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Partially Ordered Sets

We introduce a simple structure: a set associated with a partial order.

4.1 Definitions of posets and lattices

Definition 4.1 (Partially ordered set, poset). A partially ordered set
(or poset) is a pair P = (P,≼), where P is a set and ≼ is a partial order,
i.e., a binary relation satisfying

1. (reflexivity) ∀ x ∈ P, x ≼ P;

2. (anti-symmetry) ∀ x, y ∈ P, if x ≼ y and y ≼ x, then x = y;

3. (transitivity) ∀ x, y, z ∈ P, if x ≼ y and y ≼, then x ≼ z.

In fact, a partial order is a generalization of ≤, but we do not
require any pair of elements is comparable. In particular, if x ≼ y
but x ̸= y, we denote x ≺ y.

Example 4.2. (P,≤) is a poset, where P ⊆ Z and ≤ is the usual
integer order.

Example 4.3. (2[n],⊆) is a poset, where ⊆ is the usual set inclusion.

Example 4.4. ([n], |) is a poset, where | is the divisibility relation.

Denote by [x, y] the set {z | x ≼ z ≼ y}, and denote by x ⋖ y if
[x, y] = {x, y}. Then a poset can be expressed as a Hasse diagram, Sometimes we call it “y covers x”.

where we draw a line between x and y (with y above x) if x ⋖ y.

Exercise 4.5. Draw Hasse diagrams of the subset poset and the divisibility
poset.

We say x ∈ P is maximal if there is no y ∈ P such that x ≼ y; and
x is maximum if for all y ∈ P, y ≼ x. We can also define maximal
elements and the maximum element in a subset of P. Similarly we Why is the maximum element unique?

can define minimal and the minimum element in P or a subset of P.
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Example 4.6. A poset may have maximal elements but no maximum
elements, e.g., ([6], |).

Example 4.7. A poset may have no maximal elements, e.g., (N,≤).

Given a poset P = (P,≼) and a subset S ⊆ P, x ∈ P is an upper
bound of S if for any y ∈ S, y ≼ x. The minimum element (if exists)
of upper bounds of S is called the least upper bound of S. Similarly, we
can define lower bounds of a subset, and the greatest lower bound.

In a poset, the least upper bound or the greatest lower bound of
some subset S may not exist. If exist, the poset is called a lattice.

Definition 4.8 (Lattice). A lattice L = (P,≼) is a poset where for any
nonempty finite subset S ⊆ P, its least upper bound and greatest lower
bound exist.
In fact, a lattice can also be defined as a poset where any pair x, y ∈ P
has the least upper bound and the greatest lower bound. The least
upper bound of x and y, a.k.a. the join of x and y, is denoted by x ∨ y.
The greatest lower bound of x and y, a.k.a. the meet of x and y, is
denoted by x ∧ y.

Example 4.9. (N, |) is a lattice, where x ∨ y = lcm(x, y) and x ∧ y =

gcd(x, y).

Example 4.10. (2[n],⊆) is a lattice, where S ∨ T = S ∪ T and S ∧ T =

S ∩ T.

4.2 Chains and antichains

Definition 4.11 (Chain and antichain). A chain in a poset (P,≼) is a
subset C ⊆ P where any two elements in C are comparable, namely,

∀ x, y ∈ C , x ≼ y ∨ y ≼ x .

A antichain is a subset T ⊆ P where any two distinct elements are not
comparable, namely,

∀ x ̸= y ∈ T , x ̸≼ y ∧ y ̸≼ x .

The height of a poset is the maximum size of a chain in the poset. The
width of a poset is the maximum size of an antichain in the poset.

Theorem 4.12 (Mirsky’s theorem). Let P be a poset with a finite height.
The minimum number of antichains that can cover P is the height of P .
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Example 4.13. Suppose S = (s1, s2, . . . , sn) is a sequence. The mini-
mum number of decreasing subsequences to partition S is exactly the
length of the longest increasing (nondecreasing) subsequence.

This example yields the following corollary.

Corollary 4.14 (Erdős-Szekeres theorem). Suppose r, s ∈ N, n ≥ rs +
1, and S = (s1, s2, . . . , sn) is a sequence of n distinct real numbers. Then S
contains an increasing (decreasing) subsequence of length r + 1 or a decreas-
ing (increasing) subsequence of length s + 1.

Proof. Let ≼ be the relation such that si ≼ sj if i ≤ j and si ≤ sj.
Then each increasing subsequence is a chain and each decreasing
subsequence is an antichain. Suppose S does not contain an increas-
ing subsequence of length r + 1. Then by Mirsky’s theorem, there are
at most r decreasing subsequences that can cover S. So the longest
decreasing subsequence has length at least s + 1.

Now we prove Mirsky’s theorem.

Proof of Theorem 4.12. Let P be a poset of height h, and C be its max-
imum chain. Clearly any two elements in C cannot be in the same
antichain. So if we would like to cover P with antichains, there are at
least h of them.

Now we show that h antichains are suffice. For each element
x ∈ P , let f (x) be the maximum size of chains in which x is the
minimum element. A key observation is that if f (x) = f (y), then x
and y must be not comparable. Thus the set f−1(k) is an antichain,
and f−1(1), f−1(2), . . . , f−1(h) are h antichains that cover P .

Conversely, we have a dual theorem of Mirsky’s theorem.

Theorem 4.15 (Dilworth’s theorem). Let P be a poset with a finite
width. The minimum number of chains that can cover P is the width of P .

We only prove Dilworth’s theorem for
finite size posets here. The generalized
version requires De Bruijn-Erdős
theorem, which states that an infinite
graph can be colored with c colors if the
same is true for all its finite subgraphs.

Proof. Let P = (P,≼) be a poset of width w, and T be its maximum
antichain. Clearly any two elements in T cannot be in the same chain.
So if we would like to cover P with chains, there are at least w of
them.

Next we show that w chains are suffice by the induction on |P|. If
|P| = 1, it is obviously true. Now assume |P| ≥ 2. If any two ele-
ments in P are not comparable, then P has width |P| and this case is
trivial. Let C be the maximum chain in P , and c+, c− be its maximum
and minimum elements respectively. If P \ {c+, c−} has width w − 1,
then by induction hypothesis, P \ {c+, c−} can be covered by w − 1
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chains. Thus P can be covered by the same w − 1 chains together
with {c+, c−}. So we assume that the width of P \ {c+, c−} is also w.

Let T = {t1, t2, . . . , tw} be a maximum antichain of P \ {c+, c−}. It
is also a maximum antichain of P . Partition P \ T into 2 parts:

S+ ≜ {s ∈ P \ T | ∃ t ∈ T, t ≼ s} ,

S− ≜ {s ∈ P \ T | ∃ t ∈ T, s ≼ t} .

By the choice of T, S+ ⊎ S− = P \ T. By the choice of c+ and c−, The notation ⊎ means disjoint union,
i.e., S+ ∪ S− = P \ T and S+ ∩ S− = ∅.we have c+ ∈ S+ and c− ∈ S−. So both S+ and S− are nonempty.

Now applying induction hypothesis on S+ ∪ T, there are w chains
C+

1 , C+
2 , . . . , C+

w that cover S+ ∪ T and C+
i contains ti as its minimum.

Similarly, there are C−
1 , C−

2 , . . . , C−
w that cover S− ∪ T and C−

i contains
ti as its maximum. Hence,

C+
1 ∪ C−

1 , C+
2 ∪ C−

2 , . . . , C+
w ∪ C−

w

are w chains that cover P.

In particular, by Dilworth’s theorem, we can show that the width
of poset (2[n],⊆) is ( n

⌊n/2⌋).

Theorem 4.16 (Sperner’s theorem). The maximum antichain in
P = (2[n],⊆) has size ( n

⌊n/2⌋).

Proof. Let m = ⌊n/2⌋. Then ([n]m ) is an antichain. Thus it suffices to
show that (n

m) chains can cover P . Actually, it is sufficient to show
that (n

k) chains can cover ([n]k ) ∪ ( [n]
k+1) if k ≥ m, and (n

k) chains can

cover ([n]k ) ∪ ( [n]
k−1) if k ≤ m.

We only show the first case. The argument for the second case is
similar. Applying Theorem 4.15 again, we need to show that the max-
imum antichain in ([n]k ) ∪ ( [n]

k+1) has size (n
k). Let T be any maximum

antichain, R = T ∩ ( [n]
k+1), and S = ([n]k ) \ T . Since T is an antichain,

for any R ∈ R, all size-k subsets of R must be in S . Each R ∈ R has
(k + 1) size-k subsets, and each S ∈ S is a subset of at most (n − k)
sets in R. Note that k + 1 ≥ n − k. Therefore, we have |R| ≤ |S|, and
thus |T | = (n

k)− |S|+ |R| ≤ (n
k).

In fact, Dilworth’s theorem is equivalent to Hall’s marriage theo-
rem, and is also equivalent to König theorem. We will explain details
in Chapter 6.

4.3 Incidence algebra and Möbius inversion

We would like to generalize Möbius inversion to posets. We first
introduce incidence algebra on posets. Here posets may be infinite, but
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are required to be locally finite. A poset P is locally finite if for any
x, y ∈ P , [x, y] is finite.

Definition 4.17 (Incidence algebra). Let P = (P,≼) be a poset. Its in-
cidence algebra is defined by

A(P) ≜ {α : P × P → R | α(x, y) = 0 whenever x ̸≼ y} ,

namely, the set of functions on P × P whose nonzero values are all in-
side the ≼ relation.

In particular, if P is finite, a function on P × P can be expressed as
a |P| × |P| matrix, and thus A(P) is a set of matrices. Now we define
operations on the incidence algebra, which are natural generaliza-
tions of operations on matrices.

Definition 4.18. Suppose α, β ∈ A(P) are two functions. Then

• (α + β)(x, y) = α(x, y) + β(x, y);

• ∀ c ∈ R, (cα)(x, y) = c · α(x, y);

• (αβ)(x, y) = ∑z∈[x,y] α(x, z) · β(z, y);

• ∀ f : P → R, (α f )(x) = ∑x≼y α(x, y) · f (y).

It is easy to verify that if α, β ∈ A(P) and c ∈ R, then α + β, cα, αβ

are all in A(P). Similar to identity matrices, we can define the multi-
plicative identity δ in A(P):

δ(x, y) ≜ [x = y] =

1 if x = y ,

0 if x ̸= y .

Given α ∈ A(P), β is a left inverse if βα = δ, and β is a right inverse
if αβ = δ. A key fact is that if the left inverse exists then the right
inverse exists, and they are the same function. Thus, we say β is the
inverse of α, denoted by β = α−1, if αβ = δ, or βα = δ.

Theorem 4.19. Suppose α, β ∈ A(P). If αβ = δ, then βα = δ.

Proof. For any x ∈ P, (βα)(x, x) = β(x, x) α(x, x) = (αβ)(x, x) = 1. So
it suffices to show that (βα)(x, y) = 0 if x ≺ y.

Suppose [x, y] = {z1, z2, . . . , zn} where z1 = x and zn = y. Define
two n × n matrices A, B by Ai,j = α(zi, zj) and Bi,j = β(zi, zj). Note
that (by transitivity) [zi, zj] ⊆ [x, y] for all i, j. Thus we have

(AB)i,j =
n

∑
k=1

Ai,kBk,j = ∑
zk∈[zi ,zj ]

α(zi, zk) β(zk, zj) = δ(zi, zj) ,
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that is, AB = I. So BA = I, which is equivalent to (βα)(zi, zj) = Ii,j.
In particular, (βα)(x, y) = 0.

Moreover, it is easy to see that the inverse is unique. Suppose
αβ = γβ = δ. Then by the associative law, we have α = αβγ = γ.

Let P be a poset. Define its ζ-function as

ζP (x, y) ≜ [x ≼ y] =

1 if x ≼ y

0 otherwise
,

and define Möbius function as the inverse of ζP : µP ≜ ζ−1
P . Now we

have the Möbius inversion formula for posets.

Theorem 4.20 (Möbius inversion formula). Let P = (P,≼) be a poset,
and f , g : P → R be two functions. Suppose

f (x) = ∑
x≼y

g(y) .

Then it holds that
g(x) = ∑

x≼y
µ(x, y) f (y) .

Similarly, if
f (x) = ∑

y≼x
g(y) ,

then we have
g(x) = ∑

y≼x
µ(y, x) f (y) .

Proof. If f = ζg, then µ f = µζg = g. Similarly, if f = ζ⊺g, then
µ⊺ f = µ⊺ζ⊺g = (ζµ)⊺g = g.

4.4 Möbius functions and examples

We now show that Möbius functions exist. By definition, we have

∀ x, y ∈ P , ∑
z∈[x,y]

µ(x, z) = ∑
z∈[x,y]

µ(z, y) = δ(x, y) . (4.1)

It is easy to see that µ(x, y) = 1 if x = y, and µ(x, y) = −1 if x ⋖ y.
Then µ can be inductively determined by |[x, y]| as follows:

µ(x, y) =


0 if x ̸≼ y

1 if x = y

∑
x≼z≺y

−µ(x, z) o.w.
=


0 if x ̸≼ y

1 if x = y

∑
x≺z≼y

−µ(z, y) o.w.
.
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We can verify that µ is the inverse of ζ directly:

(µζ)(x, y) = ∑
x≼z≼y

µ(x, z) =


0 if x ̸≼ y ,

1 if x = y ,

µ(x, y) + ∑
x≼z≺y

µ(x, z) = 0 if x < y .

Example 4.21. Let P = ([n],≤). The Möbius function is

µ(x, x) = 1 ,

µ(x, y) = − ∑
x≤z<y

µ(x, z) =

−1 if y = x + 1 ,

0 otherwise .

Now we consider some more complicated posets, e.g., (2[n],⊆).
We need the following lemma.

Definition 4.22. Let P = (P,≼P),Q = (Q,≼Q) be two posets. Define
their product as

P ×Q ≜ (P × Q,≼) ,

where (x1, x2) ≼ (y1, y2) iff x1 ≼P y1 and x2 ≼Q y2.

Lemma 4.23. Let P = (P,≼P),Q = (Q,≼Q) be two posets, and µP, µQ

be their Möbius functions. The Möbius function of their product P × Q sat-
isfies

µ
(
(x1, x2), (y1, y2)

)
= µP(x1, y1) · µQ(x2, y2) . (4.2)

Proof. We prove it by induction on |[(x1, x2), (y1, y2)]|. If the size is 0
or 1, it is trivial. Suppose |[(x1, x2), (y1, y2)]| ≥ 2 and equation (4.2)
holds for smaller |[(x1, x2), (y1, y2)]|. We verify equation (4.2) by
applying (4.1). Note that now we have x1 ̸= y1 or x2 ̸= y2, so either
∑z1∈[x1,y1]

µP(x1, z1) = 0, or ∑z2∈[x2,y2]
µQ(x2, z2) = 0. Thus,

µ(x, y) = 0 − ∑
x≼z≺y

µ(x, z)

=

(
∑

x1≼z1≼y1

µP(x1, z1)

)(
∑

x2≼z2≼y2

µQ(x2, z2)

)
− ∑

x≼z≺y
µ(x, z)

= ∑
x≼z≼y

µP(x1, z1) · µQ(x2, z2)− ∑
x≼z≺y

µP(x1, z1) · µQ(x2, z2)

= µP(x1, y1) · µQ(x2, y2) ,

where we denote x = (x1, x2), y = (y1, y2) and z = (z1, z2).

Example 4.24. It is easy to calculate the Möbius function of P =

(2[n],⊆) by Lemma 4.23. Note that P is isomorphic to
(
{0, 1},≤

)n.
So we have µ(S, T) = (−1)|T\S| if S ⊆ T.
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Example 4.25. Let Dn be the set of divisors of n. We can calculate
the Möbius function of P = (Dn, |) by Lemma 4.23. Suppose n =

pr1
1 pr2

2 · · · prt
t for distinct primes p1, . . . , pt. Then P is isomorphic to

([r1 + 1],≤)× ([r2 + 1],≤)× · · · × ([rt + 1],≤) .

Thus, we have

µ(a, b) =


1 if a = b ,

0 if a ∤ b, or p2
i | b

a for some pi ,

(−1)k if b
a is the product of k distinct primes .

Note that nonzero values of µ(a, b) only depend on b
a , so we can

use the notation µ( b
a ) = µ(a, b), which is the same as the number-

theoretical Möbius function. Then the Möbius inversion formulas on
P are also the same as number-theoretical Möbius inversion.

In fact, (Dn, |) is a lattice. For such a finite lattice, we can also
apply the following theorem.

Theorem 4.26 (Weisner’s theorem). Let L be a finite lattice, and µ be
its Möbius function. Suppose 0̂ and 1̂ are the minimum and maximum
elements in L. Then, for all y ̸= 0̂,

∑
x:x∨y=1̂

µ(0̂, x) = 0 .

Proof. Applying (4.1), we have

∑
x:x∨y=1̂

µ(0̂, x) = ∑
x

µ(0̂, x) δ(x ∨ y, 1̂)

= ∑
x

µ(0̂, x) ∑
(x∨y)≼z≼1

µ(z, 1̂)

= ∑
y≼z

µ(z, 1̂) ∑
x≼z

µ(0̂, x)

= ∑
y≼z

µ(z, 1̂) δ(0̂, z) = 0 .

Example 4.27. Let L = (2[n],⊆). Then for any T ̸= ∅, we have
∑S:S∪T=[n] µ(∅, S) = 0. Thus by setting T to be a singleton set, it
yields

µ(∅, S) = −µ(∅, [n])

if |S| = n − 1. Similarly, by induction we obtain

µ(∅, S) = (−1)n−|S|µ(∅, [n]) .

Note that µ(∅, S) = −1 if |S| = 1. Hence, we conclude that µ(∅, S) =
(−1)|S|.

Exercise 4.28. Calculate µ(1, n) in L = (Dn, |) by Theorem 4.26.
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