The Principle of Inclusion and Exclusion

Let *A* and *B* be two disjoint finite sets. The addition principle states that $|A \cup B| = |A| + |B|$. If $A \cap B \neq \emptyset$, then we have

$$|A \cup B| = |A| + |B| - |A \cap B|$$
.

But what happens if there are more sets?

3.1 The principle and proofs

Theorem 3.1 (Principle of inclusion and exclusion). *For any collection of finite sets* A_1, A_2, \ldots, A_n , *it holds that*

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \le i < j \le n} |A_{i} \cap A_{j}| + \dots - (-1)^{n} \left| \bigcap_{i=1}^{n} A_{i} \right|$$

$$= \sum_{k=1}^{n} (-1)^{k-1} \sum_{S \subseteq [n], |S| = k} \left| \bigcap_{i \in S} A_{i} \right|$$

$$= \sum_{\emptyset \ne S \subseteq [n]} (-1)^{|S|-1} \left| \bigcap_{i \in S} A_{i} \right|.$$

Proof. We prove the principle by noticing that each element *x* contributes the same number to each side of the equation.

Fix x and let $I \subseteq [n]$ be the set of i for which $x \in A_i$. If $I = \emptyset$, clearly x contributes 0 to both sides. Otherwise, x contributes 1 to the left hand side and 1 to every $|\cap_{i \in S} A_i|$ -term of the right hand side where $S \subseteq I$. Applying the equation

$$k - {k \choose 2} + {k \choose 3} - \dots - (-1)^k {k \choose k} = \sum_{i=1}^k (-1)^{i-1} {k \choose i} = 1$$
,

we can complete the proof.

In combinatorics, we usually use the complement form, where $B_1, B_2, ..., B_n$ can be viewed as a family of "bad events" and we hope to count the number of "good" elements so that none of the bad events happens.

Corollary 3.2. For any collection of subsets $B_1, B_2, ..., B_n$ of some finite universal set U, the number of elements of which lie in none of the subsets is

$$\sum_{S\subseteq[n]}(-1)^{|S|}\left|\bigcap_{i\in S}B_i\right|,$$

where we set $\cap_{i \in \emptyset} B_i = U$ conventionally.

3.2 Surjections, derangements and permanents

Now we consider problem of counting mappings under some special restrictions.

The first example is to count the number of *surjections*. Actually, the number of surjections $[n] \to [m]$ is counted in the Case 9 of the twelvefold way, which is $m! \binom{n}{m}$. We now find its explicit formula by the inclusion and exclusion principle.

Let U be the set of all mappings from [n] to [m], and B_i be the set of all mappings where no element is mapped to i. Then we have $|U| = m^n$, and

$$\left|\bigcap_{i\in S} B_i\right| = (m-|S|)^n \text{ for all } S\subseteq [m].$$

Applying Corollary 3.2, it follows that

$$m! \begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{S \subseteq [n]} (-1)^{|S|} \left| \bigcap_{i \in S} B_i \right|$$
$$= \sum_{k=0}^m {m \choose k} (-1)^k (m-k)^n$$
$$= \sum_{k=0}^m (-1)^{m-k} {m \choose k} k^n,$$

which is the same as the result in Section 2.3.

Another example is the number of bijections with no fixed points. Let $f : [n] \to [n]$ be a bijection (or permutation) on n. A fixed point of f is an element $x \in [n]$ such that f(x) = x. If f has no fixed point, it is known as a *derangement*. We would like to count the number D_n of derangements over [n].

We apply the complement form of the inclusion and exclusion principle. Let U be the set of all bijections / permutations, and B_i

A mapping $f: [n] \to [m]$ is a *surjection* if for all $y \in [m]$, there exists $x \in [n]$ such that f(x) = y.

be the set of bijections with f(i) = i. It is not difficult to find that |U| = n! and

$$\left|\bigcap_{i\in S}B_i\right|=(n-|S|)!.$$

Thus, Corollary 3.2 yields that

$$D_n = \sum_{S \subset [n]} (-1)^{|S|} \left| \bigcap_{i \in S} B_i \right| = \sum_{k=0}^n \binom{n}{k} (-1)^k (n-k)! = \sum_{k=0}^n (-1)^k \frac{n!}{k!}.$$

In fact, we can also find the closed form of D_n by the exponential generating function. First, we give a recurrence relation of D_n . Suppose f is a derangement and f(n) = k ($k \neq n$). Then there are two cases: f(k) = n or $f(k) \neq n$. If f(k) = n then f subject on $[n] \setminus \{k, n\}$ is also a derangement. So there are D_{n-2} such f's. If $f(k) \neq n$, then f subject on [n-1] is a function satisfying $f(i) \in [n] \setminus \{k\}$ for all i, $f(j) \neq j$ for all $j \neq k$, and $f(k) \neq n$. It can be viewed as a derangement on domain [n-1]. Consequently, we obtain

$$D_n = (n-1)(D_{n-1} + D_{n-2}).$$

Then we solve D_n by its exponential generating function. Let

$$D(x) = \sum_{n \ge 0} \frac{D_n}{n!} x^n.$$

Since $D_{n+1} = nD_n + nD_{n-1}$, we obtain that

$$D'(x) = \sum_{n\geq 0} \frac{nD_n}{n!} x^{n-1} = \sum_{n\geq 1} \frac{D_n}{(n-1)!} x^{n-1} = \sum_{n\geq 0} \frac{D_{n+1}}{n!} x^n,$$

$$xD'(x) = \sum_{n\geq 1} \frac{D_n}{(n-1)!} x^n = \sum_{n\geq 1} \frac{nD_n}{n!} x^n,$$

$$xD(x) = \sum_{n\geq 0} \frac{D_n}{n!} x^{n+1} = \sum_{n\geq 0} \frac{(n+1)D_n}{(n+1)!} x^{n+1} = \sum_{n\geq 1} \frac{nD_{n-1}}{n!} x^n,$$

which leads to

$$D'(x) = xD'(x) + xD(x).$$

So

$$\frac{D'(x)}{D(x)} = \frac{x}{1-x} = -1 + \frac{1}{1-x}.$$

Note that the left hand side is $(\ln D(x))'$. Hence we conclude that

$$D(x) = \exp\left(\int -1 + \frac{1}{1-x} dx\right) = \frac{e^{-x}}{1-x}.$$

Another idea is to consider the number of fixed points in all bijections / permutations. Clearly the number of bijections on [n] with exactly k fixed points is $\binom{n}{k}D_{n-k}$. So we have

$$\sum_{k=0}^{n} \binom{n}{k} D_{n-k} = n!.$$

The expression of D_n tells us that if we pick a bijection f over all possibilites uniformly at random, then as $n \to \infty$, the probability of f being a derangement is

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} = \frac{1}{e}.$$

Note that the recurrence relation is equivalent to

$$D_n - nD_{n-1} = -(D_{n-1} - (n-1)D_{n-2}).$$

Hence, we also have another form of recurrence

$$D_n - nD_{n-1} = (-1)^n$$
.

Similarly, we will have

$$D(x) - xD(x) = e^{-x}.$$

Thus,
$$D(x) = e^{-x}/(1-x)$$
.

Comparing with the multiplication of exponential generating functions, we know that the EGF of (1,1,2,6,...,n!,...) is the product of the EGF of $(D_0,D_1,D_2,...,D_n,...)$ and the EGF of (1,1,1,...,1,...). That is

$$D(x) \cdot \left(\sum_{n>0} \frac{1}{n!} x^n\right) = \sum_{n>0} \frac{n!}{n!} x^n = \frac{1}{1-x},$$

which also implies that

$$D(x) = \frac{e^{-x}}{1 - x}.$$

By the expression of D(x), we obtain that

$$\frac{D_n}{n!} = [x^n]D(x) = [x^n] \left(\sum_{n \ge 0} \frac{(-1)^n}{n!} x^n \cdot \sum_{n \ge 0} x^n \right)$$
$$= \sum_{k=0}^n \frac{(-1)^k}{k!}.$$

Finally, we consider a generalization of derangements: permutations with restricted positions. It is also known as the *permanent* of a 0-1 matrix, or the number of *perfect matchings* in a bipartite graph.

Definition 3.3 (Permanent). Given an $n \times n$ matrix $A = (a_{i,j})_{1 \le i,j \le n}$, the permanent of A is defined by

$$\operatorname{perm} A \triangleq \sum_{\sigma \in \mathcal{S}_n} \prod_{i=1}^n a_{i,\sigma(i)},$$

where S_n is the set of all permutations on [n].

Clearly, if A is a 0-1 matrix, then perm A counts the number of permutations with restrictions $\sigma(i) \neq j$ for all $a_{i,j} = 0$. In particular,

$$D_n = \operatorname{perm}\left(\mathbf{1}_n - I_n\right)$$
,

where $\mathbf{1}_n$ is the all 1 matrix, and I_n is the identity matrix. If A is an adjacency matrix of a *balanced bipartite graph*, then perm A counts the number of perfect matchings.

Remark 3.4. The permanent can be viewed as the *unsigned* version of the determinant. However, while determinants is well-known to be calculated in polynomial time using Gaussian elimination, computing permanents, even for 0-1 matrix, is #P-complete.

Now we compute permanents by the inclusion and exclusion principle. Let U be the set S_n , and B_i be the set of permutations that

A bipartite graph is *balanced* if its two parts have the same number of vertices.

 $a_{i,\sigma(i)} = 0$. But how to compute the cardinality of the intersections of B_i 's? Let

$$R = \{(i,j) \in [n] \times [n] \mid a_{i,j} = 0\}$$

be the set of coordinates of all 0 entries, and

$$r_k = \left| \left\{ T \in {R \choose k} \mid \forall (i_1, j_1), (i_2, j_2) \in T, i_1 \neq i_2 \land j_1 \neq j_2 \right\} \right|$$

be the number of size-k subsets of R such that no two elements share a common coordinate. A key observation is that

Why?

$$\sum_{|S|=k} \left| \bigcap_{i \in S} B_i \right| = r_k \cdot (n-k)!.$$

So by Corollary 3.2, we have

perm
$$A = \sum_{k=0}^{n} (-1)^k r_k (n-k)!$$
.

However, this formula is correct but meaningless, because r_k is also difficult to count. Note that this problem actually has two kinds of restrictions: (1). σ is a permutation, and (2). $\sigma(i) \neq j$ for all $a_{i,j} = 0$. Above analysis applies Corollary 3.2 on the second kind of restrictions and defines bad events as violating $a_{i,\sigma(i)}=1$. In fact, a more clever idea is to apply Corollary 3.2 on the first kind of restrictions.

Let *U* be the set of all mappings $f:[n] \to [n]$ such that $f(i) \neq j$ if $a_{i,j} = 0$, and B_i be the set of all mappings in U such that $f^{-1}(i) = \emptyset$, namely, no element is mapped to *i*. Next, we calculate |U| and $|\cap B_i|$. Note that for any $f \in U$, f(1) has $\sum_{j=1}^{n} a_{1,j}$ choices, f(2) has $\sum_{j=1}^{n} a_{2,j}$ choices, and so on. Thus,

$$|U| = \prod_{i=1}^n \left(\sum_{j=1}^n a_{i,j}\right).$$

Similarly, for any $S \subseteq [n]$, we have

$$\left|\bigcap_{k\in S} B_k\right| = \prod_{i=1}^n \left(\sum_{j\in [n]\setminus S} a_{i,j}\right).$$

Applying Corollary 3.2, Ryser proved the following theorem, which gives an algorithm to compute perm A in $O(2^n n)$ time instead of $O(n! \cdot n)$ time by definition.

This is the best known algorithm.

Theorem 3.5 (Ryser formula).

$$\operatorname{perm} A = \sum_{S \subseteq [n]} (-1)^{|S|} \prod_{i=1}^{n} \left(\sum_{j \in [n] \setminus S} a_{i,j} \right).$$

We now give some applications of the principle of inclusion and exclusion in number theory.

Definition 3.6 (Euler's totient function). Given a positive integer n, the *Euler's totient function* $\varphi(n)$ is defined by the number of positive integers in [n] that are relatively prime to n, i.e.,

$$\varphi(n) \triangleq \sum_{k=1}^{n} [\gcd(n,k) = 1],$$

where [p] is an indicator variable of proposition p, namely, [p] = 1 if p is true and [p] = 0 otherwise.

The totient function is a *multiplicative function*. If gcd(a,b) = 1 then $\varphi(ab) = \varphi(a)\varphi(b)$. It is clear that $\varphi(p) = p-1$ for any prime p, and $\varphi(p^r) = (p-1)p^{r-1}$ for any prime p and $r \ge 2$. Thus, it is easy to compute $\varphi(1), \ldots, \varphi(n)$ in O(n) time by the *sieve method*.

The following proposition is an important property of the totient function.

Why $\varphi(n)$ is multiplicative? Because $n \mapsto (n \mod a, n \mod b)$ is a bijection from [ab] to $[a] \times [b]$, and $\gcd(n, ab) = 1$ iff $\gcd(n \mod a, a) = 1$ and $\gcd(n \mod b, b) = 1$, provided that $\gcd(a, b) = 1$.

Proposition 3.7. For any positive integer n, it holds that

$$\sum_{d|n} \varphi(d) = n. \tag{3.1}$$

Proof. For each $k \in [n]$, consider gcd(n,k). If gcd(n,k) = d then we have gcd(n/d,k/d) = 1. Thus,

$$\begin{split} n &= \sum_{d|n} |\{k \in [n] \mid \gcd(n,k) = d\}| \\ &= \sum_{d|n} \left| \{k \in \left[\frac{n}{d}\right] \mid \gcd(\frac{n}{d},k) = 1\} \right| \\ &= \sum_{d|n} \varphi(\frac{n}{d}) = \sum_{d|n} \varphi(d) \,. \end{split}$$

Now we calculate $\varphi(n)$ by the inclusion and exclusion principle. Suppose $n = p_1^{r_1} p_2^{r_2} \cdots p_m^{r_m}$ where p_i 's are distinct prime numbers, and $r_i \geq 1$. Let U = [n], and $B_i = \{k \in [n] \mid p_i \mid k\}$ be the set of all multiples of p_i in [n]. Then we known that $\varphi(n) = |U \setminus (B_1 \cup B_2 \cup \cdots \cup B_m)|$. Since $(\prod p_i) \mid n$, for any $S \subseteq [m]$, we have

$$\left|\bigcap_{i\in S}B_i\right|=\frac{n}{\prod_{i\in S}p_i}.$$

Applying Corollary 3.2, it follows that

$$\varphi(n) = \sum_{S \subseteq [m]} (-1)^{|S|} \left| \bigcap_{i \in S} B_i \right|$$

$$= \sum_{S \subseteq [m]} (-1)^{|S|} \frac{n}{\prod_{i \in S} p_i}$$

$$= n \sum_{S \subseteq [m]} \prod_{i \in S} \frac{-1}{p_i}$$

$$= n \prod_{i=1}^m \left(1 - \frac{1}{p_i}\right).$$

Let's observe the equation $\varphi(n) = \sum_{S\subseteq [m]} (-1)^{|S|} \frac{n}{\prod_{i\in S} p_i}$ again. Define the (number-theoretical) Möbius function by

$$\mu(n) \triangleq \begin{cases} 1 & n = 1, \\ 0 & p^2 \mid n \text{ for some prime } p, \\ (-1)^k & n = p_1 p_2 \cdots p_k \text{ for distinct primes } p_1, \dots, p_k. \end{cases}$$

Then $\varphi(n)$ can be written as

$$\varphi(n) = \sum_{d|n} \mu(d) \cdot \frac{n}{d}.$$
 (3.2)

If we use * to denote the *convolution* for number-theoretical functions, namely,

$$(f * g)(n) = \sum_{d|n} f(d) g\left(\frac{n}{d}\right),$$

we can rewrite equations (3.1) and (3.2) as

$$id = \varphi * \mathbf{1}$$
, and $\varphi = u * id$,

where id(n) = n is the identity function, and $\mathbf{1}(n) = 1$ is the all-1 function. This relation holds for general number-theoretical functions.

Theorem 3.8 (Möbius inversion formula). *Let f, g be two number*theoretical functions. If

$$f = g * \mathbf{1} = \sum_{d|n} g(d),$$

then

$$g = f * \mu = \sum_{d|n} f(d) \, \mu\left(\frac{n}{d}\right) = \sum_{d|n} \mu(d) \, f\left(\frac{n}{d}\right).$$

Example 3.9. It is easy to see that $\mathbf{1}(n) = \sum_{d|n} [d=1]$. So we have $[n = 1] = 1 * \mu = \sum_{d|n} \mu(d)$. This can be verified by $\sum_{k=0}^{m} (-1)^k {m \choose k} = 0$ as long as $m \ge 1$.

Proof. We prove the inversion formula by PIE. Assign each number *k* a set $T_k = \{(k,1), (k,2), \dots, (k,g(k))\}$. Now suppose $n = p_1^{r_1} p_2^{r_2} \cdots p_m^{r_m}$ where p_1, p_2, \ldots, p_m are distinct primes. Let

$$U = \bigcup_{d \mid n} T_d = \{(d, j) \mid d \mid n, 1 \le j \le g(d)\},\,$$

and $B_i = \{(d,j) \in U \mid p_i^{r_i} \nmid d, 1 \leq j \leq g(d)\}$. We would like to count g(n), the cardinality of set $\{(n,j) \mid 1 \leq j \leq g(n)\}$ $U \setminus (B_1 \cup B_2 \cup \cdots \cup B_m)$. Note that $|U| = \sum_{d|n} g(d) = f(n)$, and for any $S \subseteq [m]$,

$$\left|\bigcap_{i\in S} B_i\right| = \sum_{d\mid \frac{n}{\prod_{i\in S} p_i}} g(d) = f\left(\frac{n}{\prod_{i\in S} p_i}\right).$$

Applying Corollary 3.2, we obtain that

$$g(n) = f(n) - \sum_{S \subset [m]} (-1)^{|S|} f\left(\frac{n}{\prod_{i \in S} p_i}\right) = \sum_{d \mid n} \mu(d) f\left(\frac{n}{d}\right). \qquad \Box$$

An alternate proof is to see that the associative law holds for convolution. Thus,

$$f = g * \mathbf{1} \implies f * \mu = g * \mathbf{1} * \mu = g * [n = 1] = g.$$

In particular, if we apply Theorem 3.8 on number-theoretical functions only defined on square-free numbers, we can deduce the following inversion formula for set functions.

Corollary 3.10. Suppose that f(S), g(S) are two functions defined on sets. If for any set S, we have

$$f(S) = \sum_{T \subseteq S} g(T) \,,$$

then it holds that

$$g(S) = \sum_{T \subseteq S} (-1)^{|S| - |T|} g(T).$$

We now introduce an application of Möbius inversion.

Question 3.11. How many monic irreducible polynomials of degree *n* over the field \mathbb{F}_q , where $q = p^t$ for some prime *p* and integer $t \geq 1$? A monic polynomial is a univariate polynomial whose coefficient of the highest order term is 1.

List all monic irreducible polynomials $f_1, f_2, \ldots, f_k, \ldots$ Let d_i be the degree of f_i , and let N_d be the occurrence of d, i.e., the number of m.i.p.'s of degree d. The key fact is that by the unique factorization of polynomials over \mathbb{F}_q , every monic polynomials can be expressed as

$$f(z) = f_1(z)^{r_1} f_2(z)^{r_2} \cdots f_k(z)^{r_k} \cdots$$

where $r_1, r_2, \ldots, r_k, \ldots \in \mathbb{N}$. Now we consider the OGF F(x) of the numbers of monic polynomials. On the one hand, the number of monic polynomials of degree n over \mathbb{F}_q is q^n . So $F(x) = \sum_{n \geq 0} q^n x^n$. On the other hand, by the factorization, we have

$$F(x) = (1 + x^{d_1} + x^{2d_1} + \cdots) (1 + x^{d_2} + x^{2d_2} + \cdots) (1 + x^{d_3} + x^{2d_3} + \cdots) \cdots$$
$$= \frac{1}{1 - x^{d_1}} \cdot \frac{1}{1 - x^{d_2}} \cdot \frac{1}{1 - x^{d_3}} \cdots$$

Thus, it implies that

$$\frac{1}{1 - qx} = \sum_{n \ge 0} q^n x^n = \prod_{k=1}^{\infty} \frac{1}{1 - x^{d_k}} = \prod_{d=0}^{\infty} \left(\frac{1}{1 - x^d}\right)^{N_d}.$$

Taking logarithm to the both sides, it yields that

$$\sum_{n=1}^{\infty} \frac{q^n}{n} x^n = \sum_{d=0}^{\infty} N_d \sum_{k=1}^{\infty} \frac{1}{k} x^{dk} = \sum_{d=0}^{\infty} N_d \sum_{n=1}^{\infty} \frac{[d \mid n]}{n/d} x^n = \sum_{n=1}^{\infty} \sum_{d \mid n} \frac{dN_d}{n} x^n.$$

Comparing the coefficient of x^n term and then applying Möbius inversion, we obtain that

$$q^n = \sum_{d|n} dN_d \,,$$

and thus

$$N_n = \frac{1}{n} \sum_{d|n} \mu(d) q^{n/d}.$$