
6
Systems of Distinct Representatives

Let’s play a game as follows. You give me five cards at random from
a standard 52-card deck. I keep one and show the other four cards
(in a particular order) to the teaching assistant. The TA looks at these
cards and can successfully announce the name of the fifth card. Do
you believe it is magic or a mathematical trick?

6.1 Graph matchings and Hall’s theorem

Definition 6.1 (System of distinct representatives, transversal). A
system of distinct representatives (SDR, a.k.a. transversal) of a family
of sets S1, S2, . . . , Sn is a sequence of n distinct elements a1, a2, . . . , an

such that ai ∈ Si for all 1 ≤ i ≤ n.

Clearly, a necessary condition for the existence of SDR is ∀ T ⊆ [n],∣∣∣∣∣⋃
i∈T

Si

∣∣∣∣∣ ≥ |T| .

Surprisingly, such a simple condition is also sufficient. We now refor-
mulate this condition, and introduce Hall’s marriage theorem, in terms
of graph theory.

Definition 6.2 (Matching). A matching in G is a subset M of edges
such that no vertex is incident with more than one edge in M.
The maximum matching is the matching with maximum cardinality.
A perfect matching is a matching M such that every vertex is incident
to exactly one edge in M.
A perfect matching for a set U ⊆ V if every vertex in U is matched.

In other words, a matching is an independent set of edges. A graph
on n vertices has a perfect matching if and only if its maximum
matching has size n/2.
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Theorem 6.3 (Hall’s marriage theorem). In a bipartite graph (U, V, E),
there is a perfect matching for U iff for any subset W ⊆ U, |N(W)| ≥ |W|.

Equivalently, Hall’s theorem states that a set family has a SDR iff
∀ T ⊆ [n], |

⋃
i∈T Si| ≥ |T|.

Proof. The necessity is clear. We only need to show sufficiency. We
prove it by induction on |U|.

The base case |U| = 1 is trivial. Now suppose |U| = n (n ≥ 2) and
the theorem holds for any |U| < n.

• Case 1: for every nonempty W ⊊ U, |N(W)| > |W|. Now pick any
u ∈ U. By Hall’s condition, |N(u)| ≥ 1. Match u to some v ∈ N(u).
Then consider the graph G′ induced by U \ {u} and V \ {v}. For
every W ⊆ U \ {u}, |N(W) \ {v}| ≥ |N(W)| − 1 ≥ |W|. By
induction, there is a perfect matching in G′ for U \ {u}.

• Case 2: there exists a nonempty set W ⊊ U such that |N(W)| =
|W|. Suppose |W| = k. Since |W| < n, by induction, there is a
perfect matching for W. Now consider the graph G′ induced by
U \ W and V \ N(W). For any subset W ′ ⊆ U \ W, we have∣∣N(W ′ ∪ W)

∣∣ ≥ ∣∣W ′ ∪ W
∣∣ = ∣∣W ′∣∣+ k

by Hall’s condition. Note that |N(W)| = k. So it follows that∣∣N(W ′) ∩ (V \ N(W))
∣∣ = ∣∣N(W ′ ∪ W) ∩ (V \ N(W))

∣∣
=

∣∣N(W ′ ∪ W) \ N(W)
∣∣

≥
∣∣N(W ′ ∪ W)

∣∣− k ≥
∣∣W ′∣∣ ,

which is the Hall’s condition in G′. Since |U \ W| < n, by induc-
tion, there is a perfect matching in G′ for U \ W.

Example 6.4. Any k-regular bipartite graph has a perfect matching.

Corollary 6.5 (Birkoff’s theorem). The edge set of a k-regular bipartite
graph can be partitioned into k perfect matchings.

Now we consider the problem of maximum matchings.

Definition 6.6. In a bipartite graph G = (U, V, E), for any W ⊆ U,
the deficiency of W is defined to be max{0, |W| − |N(W)|}.

Hall’s theorem says that if all W ⊆ U has deficiency 0, then there is
a perfect matching for U. The following is an easy corollary (general-
ization) of Hall’s theorem.
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Corollary 6.7. In a bipartite graph (U, V, E), the size of the maximum
matching is |U| − DU (equivalently, |V| − DV), where DU (resp. DV) is
the maximum deficiency over all subsets of U (resp. V).

Proof. Clearly the size of maximum matching cannot be greater than
|U| − DU , since there exists a set W ⊆ U only has |W| − DU neigh-
bors. To see there is a matching of size |U| − DU , add DU vertices to
V, where each of them is adjacent to all vertices in U. The new graph
has a perfect matching by Hall’s theorem.

6.2 Vertex covers and König’s theorem

The problem of maximum matchings is the dual of the problem of
minimum vertex covers.

Definition 6.8 (Vertex cover). A vertex cover in G is a subset C of
vertices such that each edge is incident to at least one vertex in C.
The minimum vertex cover is the vertex cover with minimum cardinal-
ity.

It is easy to see that the size of minimum vertex cover is not less
than the size of maximum matching, since a vertex can only cover
at most one edge in the matching. The following König’s theorem,
also known as König-Egerváry theorem, reveals the relation between
the maximum matching and the minimum vertex cover in bipartite
graphs.

Theorem 6.9 (König’s theorem). In a bipartite graph, the size of the
maximum matching equals the size of the minimum vertex cover.

Remark 6.10. It is not true in general graphs. See, e.g., C5.

We first give a proof of König’s theorem by Hall’s theorem.

Proof. Let G = (U, V, E) be a bipartite graph. For any W ⊆ U,
(U \ W) ∪ N(W) is a vertex cover. Combining with Corollary 6.7 and
the fact that the size of a matching is not greater than the size of a
vertex cover, we complete the proof.

König’s theorem is actually a special case of the max-flow-min-cut
theorem, and also a reformulation of strong duality. To see what does
the “dual problem” mean, we introduce a proof based on the duality
of linear programming.
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Proof. Proof by duality of linear programming We can write an inte-
ger programming formulation of the maximum matching problem.
Any matching M ⊆ E can be represented by |E| variables such that
xe = 1 if the edge e ∈ M and xe = 0 otherwise. Conversely, any
assignment to {xe}e∈E can represent a matching if xe ∈ {0, 1} and
∑(u,v)∈E x(u,v) ≤ 1 for all v ∈ V. So the problem can be formulated as

max ∑
e∈E

xe

subject to ∀ e ∈ E, xe ∈ {0, 1} ;

∀ v ∈ V, ∑
(u,v)∈E

x(u,v) ≤ 1 .

If we relax the constraints xe ∈ {0, 1} to be xe ≥ 0, it can be reformu-
lated as a linear program

max ∑
e∈E

xe

subject to ∀ e ∈ E, xe ≥ 0 ;

∀ v ∈ V, ∑
(u,v)∈E

x(u,v) ≤ 1 .

The relaxed problem is called the maximum fractional matching prob-
lem. Analogously, for each vertex v we can assign a variable yv to
represent whether v is in the vertex cover. We relax the constraints
yv ∈ {0, 1} again. Then we obtain the problem of maximum fractional
vertex cover as follows:

min ∑
v∈V

yv

subject to ∀ v ∈ V, yv ≥ 0 ;

∀ (u, v) ∈ E, yu + yv ≥ 1 .

It is easy to verify that the fractional minimum vertex cover problem
is the dual of the fractional maximum matching problem. So by the
duality of linear programming, in any graph the size of the maxi-
mum fractional matching equals the size of the minimum fractional
vertex cover.

In a bipartite graph G, we now show that the size of the maximum
fractional matching equals the size of the maximum matching. Given
a fractional matching {xe}e∈E, consider the subgraph consisting of
fractional edges e where xe ̸∈ {0, 1}.

• Case 1: There exists a cycle {v1, v2, . . . , vℓ}. Note that ℓ is an even
number since G is bipartite. Let ε = min{1 − x(v1,v2)

, x(v2,v3)
, 1 −

x(v3,v4)
, x(v4,v5)

, . . . , 1 − x(vℓ−1,vℓ), x(vℓ,v1)
}. Then add ε to x(vi ,vi+1)

for all odd i, and subtract ε from x(vi ,vi+1)
for all even i (we assume

that vℓ+1 = v1). The resulting {xe} satisfy all constraints and the
size of the fractional matching remains the same.
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• Case 2: There is no cycles. Then choose any path {v1, . . . , vℓ}.
Note that all edges e incident to v1 has xe ∈ {0, 1} except x(v1,v2)

.
So xe = 0 if v1 belongs to e but e ̸= (v1, v2). Similarly, xe = 0
if vℓ belongs to e but e ̸= (vℓ−1, vℓ). Again, let ε = min{1 −
x(v1,v2)

, x(v2,v3)
, 1 − x(v3,v4)

, x(v4,v5)
, . . . , x(vℓ−1,vℓ) or 1 − x(vℓ−1,vℓ)}.

Then subtract ε from x(vi ,vi+1)
for all odd i, and add ε to x(vi ,vi+1)

for all even i (we assume that vℓ+1 = v1). Now the resulting {xe}
satisfy all constraints and the size of the fractional matching is
nondecreasing.

Each operation decrease the number of fractional edges. So there is
no fractional edges after finite many operations. Consequently, any
fractional matching can be converted into an integral matching that
is not worse, which implies that the size of the maximum fractional
matching equals the size of the maximum matching.

We can also show that the size of the minimum fractional ver-
tex cover equals the size of the minimum vertex cover in a bipartite
graph G = (U, V, E). We construct a vertex cover C as follows. Pick
a real number p ∈ [0, 1] uniformly at random. For every u ∈ U, let
u ∈ C if 0 ≤ p ≤ yu, and for every v ∈ V, let v ∈ C if 1 − yv ≤ p ≤ 1.
Now it is easy to see that for every u ∈ U and v ∈ V, if (u, v) ∈ E,
then yu + yv ≥ 1. So at least one of {u, v} is in C, which gives that
C is a vertex cover. Then we calculate the expected size of C. Clearly,
for any v, Pr(v ∈ C) = yv. Thus, by the linearity of expectation,
E[|C|] = ∑v yv, which is exactly the size of the minimum fractional
vertex cover. Moreover, there exists p ∈ [0, 1] such that the vertex
cover C′ constructed by p has the size |C′| ≤ E[|C|].

Overall, we conclude that in any bipartite graph, the size of the
maximum matching equals the size of the minimum vertex cover.

Corollary 6.11 (Reformulation of König’s theorem). Let A be a 0-1
matrix. The minimum number of lines (i.e., columns and rows) of A that
can cover all 1’s is equal to the maximum number of 1’s in A, where no two
1’s are on the same line.

Corollary 6.12. In a bipartite graph G on n vertices, the size of the maxi-
mum matching is n − α(G).

Proof. It is clear to see that the complement of a vertex cover is an
independent set.

Note that there is a polynomial time algorithm to compute the size
of maximum matching, but finding the maximum independent set is
NP-hard in general graphs. This corollary gives an algorithm for the
problem of maximum independent set in bipartite graphs.
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6.3 Dilworth’s theorem revisit

To recognize the power of Dilworth’s theorem, we show that it con-
tains Hall’s theorem as a special case. In fact, we have seen this in the
proof of Sperner’s theorem (cf. Proof of Theorem 4.16).

Proof of Theorem 6.3 by Dilworth’s theorem. Given a bipartite graph
G = (U, V, E), suppose |U| = n, |V| = m, and label them {1, . . . , n}
and {n + 1, . . . , n + m} respectively. Construct a poset P on [n + m]

such that i ≺ j iff i < j and i ∼ j in G. That is, the Hasse diagram of Exercise: Find an explicit such poset.

P is exactly G with orientation U → V.
Now we show that the size of maximum antichain in P is m. Let T

be an antichain, R = T ∩ U, and S = V \ T. Note that any element in
R must have its neighbors outside T, i.e., in S. Thus, S ⊇ N(R), and
by Hall’s condition, |S| ≥ |R|. It follows that

|T| = |V| − |S|+ |R| ≤ |V| .

By Theorem 4.15, m chains can cover P . Vertices in V are in dis-
tinct chains, so there is no chain only containing a vertex in U. This
gives a perfect matching for U.

Conversely, a surprising fact is that the Dilworth’s theorem is a Probably not surprising, since Dil-
worth’s theorem also gives a formula-
tion of min-max theorems.

special case of König’s theorem (theorefore a special case of Hall’s
theorem). This fact may not be so obvious, since König’s theorem is
about a poset does not look like a bipartite graph. But antichains and
independent sets look similar in a sense, and we have already known
that an independent set is the complement of a vertex cover. So we
can start from this point and try to establish a connection between
maximum matchings and chain covers.

Proof of Theorem 4.15 by König’s theorem. Given a poset P on [n], de-
fine a digraph G on [n] where i → j iff i ≺ j in P . Namely, G is the
transitive-closed Hasse diagram. Then the a chain cover in P corre-
sponds to a directed path partition in G.

The key observation is that, the problem of minimum path par-
tition in a digraph can be solved by maximum matchings. Let H =

(V1, V2, E) be a bipartite graph where V1, V2 are two copies of V(G),
and then connect vi ∈ V1 and vj ∈ V2 iff vi → vj in G. At begin-
ning we use n chains to partition V(G), where each chain contains
a unique vertex. Each edge in a matching of H combines two chains
together. This relation is a bijection between path partitions of G
and matchings in H. So the minimum path partition of G is n − |M|
where M is the maximum matching in H.

Now by König’s theorem, |M| is also the size of the mimimum
vertex cover in H, and thus it gives an independent set I of size 2n −
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|M| in H. Define an antichain T as

T ≜ {v | Both copies of v in V1 and V2 are in I} .

It is easy to check that if u ̸= v ∈ T, then neither u ≺ v nor v ≺ u.
Note that |T| ≥ |I| − n = n − |M|. So we find an antichain whose size
is not less than the size of minimum chain covers, which completes
the proof.

Now we have proved that “Dilworth =⇒ Hall”, “Hall =⇒
König” and “König =⇒ Dilworth”. So actually Dilworth’s theorem,
Hall’s theorem and König’s theorem are “equivalent”.
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