7
The Pigeonhole Principle and Ramsey Theory

7.1 Ramsey number and pigeonhole

We start from an interesting problem.

Question 7.1. Suppose “being friends” is an undirected relation.
Show that among 6 people either there exists 3 people such that each
pair of them are friends, or there exists 3 people such that each pair
of them are not friends.

Using graph theoretical terms, the problem can be written as:
prove that for any yellow-or-blue 2-coloring of edges of Ks, there
exists a yellow K3 or a blue Kj.

Proof. Consider a vertex u in Kg, there are 5 edges connecting u,
which implies that there exists at least 3 monochromatic edges con-
necting u. Without loss of generality, assume that there are 3 yellow
edges connecting u and 4, b, c, respectively. Now, consider the three
edges between a4, b, c. If all of them are blue, then they form a blue

Kj3. Otherwise, assume that the edge between a4 and b is yellow, then
u,a,b form a yellow K3, which completes the proof. O

It is easy to find a 2-coloring of edges of K5 such that the conclu-
sion does not hold.

Question 7.2. Prove that for any 2-coloring of edges of Ky, there
exists a yellow K3 or a blue Kj.

Proof. Consider a vertex u in Kjp. Among the 9 edges connecting u,
there exists 4 yellow ones or 6 blue ones.

If there are 4 yellow edges connecting u and a, b, ¢, d, respectively.
Consider the edges between g, b, c, d. If all of them are blue, then they
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form a blue K4. Otherwise, assume that the edge between a and b is
yellow, then u,a, b form a yellow K3.

If there are 6 blue edges connecting u and other 6 distinct vertices.
Consider the induced subgraph of these 6 vertices. By the result in
Question 7.1, there exists a yellow K3 or a blue K3. If a yellow K3
exists, then the proof is completed. If a blue K3 exists, then these 3
vertices and u form a blue Kj. O

Remark 7.3. Notice that the same conclusion holds for any 2-coloring
of edges of Ky. If it does not hold, each vertex must be incident to 3
yellow edges and 5 blue edges. But this is impossible.

Now, we introduce the definition of Ramsey Number as follows.

Definition 7.4 (Ramsey number). R(s,t) is defined as the smallest
n satisfying: Given Ky, for any 2-coloring of edges of K, either a
yellow K or a blue K; exists.

From above, we already know that R(3,3) = 6 and R(3,4) < 9. We
can also find that R(s,t) < R(s —1,t) + R(s,t — 1) of which the proof
is similar to that in Question 7.2.

The key to the above proofs is the Pigeonhole Principle.

Theorem 7.5 (Pigeonhole principle). Let N, R be two finite sets of size
IN| = n > r = |R|. Consider a mapping f : N — R and non-negative
integers aq,ay, ..., ay such that y_, a; < n. Then, there exists s € R such
that |f~1(s)| > as + 1.

This is a simple but useful tool to prove existence.

Example 7.6 (Question 0.2). Taking any 7 + 1 numbers from [2#],
1. there exists two among them that are relative prime;
2. there exists two among them such that one divides the other.

Example 7.7. Given n integers aj,ay, . ..,a,, there exists consecutive
numbers a;11,a¢42, . .., a;1¢ whose sum Zi:l a4k is a multiple of n.

Example 7.8. Let f, be the n-th Fibonacci number. For any k > 0,
there is n such that f, ends with k 0’s.

Proposition 7.9. For any T > 0, there is n > 0 such that T | f,.
Proof. Let (f, mod T, f,, 11 mod T) be the pigeons. There are dupli-

cated pairs when N = T x T. Since f;, = fu12 — fut1, (f1,fo) = (1,0)
also appears at some position k > 0. O
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Example 7.10. A student who has 20 weeks to prepare for ICPC has
decided to complete at least one training contest every week, but he
only has 30 sets of training problems. Show that no matter how he
schedules his training, there exists consecutive weeks during which
the student will complete exactly 9 training sets.

7.2 Happy ending problem

In 1933, Esther Klein proved the following claim.

Claim 7.11. Any five points in a plane in general position has
a subset that forms a convex quadrilateral. General position
means that no two points coincide and no three points are
collinear.

She also conjectured that for any n, a sufficiently large finite set of
points in general position contains a convex polygon of size n. Later,
the problem was named the “happy ending problem” by Paul Erdés. In
1935, Paul Erd6s and George Szekeres proved the conjecture.

Theorem 7.12 (Erd§s-Szekeres theorem). For any positive n, any suffi-
ciently large finite set of points in general position has a subset of n points
that forms a convex polygon.

Remark 7.13. 1t is a fundamental theorem of combinatorial geometry.
Four years later (1937), Esther Klein became Esther Szekeres. (That’s
why Erd6s name it the “happy ending problem”!) During World
War II, George and Esther escaped to China and lived in Hongkew,
Shanghai. They moved to Australia after the war.

Before giving the proof of this theorem, let’s first see another theo-
rem proved by Paul Erd6s and George Szekeres at the same time.

Theorem 7.14. Any sequence of length mn 4+ 1 with distinct numbers has
either an increasing subsequence of length n 4 1 or a decreasing subsequence
of length m + 1.

We have introduced this theorem in Section 4.2, and proved it
by the Mirsky’s theorem. Now we give an alternate proof by the
pigeonhole principle.

Proof. Define g;, b; as the length of the longest increasing, decreasing
subsequence that ends at the i-th number, respectively. For any i < j,
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a; # a;j or b; # bj holds. (This is because if the i-th number is smaller
than the j-th one, then a; < a;. Otherwise, b; < b;.)

If the longest increasing subsequence has length at most n and
the longest decreasing subsequence has length at most m, then there
must exist i < jsuch that a; = a; and b; = b; due to the pigeonhole
principle, which leads to the contradiction. O

Now, let’s introduce the proof of Theorem 7.12

Proof. Let’s prove that for any (p;fq) + 1 points in general position,
there exists a concave polyline of length p + 1 or a convex polyline
of length g + 1. (Note that a concave/convex polyline will lead to a
convex polygon. If we have proved this, thenset p = ¢ = n —2 and
the whole proof will be completed.)

Figure 7.1: The left picture shows a
concave polyline of length 5, while the
right one shows a convex polyline of
length 5.

We will finish the proof by induction on p and g. It obviously
holds when p = 1 or g = 1. Suppose there are (¥ ;‘7) + 1 points in
general position and no convex polyline of length g + 1 exists. By
induction hypothesis, a concave polyline of length p exists as (¥ ;q) +

1> (P ;ﬁ;l) + 1. Remove the rightmost point of the concave polyline
and add the point into a set S. Repeat the process for (¥ ;"7) +1-—

(p;zil) =(f +Z_1) + 1 times. Based on the induction hypothesis, there
exists either a concave polyline of length p + 1, or a convex polyline
of length g in S. If there exists a concave polyline of length p + 1, then
we're done. Otherwise there exists a convex polyline of length g in S.
In this way, we can find p + g + 1 points such that the left p + 1 points
form a concave polyline of length p while the right g + 1 points form
a convex polyline of length g. It’s easy to show that either the left

p + 2 points form a concave polyline of length p + 1, or the right g + 2
points form a convex polyline of length g 4 1, which completes the

proof. O

Figure 7.2: The picture shows the case
that 11 points form a polyline of length
10, where p = g = 5. It is easy to

see that left 7 points form a concave
polyline of length p +1 = 6.
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7.3 Ramsey theory and applications

In this section, we introduce generalized Ramsey theorem.

Theorem 7.15 (Ramsey theorem). Letr > land q; > rfor1 < i < s.
There exists a minimal integer N = R(qy, . ..,qs; 1) such that for any color-
ing f : E (Kg)) — [s] of edges of the complete r-uniform hypergraph K",

3i € [s] and a copy of K,gf) of color i.

Proof. O

s times
Denote R(g,...,q;r) by Rs(g;7).
With this theorem, we can prove Schur’s theorem.

Theorem 7.16 (Schur’s theorem). Given any positive integer c, there ex-
ists S(c) such that no matter how we color [S(c)] with ¢ colors, there exists
monochromatic x,y,z that x +y = z.

Proof. Take S(c) = R¢(3;2). For any edge (i, j) in graph Kg.), color it
by |i — j|’s color. According to Theorem 7.15, there exists a monochro-
matic K3 in graph Kg (). Assume that u < v < w form a monochro-
matic K3. Setx = v —u,y = w — v,z = w — u. Obviously, x,y,z have
the same color and x + y = z, which completes the proof. O

Also, we obtain an easier proof of Theorem 7.12.

Proof. N = R(n,5;4) points suffice. For any four vertices, if they form
a convex quadrilateral, use the first color (let’s assume it’s blue) to
color the corresponding hyperedge. Otherwise, use the second color
(let’s assume it’s yellow). According to Theorem 7.15, there exists

a blue K,(14) or a yellow Ké4). However, a yellow Ké4)

can never exist
based on Claim 7.11, which implies that there exists n points where
any 4 of them form a convex quadrilateral. It further yields that these

n points form a convex polygon (why?). O

An interesting application of Schur’s theorem is to refute the Fer-
mat Last Theorem in finite fields. The well-known Fermat’s Last
Theorem (proved by Andrew Wiles in 1994) states that x" 4 y" = z"
has no nontrivial solutions as long as n > 3. However, this is not true
in IF, for any sufficiently large prime p.

Theorem 7.17. Suppose n > 1. There exists S(n) such that for any prime
p > S(n),

n n

x"+yt =z (mod p)
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has an integer solution in [p — 1].

Proof. Let’s first prove that there always exists a primitive root g for
prime p, namely, g ! = 1 (mod p) and 4" # 1 (mod p) for all
1 < r < p—2. Consider the order of each number in the group
([p — 1], x). Let ¢»(d) be the number of elements of order d, that is,
the number of x € [p — 1] such that x¥ = 1 (mod p) and x¢ # 1
(mod p) for any d’ < d. What we want to prove is {(p — 1) > 0.

Define ¢(n) be the number of integers 1 < d < n such that
ged(d,n) = 1. For any positive integer N, we have } 5y ¢(d) = N (cf.
Proposition 3.7). In particular, } 4,1 ¢(d) = p — 1.

According to the definition of ¢ (d), we also have Yy, 1 ¢(d) =
p — 1. Based on Lagrange’s Theorem, x* = 1 (mod p) has d roots:
1,m,...,m%1. If m' has order d for some 0 < i < d, then i and d have
to be co-prime, which implies that ¢(d) < ¢(d).

As a1 9(d) = Lapp1 9(d), we have p(d) = ¢(d) for any
d | p— 1. In particular, (p — 1) = ¢(p — 1) > 0. That is, there always
exists a primitive root g for prime p.

Now we can rewrite [p — 1] as [p — 1] = {q,4%,...,47"'}. In other
words, each integer in [p — 1] can be represented as q"**", where
s > 0,n > r > 0. We color the integer with the r-th color. Based on
Theorem 7.16, when p is sufficiently large, there exists s1, 52, 53,7 such
that

qn‘sl-i-r 4 qn~sz+r — qn-53+rl
which implies (since ged (g, p) = 1)

(@)" +(4)" = (9)"  (mod p). =

We now introduce some generalizations of Schur’s theorem. The
following theorem is a direct corollary from its proof.

Theorem 7.18 (Folkman’s theorem). Foranyc,r > 0,3N = N(c,r)
such that no matter how we color [N] with ¢ colors, 3 x1,%2,...,%, € [N]
and Y_i_; < N such that all 2" — 1 partial sums are of the same color.

Schur’s theorem states that when N is large enough, any c-coloring
of [N] will lead to one color with a solution x + y — z = 0. Does there
exists monochromatic x,y, z such that x + y — 2z = 0? In this case
{x,z,y} forms an arithmetic progression of length 3. Here we present
some other theorems on arithmetic progressions.
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Theorem 7.19 (van der Waerden’s theorem). For any c, 1, there is
W = Wr(c,I) such that any c-coloring of [W| contains a monochromatic
arithmetic progression of length I.

Roughly speaking, Ramsey’s theorem tells us no matter how we
partition an universal structure of size #, there exists a part that con-
tains some desired sub-structures, as long as n is sufficiently large.
Sometimes we concern that whether some certain parts contain de-
sired sub-structures. The following theorems give such results on
arithmetic progressions.

Theorem 7.20 (Szemerédi’s theorem). For any integer k, any subset S
with positive upper density, i.e.,

S U [n]|

lim sup >0,

n—o00

contains infinitely many arithmetic progressions of length k.

A natural question is, how about zero-density subsets? The prob-
lem becomes much complicated. A well-known counterexample is
that no 4-AP of squares exists, while a long standing and folklore
conjecture is that the prime numbers contain infinitely many arith-
metic progressions of any length k. In 2004, Ben Green and Terence
Tao proved this conjecture.

Theorem 7.21 (Green-Tao theorem). Let P be any subset of the prime
numbers of positive relative upper density, i.e.,

lim sup L Al
n—00 7'[(”)

where 1t(n) denotes the number of primes less than or equal to n. Then P
contains infinitely many arithmetic progressions of length k for all k.

Remark 7.22. The longest known prime AP is of 26 terms.

Conjecture 7.23 (Erd6s conjecture on arithmetic progressions). Let S
be a subset of N .. If

IR

nes Z

then S contains arithmetic progressions of any length.
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What if we change x + v = z into other linear equations? Richard
Rado proved the following theorem in 1933.

Theorem 7.24 (Rado’s theorem). Let E : Y a;x; = 0 be a linear equation,
where a; are all integers. Then the following are equivalent:

(a) Foranyc > 0, there exists N = N(c) such that any c-coloring of [N]
contains a solution to E where x; € [N] are of the same color.

(b) There is a non-trivial 0-1 solution to E.
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