
3
The Principle of Inclusion and Exclusion

Let A and B be two disjoint finite sets. The addition principle states
that |A ∪ B| = |A|+ |B|. If A ∩ B ̸= ∅, then we have

|A ∪ B| = |A|+ |B| − |A ∩ B| .

But what happens if there are more sets?

3.1 The principle and proofs

Theorem 3.1 (Principle of inclusion and exclusion). For any collection
of finite sets A1, A2, . . . , An, it holds that∣∣∣∣∣ n⋃
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Proof. We prove the principle by noticing that each element x con-
tributes the same number to each side of the equation.

Fix x and let I ⊆ [n] be the set of i for which x ∈ Ai. If I = ∅,
clearly x contributes 0 to both sides. Otherwise, x contributes 1 to
the left hand side and 1 to every |∩i∈S Ai|-term of the right hand side
where S ⊆ I. Applying the equation
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we can complete the proof.
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In combinatorics, we usually use the complement form, where
B1, B2, . . . , Bn can be viewed as a family of “bad events” and we hope
to count the number of “good” elements so that none of the bad
events happens.

Corollary 3.2. For any collection of subsets B1, B2, . . . , Bn of some finite
universal set U, the number of elements of which lie in none of the subsets is

∑
S⊆[n]
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where we set ∩i∈∅Bi = U conventionally.

3.2 Surjections, derangements and permanents

Now we consider problem of counting mappings under some special
restrictions.

The first example is to count the number of surjections. Actually, A mapping f : [n] → [m] is a surjection
if for all y ∈ [m], there exists x ∈ [n]
such that f (x) = y.

the number of surjections [n] → [m] is counted in the Case 9 of the
twelvefold way, which is m! {n

m}. We now find its explicit formula by
the inclusion and exclusion principle.

Let U be the set of all mappings from [n] to [m], and Bi be the
set of all mappings where no element is mapped to i. Then we have
|U| = mn, and ∣∣∣∣∣⋂
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Applying Corollary 3.2, it follows that
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which is the same as the result in Section 2.3.
Another example is the number of bijections with no fixed points.

Let f : [n] → [n] be a bijection (or permutation) on n. A fixed point of
f is an element x ∈ [n] such that f (x) = x. If f has no fixed point, it
is known as a derangement. We would like to count the number Dn of
derangements over [n].

We apply the complement form of the inclusion and exclusion
principle. Let U be the set of all bijections / permutations, and Bi
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be the set of bijections with f (i) = i. It is not difficult to find that
|U| = n! and ∣∣∣∣∣⋂

i∈S
Bi

∣∣∣∣∣ = (n − |S|)! .

Thus, Corollary 3.2 yields that The expression of Dn tells us that if
we pick a bijection f over all possi-
bilites uniformly at random, then as
n → ∞, the probability of f being a
derangement is
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In fact, we can also find the closed form of Dn by the exponential
generating function. First, we give a recurrence relation of Dn. Sup-
pose f is a derangement and f (n) = k (k ̸= n). Then there are two
cases: f (k) = n or f (k) ̸= n. If f (k) = n then f subject on [n] \ {k, n}
is also a derangement. So there are Dn−2 such f ’s. If f (k) ̸= n, then
f subject on [n − 1] is a function satisfying f (i) ∈ [n] \ {k} for all i,
f (j) ̸= j for all j ̸= k, and f (k) ̸= n. It can be viewed as a derange-
ment on domain [n − 1]. Consequently, we obtain Note that the recurrence relation is

equivalent to

Dn − nDn−1 = −(Dn−1 − (n − 1)Dn−2) .

Hence, we also have another form of
recurrence

Dn − nDn−1 = (−1)n .

Similarly, we will have

D(x)− xD(x) = e−x .

Thus, D(x) = e−x/(1 − x).

Dn = (n − 1)(Dn−1 + Dn−2) .

Then we solve Dn by its exponential generating function. Let
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which leads to
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So
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Note that the left hand side is (ln D(x))′. Hence we conclude that
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Another idea is to consider the number of fixed points in all bijec-
tions / permutations. Clearly the number of bijections on [n] with
exactly k fixed points is (n

k)Dn−k. So we have
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Comparing with the multiplication of exponential generating func-
tions, we know that the EGF of (1, 1, 2, 6, . . . , n!, . . .) is the product of
the EGF of (D0, D1, D2, . . . , Dn, . . .) and the EGF of (1, 1, 1, . . . , 1, . . .).
That is
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which also implies that
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By the expression of D(x), we obtain that
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Finally, we consider a generalization of derangements: permuta-
tions with restricted positions. It is also known as the permanent of a
0-1 matrix, or the number of perfect matchings in a bipartite graph.

Definition 3.3 (Permanent). Given an n × n matrix A = (ai,j)1≤i,j≤n,
the permanent of A is defined by

perm A ≜ ∑
σ∈Sn

n

∏
i=1

ai,σ(i) ,

where Sn is the set of all permutations on [n].

Clearly, if A is a 0-1 matrix, then perm A counts the number of
permutations with restrictions σ(i) ̸= j for all ai,j = 0. In particular,

Dn = perm (1n − In) ,

where 1n is the all 1 matrix, and In is the identity matrix. If A is an
adjacency matrix of a balanced bipartite graph, then perm A counts the A bipartite graph is balanced if its two

parts have the same number of vertices.number of perfect matchings.

Remark 3.4. The permanent can be viewed as the unsigned version of
the determinant. However, while determinants is well-known to be
calculated in polynomial time using Gaussian elimination, computing
permanents, even for 0-1 matrix, is #P-complete.

Now we compute permanents by the inclusion and exclusion
principle. Let U be the set Sn, and Bi be the set of permutations that
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ai,σ(i) = 0. But how to compute the cardinality of the intersections of
Bi’s? Let

R = {(i, j) ∈ [n]× [n] | ai,j = 0}

be the set of coordinates of all 0 entries, and

rk =

∣∣∣∣{T ∈
(

R
k

)
| ∀ (i1, j1), (i2, j2) ∈ T, i1 ̸= i2 ∧ j1 ̸= j2

}∣∣∣∣
be the number of size-k subsets of R such that no two elements share
a common coordinate. A key observation is that Why?
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So by Corollary 3.2, we have

perm A =
n

∑
k=0

(−1)krk(n − k)! .

However, this formula is correct but meaningless, because rk is
also difficult to count. Note that this problem actually has two kinds
of restrictions: (1). σ is a permutation, and (2). σ(i) ̸= j for all ai,j = 0.
Above analysis applies Corollary 3.2 on the second kind of restric-
tions and defines bad events as violating ai,σ(i) = 1. In fact, a more
clever idea is to apply Corollary 3.2 on the first kind of restrictions.

Let U be the set of all mappings f : [n] → [n] such that f (i) ̸= j if
ai,j = 0, and Bi be the set of all mappings in U such that f−1(i) = ∅,
namely, no element is mapped to i. Next, we calculate |U| and |∩Bi|.
Note that for any f ∈ U, f (1) has ∑n

j=1 a1,j choices, f (2) has ∑n
j=1 a2,j

choices, and so on. Thus,
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)
.
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Applying Corollary 3.2, Ryser proved the following theorem, which
gives an algorithm to compute perm A in O(2nn) time instead of
O(n! · n) time by definition. This is the best known algorithm.

Theorem 3.5 (Ryser formula).

perm A = ∑
S⊆[n]

(−1)|S|
n
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)
.
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3.3 Number-theoretical Möbius inversion

We now give some applications of the principle of inclusion and
exclusion in number theory.

Definition 3.6 (Euler’s totient function). Given a positive integer n,
the Euler’s totient function φ(n) is defined by the number of positive
integers in [n] that are relatively prime to n, i.e.,

φ(n) ≜
n

∑
k=1

[gcd(n, k) = 1] ,

where [p] is an indicator variable of proposition p, namely, [p] = 1 if
p is true and [p] = 0 otherwise.

The totient function is a multiplicative function. If gcd(a, b) = 1 then
φ(ab) = φ(a)φ(b). It is clear that φ(p) = p − 1 for any prime p, and Why φ(n) is multiplicative? Because

n 7→ (n mod a, n mod b) is a bijection
from [ab] to [a]× [b], and gcd(n, ab) = 1
iff gcd(n mod a, a) = 1 and gcd(n mod
b, b) = 1, provided that gcd(a, b) = 1.

φ(pr) = (p − 1)pr−1 for any prime p and r ≥ 2. Thus, it is easy to
compute φ(1), . . . , φ(n) in O(n) time by the sieve method.

The following proposition is an important property of the totient
function.

Proposition 3.7. For any positive integer n, it holds that

∑
d|n

φ(d) = n . (3.1)

Proof. For each k ∈ [n], consider gcd(n, k). If gcd(n, k) = d then we
have gcd(n/d, k/d) = 1. Thus,

n = ∑
d|n

|{k ∈ [n] | gcd(n, k) = d}|

= ∑
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∣∣{k ∈ [ n
d ] | gcd( n

d , k) = 1}
∣∣

= ∑
d|n

φ( n
d ) = ∑

d|n
φ(d) .

Now we calculate φ(n) by the inclusion and exclusion princi-
ple. Suppose n = pr1

1 pr2
2 · · · prm

m where pi’s are distinct prime num-
bers, and ri ≥ 1. Let U = [n], and Bi = {k ∈ [n] | pi | k} be
the set of all multiples of pi in [n]. Then we known that φ(n) =

|U \ (B1 ∪ B2 ∪ · · · ∪ Bm)|. Since (∏ pi) | n, for any S ⊆ [m], we have∣∣∣∣∣⋂
i∈S

Bi

∣∣∣∣∣ = n
∏i∈S pi

.
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Applying Corollary 3.2, it follows that

φ(n) = ∑
S⊆[m]

(−1)|S|
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−1
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∏
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(
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)
.

Let’s observe the equation φ(n) = ∑S⊆[m](−1)|S| n
∏i∈S pi

again.
Define the (number-theoretical) Möbius function by

µ(n) ≜


1 n = 1 ,

0 p2 | n for some prime p ,

(−1)k n = p1 p2 · · · pk for distinct primes p1, . . . , pk .

Then φ(n) can be written as

φ(n) = ∑
d|n

µ(d) · n
d

. (3.2)

If we use ∗ to denote the convolution for number-theoretical functions,
namely,

( f ∗ g)(n) = ∑
d|n

f (d) g
(n

d

)
,

we can rewrite equations (3.1) and (3.2) as

id = φ ∗ 1 , and φ = µ ∗ id ,

where id(n) = n is the identity function, and 1(n) = 1 is the all-1
function. This relation holds for general number-theoretical func-
tions.

Theorem 3.8 (Möbius inversion formula). Let f , g be two number-
theoretical functions. If

f = g ∗ 1 = ∑
d|n

g(d) ,

then
g = f ∗ µ = ∑

d|n
f (d) µ

(n
d

)
= ∑

d|n
µ(d) f

(n
d

)
.

Example 3.9. It is easy to see that 1(n) = ∑d|n[d = 1]. So we have
[n = 1] = 1 ∗ µ = ∑d|n µ(d). This can be verified by ∑m

k=0(−1)k(m
k ) = 0

as long as m ≥ 1.
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Proof. We prove the inversion formula by PIE. Assign each number k
a set Tk = {(k, 1), (k, 2), . . . , (k, g(k))}. Now suppose n = pr1

1 pr2
2 · · · prm

m

where p1, p2, . . . , pm are distinct primes. Let

U =
⋃
d|n

Td = {(d, j) | d | n, 1 ≤ j ≤ g(d)} ,

and Bi = {(d, j) ∈ U | pri
i ∤ d, 1 ≤ j ≤ g(d)}. We would like

to count g(n), the cardinality of set {(n, j) | 1 ≤ j ≤ g(n)} =

U \ (B1 ∪ B2 ∪ · · · ∪ Bm). Note that |U| = ∑d|n g(d) = f (n), and for
any S ⊆ [m], ∣∣∣∣∣⋂

i∈S
Bi

∣∣∣∣∣ = ∑
d| n

∏i∈S pi

g(d) = f
(

n
∏i∈S pi

)
.

Applying Corollary 3.2, we obtain that

g(n) = f (n)− ∑
S⊆[m]

(−1)|S| f
(

n
∏i∈S pi

)
= ∑

d|n
µ(d) f

(n
d

)
.

An alternate proof is to see that the associative law holds for convo-
lution. Thus,

f = g ∗ 1 =⇒ f ∗ µ = g ∗ 1 ∗ µ = g ∗ [n = 1] = g .

In particular, if we apply Theorem 3.8 on number-theoretical func-
tions only defined on square-free numbers, we can deduce the fol-
lowing inversion formula for set functions.

Corollary 3.10. Suppose that f (S), g(S) are two functions defined on sets.
If for any set S, we have

f (S) = ∑
T⊆S

g(T) ,

then it holds that
g(S) = ∑

T⊆S
(−1)|S|−|T| g(T) .

We now introduce an application of Möbius inversion.

Question 3.11. How many monic irreducible polynomials of degree
n over the field Fq, where q = pt for some prime p and integer t ≥ 1?
A monic polynomial is a univariate polynomial whose coefficient of
the highest order term is 1.

List all monic irreducible polynomials f1, f2, . . . , fk, . . .. Let di be
the degree of fi, and let Nd be the occurrence of d, i.e., the number of
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m.i.p.’s of degree d. The key fact is that by the unique factorization of
polynomials over Fq, every monic polynomials can be expressed as

f (z) = f1(z)r1 f2(z)r2 · · · fk(z)rk · · · ,

where r1, r2, . . . , rk, . . . ∈ N. Now we consider the OGF F(x) of the
numbers of monic polynomials. On the one hand, the number of
monic polynomials of degree n over Fq is qn. So F(x) = ∑n≥0 qnxn.
On the other hand, by the factorization, we have

F(x) =
(
1 + xd1 + x2d1 + · · ·

)(
1 + xd2 + x2d2 + · · ·

)(
1 + xd3 + x2d3 + · · ·

)
· · ·

=
1

1 − xd1
· 1

1 − xd2
· 1

1 − xd3
· · ·

Thus, it implies that

1
1 − qx

= ∑
n≥0

qnxn =
∞

∏
k=1

1
1 − xdk

=
∞

∏
d=0

( 1
1 − xd

)Nd
.

Taking logarithm to the both sides, it yields that

∞

∑
n=1

qn

n
xn =

∞

∑
d=0

Nd

∞

∑
k=1

1
k

xdk =
∞

∑
d=0

Nd

∞

∑
n=1

[d | n]
n/d

xn =
∞

∑
n=1

∑
d|n

dNd
n

xn .

Comparing the coefficient of xn term and then applying Möbius
inversion, we obtain that

qn = ∑
d|n

dNd ,

and thus
Nn =

1
n ∑

d|n
µ(d) qn/d .
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