
5
Graph Theory Basics

In most cases, a graph is just a relation on a set. It abstracts a set of
objects and their pairwise relations.

5.1 Basic definitions and concepts

We define a graph G as an ordered pair (V, E) with an incidence
function. Unless otherwise stated, V and E are finite. Usually, we
only consider simple graphs, which are graphs without parallel
edges and without self-loops.

Definition 5.1 (Graph). A simple graph is a pair G = (V, E), where
V is a finite set (a.k.a. the vertex set), and E ⊆ (V

2) (a.k.a. the edge set).
For directed graphs (a.k.a. digraphs), E is viewed as a subset of V × V.

If not specified, we usually use V(G) to denote the vertex set of
G, and E(G) to denote the edge set. It is standard to write v(G) ≜
|V(G)| and e(G) ≜ |E(G)|. It is also conventional to write them as n
and m. They are called the order and size of the graph, respectively.

We write uv ∈ E (or u ∼ v, {u, v} ∈ E) to indicate that there
is an edge between u and v in G. In this case u and v are said to be
adjacent, and they are incident to th edge. For directed graphs, we
write −→uv ∈ E (or u → v, (u, v) ∈ E).

An oriented graph is a simple graph where we pick a direction for
each edge. Clearly each simple graph can be oriented in 2m ways.

Example 5.2. There are 2(
n
2) simple graphs on n vertices, 2n2

digraphs,
and 3(

n
2) oriented graphs.

Definition 5.3 (Neighbor and degree). In a (simple) graph, the neigh-
bors of the vertex v is the set N(v) ≜ {u | uv ∈ E}. The degree of v is
d(v) ≜ |N(v)|.
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We can also define neighbors and degrees on a set of vertices, that is,
N(S) ≜ ∪v∈SN(v) and d(S) ≜ |N(S)|.
The smallest and the largest degree in G are denoted δ(G) and ∆(G),
respectively.
In a graph with parallel edges or self-loops, d(v) is defined as the
number of edges incident to v.
In a digraph, N−, N+, d− (in-degree), d+ (out-degree), δ−, δ+, ∆−, ∆+

can be similarly defined, where − means edges going into a vertex,
and + means edges going out.

By counting the number of “vertex v incident to edge e” relations
in two ways, we get the following theorem, which is often the first
theorem one learns in graph theory.

Theorem 5.4 (Handshaking lemma). In any graph, ∑v∈V d(v) = 2 |E|.
As a result, the number of vertices with odd degree is even.

This result looks very simple, but it can give some surprising
corollaries.

Theorem 5.5 (Sperner’s lemma). Subdivide △ABC into a triangulation
(small triangles meet edge-by-edge) and color the vertices by A, B, C. Each
vertex that lies along any edge of △ABC can be only colored with the two
colors of the endpoints of the edge, where the interior vertices can be colored
arbitrarily. Then, there exists a small “tri-colored" triangles.

The picture shows a triangulation of
△ABC. The blue triangle is a small “tri-
colored" triangle. The orange vertices
and edges show the dual graph.

Proof. Consider the dual graph whose vertices are the outer part and
all small pieces of triangles, and vertices are only connected by cross-
ing A-B edges. Notice that the outside vertex has odd degree, which
implies that there exists a vertex with odd degree inside △ABC. It
is easy to see that only those vertices corresponding to “tri-colored”
triangles have odd degrees, which completes the proof.

Sperner’s lemma can be generalized
to n-dimensional simplices. Although
it asserts that there always exists a
sub-simplex whose different vertices
are colored with different colors, it is
difficult to find such a sub-simplex.
Note that the decision problem cannot
be NP-hard since the answer is always
“yes”. In fact, Sperner’s lemma is
another form of Brouwer’s fixed point,
and finding an n-colored sub-simplex
for a given Sperner coloring is PPAD-
complete.

Similar to Theorem 5.4, for any diagraph, we have

∑
v∈V

d+(v) = ∑
v∈V

d−(v) = |E| .

Definition 5.6. A undirected graph is k-regular if d(v) = k for all v ∈
V. A directed graph is k-diregular if d+(v) = d−(v) = k for all v.

Example 5.7. A complete graph of order n, denoted Kn, is the graph
where all (n

2) edges are present. Kn is (n − 1)-regular.
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An orientation for the complete graph is called a tournament. For
a labeled graph of order n, there are 2(

n
2) tournaments, which can be

viewed as all the possible outcomes of a round robin tournament
with n teams. A tournament may be not diregular.

Definition 5.8 (Isomorphism and automorphism). A graph H is iso-
morphic to a graph G, denoted H ∼= G, if there is a bijection f between
V(H) and V(G), such that uv ∈ E(H) iff f (u) f (v) ∈ E(G), where f is
called an isomorphism.
An automorphism of G is an isomorphism from G to itself. It is easy
to check that the set of automorphisms, denoted Aut(G), form a
subgroup of the symmetric group on V .
A graph is vertex transitive if for any two vertices u and v, there is an
automorphism that maps u to v.

Example 5.9. Here are three isomorphic copies of the Petersen graph,
where V = ([5]2 ), and {a, b} ∼ {c, d} iff a, b, c, d are distinct.

Figure 5.1: Petersen graph

Example 5.10. If a graph is vertex transitive, it is k-regular for some
k. If a digraph is vertex transitive, it is k-diregular for some k.

The isomorphic relation is an equivalence relation thus it gives a
partition of all the graphs. Graphs isomorphic to each other share the
same graph properties.

5.2 Walks, paths, cycles and connectivity

Definition 5.11 (Walk, path and cycle). A walk of length k in a graph
is a sequence of vertices u0, u1, . . . , uk where ui ∼ ui+1. If u0 = uk, it is
called a closed walk.
A path of length k is a walk of length k consisting of distinct vertices.
If k ≥ 3 and all the vertices are different except u0 = uk, it is called a
cycle.
Pn is the graph on n vertices which form an (n − 1)-path.
Cn is the graph on n vertices which form an n-cycle.

Example 5.12. P3 is the graph of 2 edges sharing a common endpoint.
C3 is a triangle.
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Definition 5.13 (Girth). The girth of a graph is the length of the
shortest cycle in the graph.

Example 5.14. A graph with girth 5 and δ = d has at least d2 + 1
vertices.

Definition 5.15 (Complement). The complement of a (simple) graph
G = (V, E), denoted G, is G =

(
V, (V

2) \ E
)
.

Example 5.16. The complement of Kn is the empty graph of order n.
The complement of P4 is also a P4. The complement of C5 is also a C5.

Definition 5.17 (Subgraph). A subgraph of a (simple) graph
G = (V, E) is a pair G′ = (V′, E′), where V′ ⊆ V, E′ ⊆ E ∩ (V′

2 ).
G′ is an induced subgraph, usually denoted G[V′], if E′ = E ∩ (V′

2 ), that
is, for each pair of u, v, if u, v ∈ V′ and u ∼ v in G, then u ∼ v in G′.
G′ is an spanning subgraph if V′ = V.

Definition 5.18. A graph is connected if there is a path between each
pair of vertices. Otherwise it is disconnected.
A connected component of a graph is a maximal connected subgraph.

Proposition 5.19. If G = (V, E) is disconnected, then we can find a parti-
tion V = A ⊎ B such that there are no edges between A and B.

Proof. Fix a vertex v ∈ V. Let A be the set of vertices reachable from
v, and B = V \ A.

If G is not connected, there is a partition of vertices V = A ⊎ B
where G contains all the edges between A and B, and thus connected.
So we obtain the following fact.

Proposition 5.20. Either G or its complement is connected.

Proposition 5.21. If G is disconnected, there are at most (n−1
2 ) edges in G.

5.3 Eulerian and Hamiltonian

Figure 5.2: Seven bridges in Königsberg

The first paper of the graph theory was written by L. Euler on the
problem of the bridges of Königsberg (formerly a city in Prussia, now
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Kaliningrad in Russia): is it possible to make a walk through the city,
returning to the starting point and crossing each bridge exactly once?
This paper has led to the following definition.

Definition 5.22 (Eulerian). An Eulerian walk, a.k.a. Eulerian trail, or
Eulerian path, is a walk on a graph which uses every edge exactly
once.
An Eulerian circuit, a.k.a. Eulerian cycle, or Eulerian tour, is a closed
Eulerian walk. A graph that has such a circuit is called Eulerian.

Theorem 5.23. A finite graph G (with possible parallel edges) is Eulerian
iff it is connected and each vertex has even degree.

Proof sketch. The necessity is trivial. To prove the sufficiency, we
start in a vertex v and begin making a path. Keep going, never using
the same edge twice, until we cannot go further. Since every vertex
has even degree, this can only happen when we return to v and all
edges from v have been used. If all edges are used, then we’re done.
Otherwise choose a visited vertex that is incident to an unused edge, Such a vertex must exist, since the

graph is connected.and start the procedure again. Finally, these walks can be combined
to a longer closed walks.

It is easy to obtain the following corollary.

Corollary 5.24. A finite graph G (with possible parallel edges) has an
Eulerian walk iff it is connected and at most two vertices has odd degree.

The same result can be developed in diagraphs. A diagraph is
Eulerian iff it is connected and d+(v) = d−(v) for all v.

Corollary 5.25. Every simple graph G has a balanced orientation, where
an oriented graph is called balanced if for each vertex v,∣∣d+(v)− d−(v)

∣∣ ≤ 1 .

Proof. We may assume the graph is connected. Otherwise consider
each connected components separately. Since the number of vertices
with odd degree is even, we pair such vertices arbitrarily, and add
an (imaginary) edge between each pair. Now we obtain an Eulerian
graph, and orient the edges according to an Eulerian tour. So every
vertex has the same in-degree and out-degree. Finally we remove all
imaginary edges, and each vertex has at most one edge removed.
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If we require the walk passing through each vertex exactly once
rather than each edge, the walk is called Hamiltonian.

Definition 5.26 (Hamiltonian). A Hamiltonian path in a graph G is a
simple path that passes through each vertex exactly once.
A Hamiltonian circuit is a closed Hamiltonian path. A graph that has
such a circuit is called Hamiltonian.

Example 5.27. A graph admits a Hamiltonian circuit if and only if it
has a polygon as a spanning subgraph.

Example 5.28. Petersen graph is not Hamiltonian.

As we see, deciding Eulerian properties is easy. However, deciding
Hamiltonian property is NP-complete.

Theorem 5.29 (Dirac, 1952). If G is a graph on n ≥ 3 vertices and δ ≥
n/2, then G is Hamiltonian.

It can be clearly derived from the following theorem.

Theorem 5.30 (Ore, 1960). If G is a graph on n ≥ 3 vertices and du +

dv ≥ n whenever u ̸∼ v, then G is Hamiltonian.

This theorem is a direct corollary of the following one.

Theorem 5.31 (Bondy-Chvátal, 1972). If G = (V, E) is a graph on n ≥
3 vertices, u, v ∈ V and du + dv ≥ n, then G is Hamiltonian iff G′ is, where
G′ = (V, E ∪ {uv}).

Proof. The “G =⇒ G′” direction is trivial. Now assume u ̸∼ v in
G, and G′ has a Hamiltonian circuit that uses uv: u, v, w1, . . . , wn−2.
So u has du − 1 neighbors in {w1, . . . , wn−3}. Since du + dv ≥ n,
there exists 1 ≤ k ≤ n − 3 such that u ∼ wk and v ∼ wk+1. Thus,
v, w1, . . . , wk, u, wn−2, . . . , wk+1 is a Hamiltonian circuit in G.

Exercise 5.32. Any tournament has a Hamiltonian path.

5.4 Trees and Cayley’s formula

Definition 5.33 (Tree and forest). A tree is a connected graph that
contains no cycles.
A forest is a graph with no cycles as subgraphs, that is, every con-
nected component is a tree.
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Proposition 5.34. In a graph G on n vertices, any two of the following
three conditions imply the third one:

1. G is connected;

2. G has no cycle;

3. e(G) = n − 1.

Definition 5.35. A vertex with degree 1 in a tree is called a leaf.

Proposition 5.36. In a tree of order at least 2, there are at least two leaves.

Proof. The sum of degrees is 2n − 2.

Exercise 5.37. Let A1, . . . , An be n distinct subsets of [n]. Show that there
is a v ∈ [n] such that the sets Ai \ {v} are all distinct.

Proof. Let G be the graph on A1, A2, . . . , An that add an edge labeled
v between Ai and Aj iff Ai △ Aj = {v}. Suppose G is not a forest. The symmetric difference of two sets S

and T, denoted S △ T, is defined as

S △ T ≜ (S \ T) ∪ (T \ S) .
Choose any cycle in G, and any edge e on the cycle. Let v be the label
of e. Note that each label must appear even times on the cycle. So
there is another edge labeled u on the cycle. We can remove e from G
so that the number of distinct labels does not change. Remove such
edges again and again until G is a forest. Now there are at most n − 1
distinct labels, and let v ∈ [n] be any unused number.

Definition 5.38 (Spanning tree). A spanning tree of a graph G is a
spanning subgraph of G that is a tree.

The following formula is one of the most well-known results on
spanning trees, or labeled trees.

Theorem 5.39 (Cayley’s formula, 1889). There are nn−2 different span-
ning trees in Kn.

Equivalently, the Cayley’s formula states that the number of all
labeled trees on [n] is nn−2. The term “labeled” emphasizes that we
are not identifying isomorphic graphs. Two trees are counted as the
same iff exactly the same pairs of vertices are adjacent.

Figure 5.3: Proofs from THE BOOK

There are a variety of elegant proofs on Cayley’s formula, for
example, see Chapter 33, Proofs from THE BOOK. Here we introduce
the (possibly) most well-known one, due to H. Prüfer.

Proof. We introduce the Prüfer code, which gives a bijection between
all labeled trees on [n] and all (n − 2)-sequences on [n].
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Given a labeled tree T on [n], find the leaf v with the smallest
label. Then write down the label of its neighbor and delete v (and its
incident edge) from T. Repeat this procedure until there are only two
vertices remaining in T.

Next, we show that this is a bijection. To see this, we claim that
given any (n − 2)-sequence (v1, . . . , vn−2) ∈ [n]n−2, we can uniquely
decode one tree. Let vn−1 = n, and we construct u1, . . . , un−1 in-
ductively: uk is the smallest number in [n] that does not appear in
{u1, . . . , uk−1} ∪ {vk, . . . , vn−1}. Note that the set has size n − 1, so uk

always exists. Now we can prove that T = ([n], E) is the desired tree,
where E = {{u1, v1}, . . . , {un−1, vn−1}}.

In fact, we can show (u1, . . . , un−1) is the list of deleted vertex
at each step. By Proposition 5.36, vertex n cannot be deleted at any
time. So n should not be in {u1, . . . , un−1}. Then we can see that the
number of appearance of k in {v1, . . . , vn−2} is d(k) − 1, that is be-
cause k appears exactly once in {u1, . . . , un−1} for all k ∈ [n − 1], and
vn−1 = n. So any subset of E contains a degree-1 vertex, which,
combining with |E| = n − 1, implies that T is a tree. Similarly,
let Vk = {uk, . . . , un−1, n}, Ek = {{uk, vk}, . . . , {un−1, vn−1}} and
Tk = (Vk, Ek). Then Tk is a tree. For each Tk, by the rule to construct
Prüfer code, we need to find the smallest leaf in Tk, which is exactly
uk, since uk is the smallest one that does not appear in {vk, . . . , vn−1}
(i.e., has degree 1 in Tk). Clearly, we will delete vertex uk and edge
{uk, vk} from Tk (then we obtain Tk+1), and write down vk. Induc-
tively we prove that (v1, . . . , vn−2) is the Prüfer code of such T.

By the proof of Prüfer code, we obtain the following corollary
immediately.

Corollary 5.40. The number of labeled trees with the given degree sequence
(d1, . . . , dn) is(

n − 2
d1 − 1, . . . , dn − 1

)
=

(n − 2)!
(d1 − 1)! · · · (dn − 1)!

.

Actually, this result can also be derived from recurrence relation.
Let t(n; d1, . . . , dn) be the number of labeled trees with given degree
sequence. Note that the number remains the same on any permuta-
tion of d1, . . . , dn. Assume dn = 1 w.l.o.g. Then we obtain

t(n; d1, . . . , dn) =
n−1

∑
i=1

t(n − 1; d1, . . . , di−1, di − 1, di+1, . . . , dn−1)

by enumerating the neighbor of n. Comparing with multinomials(
n

r1, . . . , rm

)
=

m

∑
i=1

(
n − 1

r1, . . . , ri−1, ri − 1, ri+1, . . . , rm

)
,
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Corollary 5.40 also can be concluded by induction.

5.5 Planar graphs

Definition 5.41 (Planar graph). A graph is planar if it admits a draw-
ing on the plane such that the edges do not cross but meet only at
vertices. We talk of a plane graph if such a drawing is already given
and fixed.

Any such drawing decomposes the plane or sphere into a finite
number of connected regions, including the outer (unbounded) re-
gion, which are referred to as faces. The following Euler’s formula
exhibits a beautiful relation between the number of vertices, edges
and faces that is valid for any plane graph.

Theorem 5.42 (Euler’s formula). If G is a connected plane graph with v
vertices, e edges and f faces, then

v − e + f = 2 .

Proof. We introduce the dual graph G∗ of G, where the vertex set is
the set of all faces, and each pair of faces are connected by an edge in
G∗ iff they share a common boundary edge in G. (If there are several
common boundary edges, then we draw several connecting edges in
the dual graph.)

Figure 5.4: Dual spanning trees in G
and in G∗

Let T ⊆ E be the edge set of a spanning tree for G, and let T∗ ⊆ E∗

be the set of edges in the dual graph that corresponds to edges in
E \ T. The edges in T∗ connect all the faces, since T does not have a
cycle; but also T∗ does not contain a cycle, since otherwise it would
separate some vertices of G inside the cycle from vertices outside.
Thus T∗ is a spanning tree for G∗.

Since each face has at least 3 boundary edges, and each edge is the
boundary of 2 faces, we have 2e ≥ 3 f .

Corollary 5.43. Let G be any simple planar graph on n vertices. Then

1. G has at most 3n − 6 edges;

2. G has a vertex with degree at most 5.

Example 5.44. K5 is not planar.

Another important example of non-planar graph is the complete
bipartite graph K3,3.
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Definition 5.45 (Bipartite graph). A graph G = (V, E) is bipartite if V
can be partitioned into A and B such that all the edges are between A
and B. Similarly, we can define k-partite graphs.

Example 5.46. Trees are bipartite graphs.

Example 5.47. The complete bipartite graph Km,n is the graph with m
vertices in one part, n vertices in the other, and all the mn possible
edges. K1,n is called a star. In particular, K1,3 is also known as a claw.

Note that K3,3 has 6 vertices and 9 edges that does not violate
Corollary 5.43. But it is not planar yet, since Corollary 5.43 is not
tight for bipartite graphs.

Proposition 5.48. A graph is bipartite iff it contains no odd cycles.

Corollary 5.49. Any simple bipartite planar graph on n vertices has at
most 2n − 4 edges.

In fact, K5 and K3,3 are two fundamental structure for non-planar
graphs. Of course, any planar graph cannot have K5 or K3,3 as its
subgraph, but not vice versa (e.g., the Petersen graph).

Definition 5.50 (Subdivision). An edge subdivision is the insertion of
a new vertex into an existing edge. A graph subdivision is a sequence
of edge subdivisions.

Theorem 5.51 (Kuratowski’s theorem). A graph is planar if and only if
it does not contain subgraphs isomorphic to subdivisions of K5 or K3,3.

Example 5.52. The Petersen graph has a subdivision of K3,3.

Definition 5.53. In a graph G = (V, E), deletion of an edge e = {u, v},
denoted G − e, is the subgraph (V, E \ e); and contraction of e, denoted
G \ e, is the graph obtained by replacing u and v with a single vertex
such that edges incident to the new vertex are the edges other than e
that were incident to u or v.

Definition 5.54 (Graph minor). A graph H is a minor of a graph G
if H can be obtained from G via repeatedly deleting and contracting
edges (and possibly deleting some or all isolated vertices).
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Theorem 5.55 (Wagner’s theorem). A graph is planar iff it does not
contain K5 or K3,3 as a graph minor.

Example 5.56. The Petersen graph has both K5 and K3,3 as its minor.

5.6 Graph colorings

Perhaps the most well-known theorem on planar graphs is the Four-
color theorem. We now introduce graph colorings.

Definition 5.57 (Graph coloring). A proper vertex coloring of a graph
G is an assignment of a set C of “colors” to each vertex of G such that
no edge connects two identically colored vertices.
If |C| = k, it is called a k-coloring, and G is said to be k-colored.
Similarly we can define proper edge colorings, where no vertex is inci-
dent to two identically colored edges.

Unless specified, a graph coloring usually means a vertex coloring.

Definition 5.58 (Chromatic number). The chromatic number of a
graph G, denoted χ(G), is the minimum number of colors for which
a proper coloring exists.

Example 5.59. χ(G) = 1 iff G is empty. χ(G) = 2 iff G is nonempty
and bipartite. χ(Kn) = n.

Theorem 5.60 (Four-color theorem). If G is planar, then χ(G) ≤ 4.

Theorem 5.61. Let d ≥ 3, and G be a graph with maximum degree ∆ ≤ d.
If G does not contain Kd+1 as a subgraph. Then χ(G) ≤ d.

Remark 5.62. This is NOT TRUE for d = 2, e.g., odd cycles.
In fact, “Kt as a subgraph” is not believed to be a good characteriza-
tion of “t-colorable”.

Proof. We prove by contradiction. Suppose this is not true for some
d ≥ 3, and let H be a minimal graph (with respect to the number of
vertices) with ∆(H) ≤ d, χ(G) > d, and Kd+1 ̸⊆ H.

Since H is not complete, there exists three vertices v1, vn−1, vn such
that v1 ∼ vn−1, v1 ∼ vn but vn−1 ≁ vn. Now we can list the vertices in
H in the order

v1, v2, . . . , vn−2, vn−1, vn



56 combinatorics

such that each vi+1 is adjacent to at least one of v1, . . . vi for all 1 ≤
i ≤ n − 3. If it is not possible, say, no vertex except vn−1 and vn is
adjcent to at least one of v1, . . . , vk for some 1 ≤ k ≤ n − 3, then we
can show that H is not a minimal graph that cannot be d-colored.
Let V1 = {v1, . . . , vk} and V2 = (V \ V1) \ {vn−1, vn}. So there is no
edge between V1 and V2. Since H is minimal, H is connected and not
separatable (i.e., every graph obtained from H by deleting a vertex is Why?

connected). It follows that both vn−1 and vn are adjacent to V2, and at
least one of vn−1 and vn is adjacent to V1 \ {v1}.

Consider two subgraphs H1 = H[V1 ∪ {vn−1, vn}] and H2 =

H[V2 ∪ {vn−1, vn}]. By assumption, H1 and H2 are d-colorable. Let
c1 : V1 ∪ {vn−1, vn} → [d] be a coloring of H1 such that c1(vn−1) ̸=
c1(vn). If such a coloring does not exist, both vn−1 and vn have
degree d − 1 in V1. Thus both have degree 1 in V2, and it is easy
to find a coloring c2 : V2 ∪ {vn−1, vn} → [d] of H2 such that
c2(vn−1) = c2(vn) = d. Then choose any coloring c1 such that
c1(vn−1) = c1(vn) = d. Clearly c1 ∪ c2 is a proper coloring of H.
Otherwise, note that H2 ∪ {vn−1, vn} is still a graph with ∆ ≤ d and
without Kd+1 as a subgraph, and thus is d-colorable. So there is a col-
oring c2 of H2 such that c2(vn−1) ̸= c2(vn). Permute d colors in c2 so
that c2(vn−1) = c1(vn−1) and c2(vn) = c1(vn). Then c1 ∪ c2 is a proper
coloring of H.

Hence we obtain a list of vertices in H in the order v1, . . . , vn such
that each vi+1 is adjacent to at least one of v1, . . . vi. Now we d-color
H from vn to v1, which leads to a contradiction. Since vn−1 ≁ vn,
assign them the same color. Then for each vk (2 ≤ k ≤ n − 2), it
is adjacent to at most d − 1 vertices in {vk+1, . . . , vn}. So there is an
available color for vk. Finally, there is a color available for v1, since it
has two neighbors vn−1 and vn that are given the same color.

Conjecture 5.63 (Hadwiger’s conjecture). Every loopless graph with
no Kt+1-minor is t-colorable.

We now consider the lower bound of χ(G). It is easy to see that
the set of vertices with the same color forms an independent set.

Definition 5.64. In a graph, an independent set is a set of vertices in
which any two vertices are not adjacent; a clique is a set of vertices in
which any two vertices are adjacent.
The size of the maximum independent set in a graph G is denoted α(G),
and the size of the maximum clique is denoted ω(G).

Example 5.65. An independent set in a graph G is a clique in G. So
α(G) = ω(G).
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Theorem 5.66. In a graph on n vertices, α(G) ≥ n/χ(G).

Now we turn to count the number of proper k-colorings.

Example 5.67. There are k(k − 1)n−1 k-colorings of a tree on [n].

The number of proper colorings can be computed by the principle
of inclusion and exclusion. We consider all mappings from V to [k],
and define bad events as Bu,v = {σ : V → [k] | σ(u) = σ(v)} for all
{u, v} ∈ E. It is easy to compute ∩e∈MBe.

Definition 5.68. Let G = (V, E) be a graph. There is a degree n poly-
nomial χG(λ), such that for any positive integer λ, χG(λ) gives the
number of proper λ-colorings of G.
χG(λ) is called the chromatic polynomial.

Example 5.69. Let G be a graph on n vertices and m edges, and

XG(λ) = anλn + an−1λn−1 + · · ·+ a1λ + a0 .

Then an = 1, a0 = 0, an−1 = −m and an−2 = (m
2 )− t, where t is the

number of triangles in G.

Theorem 5.70 (June Huh, 2012). The coefficients of a chromatic polyno-
mial is log-concave.

Recall Definition 5.53 that we use G − e to denote the subgraph of
deleting e and use G \ e to denote the subgraph of contracting e. Then
the chromatic polynomial has a recurrence relation.

Theorem 5.71. χG(λ) = χG−e(λ)− χG\e(λ).

This relation gives many interesting corollaries, such as the com-
binatorial interpretation of χG(−1). It makes no sense to ask for the
number of proper (−1)-colorings, but since χG(λ) is a polynomial,
we can evaluate χG(−1). However, is this value meaningful?

Theorem 5.72. The number of acyclic orientations, i.e. orientations with
no directed cycles, of a graph G is (−1)v(G)χG(−1).

Proof. Let ξ(G) be the number of acyclic orientations of G. For every
e = {u, v} ∈ E, we have

ξ(G) = ξ(G − e) + ξ(G \ e) .
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This is because in an acyclic orientation of G − e, either there is no
directed path from u to v, or there is no directed path from v to u.
So e can be oriented at least in a direction. In addition, e can be ori-
ented in two directions iff identifying u and v produces an acyclic
orientation.
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