,1,...,1,...).
That is

1 n! 1
D o) fen
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which also implies that
efx
D(x) = T3

% = [x"]D(x) = [x"] (Z % ) xn>

n>0

g
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Finally, we consider a generalization of derangements: permuta-

tions with restricted positions. It is also known as the permanent of a
0-1 matrix, or the number of perfect matchings in a bipartite graph.

Definition 3.3 (Permanent). Given an n x n matrix A = (a;)1<; j<n,
the permanent of A is defined by

n
perm A = Z Hui,a(i) ,

ceS, i=1

where S, is the set of all permutations on [n].

Clearly, if A is a 0-1 matrix, then perm A counts the number of
permutations with restrictions o (i) # j for all a;; = 0. In particular,

D, = perm (1, — I,),

where 1, is the all 1 matrix, and I, is the identity matrix. If A is an
adjacency matrix of a balanced bipartite graph, then perm A counts the
number of perfect matchings.

Remark 3.4. The permanent can be viewed as the unsigned version of
the determinant. However, while determinants is well-known to be
calculated in polynomial time using Gaussian elimination, computing
permanents, even for 0-1 matrix, is #P-complete.

Now we compute permanents by the inclusion and exclusion
principle. Let U be the set S;;, and B; be the set of permutations that

A bipartite graph is balanced if its two
parts have the same number of vertices.
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a; (i) = 0. But how to compute the cardinality of the intersections of
B;’s? Let
R={(i,j) € [n] x [n] | a;; = O}

be the set of coordinates of all 0 entries, and

Tk = HT € (k) |V (i1,1), (i2,j2) € T, iy #i2 A Ja #JZH

be the number of size-k subsets of R such that no two elements share
a common coordinate. A key observation is that
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So by Corollary 3.2, we have
n
perm A = Z(—l)krk(n —k)!.
k=0

However, this formula is correct but meaningless, because ry is
also difficult to count. Note that this problem actually has two kinds

of restrictions: (1). ¢ is a permutation, and (2). ¢ (i) # j for all a;; = 0.

Above analysis applies Corollary 3.2 on the second kind of restric-
tions and defines bad events as violating 4; ,;) = 1. In fact, a more
clever idea is to apply Corollary 3.2 on the first kind of restrictions.

Let U be the set of all mappings f : [n] — [n] such that f(i) # j if
a;; = 0, and B; be the set of all mappings in U such that f 1) = o,
namely, no element is mapped to i. Next, we calculate |U| and |NB;|.
Note that for any f € U, f(1) has 2;'1:1 a1,j choices, f(2) has Z;-‘Zl a,;
choices, and so on. Thus,

n n
ul=T1(L o).
i=1\j=1
Similarly, for any S C [n], we have
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Applying Corollary 3.2, Ryser proved the following theorem, which
gives an algorithm to compute perm A in O(2"n) time instead of
O(n! - n) time by definition.

Theorem 3.5 (Ryser formula).

permA = )| (—l)s|ﬁ< ) al-,]->.

SC(n] i=1 \je[n]\S

Why?

This is the best known algorithm.

29
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3.3 Number-theoretical Mobius inversion

We now give some applications of the principle of inclusion and
exclusion in number theory.

Definition 3.6 (Euler’s totient function). Given a positive integer 1,
the Euler’s totient function ¢(n) is defined by the number of positive
integers in [n] that are relatively prime to n, i.e.,

n
p(n) £ ) [ged(n k) = 1],
k=1
where [p] is an indicator variable of proposition p, namely, [p] = 1if

p is true and [p] = 0 otherwise.

The totient function is a multiplicative function. If ged(a,b) = 1 then
¢(ab) = ¢(a)p(b). It is clear that ¢(p) = p — 1 for any prime p, and
@(p") = (p—1)p"! for any prime p and r > 2. Thus, it is easy to
compute ¢(1),...,¢(n) in O(n) time by the sieve method.

The following proposition is an important property of the totient
function.

Proposition 3.7. For any positive integer n, it holds that

Y o) =n. (3-1)

d|n

Proof. For each k € [n], consider ged(n, k). If ged(n, k) = d then we
have ged(n/d, k/d) = 1. Thus,

n= lel{k € [n] | ged(n, k) = d}|
d|n

=2 [{k e (3] | ged(f, k) =1}

dln

=) o(%) Z‘pr(d)- m
dln

dln

Now we calculate ¢(n) by the inclusion and exclusion princi-
ple. Suppose n = p? pyt - - py where p;’s are distinct prime num-
bers,and r; > 1. LetU = [n],and B; = {k € [n] | p; | k} be
the set of all multiples of p; in [n]. Then we known that ¢(n) =

U\ (By UByU---UBy,)|. Since (ITp;) | n, for any S C [m], we have
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Why ¢(n) is multiplicative? Because

n — (n mod a,n mod b) is a bijection
from [ab] to [a] x [b], and ged(n,ab) =1
iff ged(n mod a,a4) = 1 and ged(n mod
b,b) = 1, provided that ged(a,b) = 1.
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Applying Corollary 3.2, it follows that

o(n) =Y (-1FI|N B
SClm| i€eS
— (—1)isl -t
SCZ[;’,Z] Hies pi
- X1
SC[m]ies It

I
IRamE
L
/N

—_

|
ASEI
N———

Let’s observe the equation ¢(n) = Ysc [y (— )| |
Define the (number-theoretical) Mobius function by

7, again.

1 n=1,
un) =<0 p? | n for some prime p,
(—=1)* n = pypa--- py for distinct primes py, ..., p.

Then ¢(n) can be written as

=Yud)- 5. 62)
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If we use * to denote the convolution for number-theoretical functions,

= de(d)g(Z),

we can rewrite equations (3.1) and (3.2) as

namely,

id=¢x*x1, and ¢ =pu=xid,

where id(n) = n is the identity function, and 1(n) = 1 is the all-1
function. This relation holds for general number-theoretical func-
tions.

Theorem 3.8 (Mdbius inversion formula). Let f, g be two number-
theoretical functions. If

=g*1=§g(d)

then

=fxp= de(d)V(Z) = dZu(d)f(Z)-

Example 3.9. It is easy to see that 1(n) = Y 4,[d = 1]. So we have
[n=1] = 1% = Y4, p(d). This can be verified by Yo (=D =0
as long as m > 1.

31
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Proof. We prove the inversion formula by PIE. Assign each number k
aset Tp = {(k,1), (k,2),..., (k,g(k))}. Now suppose n = p|'pi2 - - - pj
where p1, p2, ..., pm are distinct primes. Let

U=UTi = {(d))|d]n1<]<g(d)},
dln

and B; = {(d,j) € U | pi' td,1 < j < g(d)}. We would like
to count g(n), the cardinality of set {(n,j) | 1 < j < g(n)} =
U\ (ByUByU---UBy). Note that |U| = ¥4, g(d) = f(n), and for
any S C [m],

(1Bi| =
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Applying Corollary 3.2, we obtain that

st gz s (Hlesp) L) ( ) -
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An alternate proof is to see that the associative law holds for convo-
lution. Thus,

f=g%1 = fxu=gxlxpu=gxn=1=g.

In particular, if we apply Theorem 3.8 on number-theoretical func-
tions only defined on square-free numbers, we can deduce the fol-
lowing inversion formula for set functions.

Corollary 3.10. Suppose that f(S), g(S) are two functions defined on sets.
If for any set S, we have

then it holds that

We now introduce an application of Mobius inversion.

Question 3.11. How many monic irreducible polynomials of degree
n over the field F;, where g = p' for some prime p and integer t > 1?
A monic polynomial is a univariate polynomial whose coefficient of
the highest order term is 1.

List all monic irreducible polynomials fi, f,..., fx,.... Let d; be
the degree of f;, and let N; be the occurrence of 4, i.e., the number of
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m.i.p.’s of degree d. The key fact is that by the unique factorization of
polynomials over IF;, every monic polynomials can be expressed as

f2) = A@)" fa(2)? - fill2)™ -,

where r1,73,...,7,... € IN. Now we consider the OGF F(x) of the
numbers of monic polynomials. On the one hand, the number of
monic polynomials of degree n over F; is g". So F(x) = Y50 4" x".
On the other hand, by the factorization, we have

F(x) = (14+xm +22 4 ) (T2 + 222 4 ) 1+ aB 422 )
1 1 1
T—xh 1—x2 1-—xb

Thus, it implies that
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Comparing the coefficient of x" term and then applying Mobius
inversion, we obtain that

q" =) dNy,
dln

and thus

1 n
=~ Lnd)q e,
dln
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