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Extremal Graphs with Forbidden Subgraphs

Ramsey theorem shows that if a graph is sufficiently large, any parti-
tion has a part that contains some desired structure. In this chapter,
we consider a “reverse” problem: if some structure is forbidden, how
large a graph can be?

8.1 From Mantel to Turdn: forbidden cliques

Let’s start from the simplest structure: a triangle.

Theorem 8.1 (Mantel’s theorem, 1907). If a simple graph G on n ver-
tices is triangle-free, then G has at most |n? /4] edges.

Remark 8.2. This bound is tight. See, e.g., G is the complete bipartite
graph Kig147-

First proof. Let G = (V,E) be a triangle-free graph with maximum
degree A, and v € V has degree A. Then N(v) is an independent set.
Now we can count the number of edges as follows:

E|<A+(n—1—-A)A=(n—A)A< |n?/4]. O

Second proof. Since G is triangle-free, for every adjacent u and v, it
follows that d(u) + d(v) < n. Summing over all edges of G, we have

nm> Y. d(u)+d(v) =Y d(v).

{uv}eE veV

On the other hand, by Cauchy-Schwarz inequality, it yields that

2

Third proof. Assign each vertex v a nonnegative weight w, such that

This method is called the weight shifting
argument.
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Yoev Wo =1, and let

g4 Z For someone who loves linear algebra,
B Wty - you can rewrite it as S = }(w, Aw),
{uv}eE orS = %wTAw, where A is the
Note that we can let w, = 1/n for each v, and in this case it gives adjacency matrix of G. S is offen called
the Lagrangian of G.
[
n2’

Then we would like to shift weights so that the weights are concen-
trated on a complete subgraph and not decrease the value of S. For
any u ~ v, let Wy = ¥ yen) Wi and Wy = Y en(o) Wy- So S can be
rewritten as

S = W,wy, + Wyw, + Z Wy Wy -

{u' v'}eE{uo}n{u' o' }=0

Without loss of generality, assume W,, < W,. Now we can assign
wy, + Wy to v and 0 to u, i.e., shifting the weight of u to v, which does
not decrease the value of S. Hence, after shifting weights finite times,
there is an assignment which concentrates all of the weights on a
complete subgraph of G, and gives a nondecreasing value of S. How-
ever, G is triangle-free. That is, all weights are concentrated on the
endpoints of an edge, say wy and wy. Finally,

m 1
— < S = max Wxwy = — O

n2 wWx+wy <1 4°

In general, denote ex(n, H) the maximum number of edges in a
n-vertex graph without H as a subgraph. So Mantel’s theorem can
be restated as ex(n,K3) < n?/4. A natural generalization of Mantel’s
theorem is to consider forbbiden cliques. The answer is given by a

fundamental result of Pal Turan (Turdn Pal in the native form), which Hungarian names are given in the
“Eastern name order”, with the family

initiated extremal graph theory. name followed by the given name.

Theorem 8.3 (Turdn’s theorem). Ifa graph G = (V,E) on n vertices has

no (r + 1)-cliques, then
1\ n?
El<|1—-)—=.
[El < < r) 2

Namely, ex(n,K,41) < (1-1)%.

N

We first consider which kind of graphs is the extremal case? A
natural guess is the complete r-partite graphs. Partition V into V =
ViWVo - WV, with |V = nj,and letu ~ viffu € V;and v € Vi
for distinct i and j. The resulting graph is a complete r-partite graph,
denoted Kj;,...n,. It is clear that there is no K, in such a r-partite
graph. To maximize the number of edges, we hope Vi, ..., V; are
divided fairly.
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Definition 8.4 (Turdn graph). A Turdn graph on n vertices and with
no K, 1, denoted T(n,r), is a complete r-bipartite graph Ky, ... x,,
where n; € {|n/r],[n/r]} foralll <i<r.

The number of edges in Turan graph T(#,r) is (roughly)

n\n* r—1n*
2)r2 o 27
Turan’s theorem asserts that T(#,r) is an extremal graph of ex(n, K,11).
We now give some proofs of a different nature.
First proof. Prove by induction onn. If n < 7, it is trivial since Turén’s original proof.
2
ex(n, K1) < (5) < (1= 12
Now assume n > r, and G = (V, E) has the maximum number of
edges. Clearly G has K;. Let A be the set of vertices of such K;, and
B =V \ A. We count the number of edges as follows:
- e(A) = ()
e ¢(B) < (1— %)@ by induction;
* ¢(A,B) < (r—1)(n—r) since each vertex in B can only be adjacent
to at most r — 1 vertices in A.

Thus, we obtain

e(G) =e(A)+e(B)+e(A, B)
r r—1 (n—r)?
()erl e

r

IN

r —

Zrl(rz—l—(n—r)z—i-Zr(n—r)) :(1—1)1122. O

r

Second proof. The second proof also uses induction. Suppose the
maximum degree is A, and the vertex of maximum degree is v. Then
N(v) is a set of A vertices where G[N(v)] does not contain a copy of
K;. Thus e(N(v)) < ex(A, K;). Note that all edges other than E(N(v))
are incident to at least one vertex in V' \ N(v). So we have

e(G) <ex(AKy)+A(n—A4),

which, using induction, further gives that

1\ A2
<(1- — +nA—A?
e(G)_< r_1>2+n
r A2 1\ n?
= nA — = <(1-2)=. O
S R —< r>2

Third proof. Prove by the weight shifting argument again. Define w,,
S the same as in the proof of Mantel’s theorem. The same argument
holds so that all weights are concentrated on a complete subgraph K;.

81
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Without loss of generality, suppose their weights are wy, . .., w;.

Let w;y1 = - -+ = w, = 0. Then we have
r 2 r r
25=2 2 wiwj:<2wi> —Zwlzzl— w? .
1<i<j<r i=1 i=1 i=1
Applying the Cauchy-Schwarz inequality, which gives
r 1( r 2
2
Y wi > - sz) =-,
= r\E r
we conclude that
2m 1
— <25<1-—-. O
n r

Fourth proof. Let G = (V,E) be a graph on n vertices without a
Ky 41 clique, and with the maximum number of edges. We need the
following claim.

Claim 8.5. G does not contain three vertices u, v, w such that u ~
w, v~ wbutu ~ v.

To prove this claim, for the sake of contradiction, suppose there are
such vertices, and consider the following two cases.

e Case 1: d(w) < d(u) or d(w) < d(v). We may assume d(w) < d(u).
Then we duplicate vertex u, namely, add a new vertex u’ with the
same neighbor set as u, but do not add edge {u, u’'}. The new
graph is still K, 1-free, because otherwise u’ must be in the clique,
and thus G itself contains a (r + 1)-clique. Now we delete w in the
new graph. Since d(w) < d(u’), the new graph has n vertices, no
(r 4+ 1)-clique, but more edges than G.

e Case 2: d(w) > d(u) and d(w) > d(v). Then we duplicate vertex w
twice, and delete u, v. Again, it is easy to see that the new graph is
still K,;1-free. But the new graph has more edges than G, because
two copies of w contributes 2d(w) edges, and u, v contributes
d(u) +d(v) — 1 edges.

Now applying Claim 8.5, it is easy to see that for any v, V' \ N(v)
(i.e., {v} U{u | u » v}) forms an independent set, and all vertices in
it are adjacent to all other vertices not in the set. Thus, G has to be a
complete k-partite graph for some k < r. As we have already known,
T(n,r) gives the most edges among all complete r-partite graphs
(allowing empty parts). O

Corollary 8.6. Turdn graphs are the only possible extremal graphs.

Now we give a general upper/lower bound of ex(n, H) for an ar-
bitrary H. It depends on the chromatic number of H. Clearly, Turan
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graph T(n,r) is r-colorable. So if x(H) > r + 1, H cannot be a sub-
graph of T(n,r). Thus we have ex(n, H) > (1 — %)”72 You may guess
that we probably can do better. But in fact, the following result shows
that this bound is asymptotically optimal (quite surprising).

Theorem 8.7 (Erd6s-Stone-Simonovits theorem).

s, ) = <1 - X(Hl)—l —|—0(1)) <Z> .

This result is reputed to be the fundamental theorem in extremal
graph theory (first by Béla Bollobas).

8.2 Forbidden even cycles

The Erd&s-Stone-Simonovits resolves the question of (asymptoti-
cally) determining ex(n, H) for many graphs H, but says nothing
about bipartite graphs. Indeed, if x(H) = 2 then the result is that
ex(n, H) = o(n?), which is very imprecise. What is the correct asymp-
totic order of ex(n, H)?

Let’s start from Cy.

Theorem 8.8.

ex(n,Ca) < 7 (14 Van—3).

Proof. Consider the number of triples (u, v, w) such that u ~ w and
v ~ w. For each pair (u,v), there exists at most one w such that
u ~ w and v ~ w. For any vertex w, the number of its corresponding

triples is at most (d(;” )). Therefore, we have

— Zd(u 2<n(n—-1) +Zd(”)

2
— (2[E]) <n(n—1)+2|E| (Cauchy-Schwarz)
— |E| < g(x/mﬂ)- O

This bound is almost best. Here we give an extremal example,
which asymptotically achieves this bound.

Example 8.9. Let p be a sufficiently large prime, and n = p?> — 1. Now
we define G = (V,E) as

V=F;\{(0,0)},
E={{(ab),(x,y)} |ax+by =1}.

33
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It is easy to check that G is Cy4-free, since

ax+by=1
amx+by =1
has at most one solution for distinct (a1, b1) and (ap, by). Moreover,

the degree of each vertex (x,y) is p, or p — 1 (if x> + y?> = 1). Thus G
has p? — 1 vertices and (3 + 0(1))p® edges.

A more sharp example requires more linear algebra. We will talk

about it later.

Theorem 8.10 (Bondy & Simonovits, 1974). Let t > 2. There exists ¢ >
0 such that ex(n, Cy;) < cn!t1/t,

It is still an open problem if Bondy-Simonovits is the correct
asymptotic. We know that it is asymptotically optimal if t = 2,3, 5,
but not for any other values of t.

8.3 Zarankiewicz’s problem

We now consider the extremal problem of forbidden complete bipar-
tite graphs.

Theorem 8.11. Let t > 2. There exists a constant ¢ such that ex(n, Ki;) <
2—1/t
cn .

Proof. Suppose m = |E|. Consider the number of t-claws, that is,
the number of (u,{vy,...,v:}) where u ~ v; for 1 < i < t. For any
t vertices {vy,...,v:}, there exists at most (+ — 1) such u. For any
vertex u, the number of its corresponding t-claws is (d(t”)). Therefore,

p()=en(l)

Notice that the function x — (3}) is convex. By Jensen’s inequality,

; (d(tu)> >n. (2mt/n> |

Since X (x — )t < () < Lx!, we have

we have

% am/n—bt <n- (2’”/”) < (t—1)(’z> < -1t

It follows that
2m/n—t < (t—1)Vip 71/t
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and further implies

1
(t—l)l/tnz_l/t + Etn,

N —

m <

which completes the proof. O

The same argument can be applied to the extremal problems in
bipartite graphs, which is equivalent to the following Zarankiewicz’s
problem.

Question 8.12 (Zarankiewicz’s problem). How many 1’s can an
n x n 0-1 matrix contain if it has no a x b submatrix whose entries are
all 1’s?

Denote k, (1) the maximum number of 1’s in a n x n matrix with
no all 1 submatrix. Usually we omit a subscript if a = b.

Theorem 8.13 (Kovari-Sés-Turan). Assuming 2 < a < b, we have

kop(n) < OBV 02 1/a).

Remark 8.14. In fact, we can show ex(n, K, ) < k(1) < ex(2n,K, ).
Note that ex(n,K, ;) = o(n?). So k, (1) and ex(n, K, ;) only differ at
a constant factor.

A well-known conjecture is k, () = ®(n?~1/%), which is widely
open. For general n > t > 2, a probabilistic argument can give a
lower bound

ki(n) > O(n?=2/Y).

In particular, an algebraic construction similar to Example 8.9 gives
that
ko(n) > (1+0(1))n%/2,

which matches the upper bound Theorem 8.13.

Zarankiewicz’s problem is also related to the following problem
in incidence geometry: on the R? plane there are n points and 7 lines,
how many “point-belongs-to-line” incidences between them?

Let P denote the set of points, L denote the set of lines, and I(P, L)
denote the set of incidence

I(P,L) = {(p,l) ePxL|pel}.

Since two points determine a unique line, there is no K3 in the inci-
dence matrix of P and L. Thus the result of k»(n) immediately gives
that |I(P,L)| < O(n*'2). Unfortunately it is not the correct answer.
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The Szemerédi-Trotter theorem (Theorem 9.3) gives an asymptoti-
cally tight bound, which shows that if |P| = |L| = n, then

max |I(P,L)| = ©(n*/3).

The reason is that no all 0-1 matrices could be an incidence matrix
of points and lines on R? plane. For example, it is impossible to put 7
points and 7 lines on the plane such that every point lies on 3 distinct
lines and every line contains exactly 3 points. However, this incidence
can be realized on projective planes. 1t is actually the Fano plane, the
smallest possible projective plane.

An interesting fact is that we often make use of incidence matrices
in some spaces to design extremal graphs. For instance, Example 8.9
can be viewed as incidences between points {(x,y) € F; | (x,y) #
(0,0)} and lines {¢, | £,p : ax + by =1 in IF%,}

Figure 8.1: Fano plane, consisting of 7
points and 7 lines
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