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Extremal Graphs with Forbidden Subgraphs

Ramsey theorem shows that if a graph is sufficiently large, any parti-
tion has a part that contains some desired structure. In this chapter,
we consider a “reverse” problem: if some structure is forbidden, how
large a graph can be?

8.1 From Mantel to Turán: forbidden cliques

Let’s start from the simplest structure: a triangle.

Theorem 8.1 (Mantel’s theorem, 1907). If a simple graph G on n ver-
tices is triangle-free, then G has at most ⌊n2/4⌋ edges.

Remark 8.2. This bound is tight. See, e.g., G is the complete bipartite
graph K⌊ n

2 ⌋,⌈ n
2 ⌉.

First proof. Let G = (V, E) be a triangle-free graph with maximum
degree ∆, and v ∈ V has degree ∆. Then N(v) is an independent set.
Now we can count the number of edges as follows:

|E| ≤ ∆ + (n − 1 − ∆)∆ = (n − ∆)∆ ≤ ⌊n2/4⌋ .

Second proof. Since G is triangle-free, for every adjacent u and v, it
follows that d(u) + d(v) ≤ n. Summing over all edges of G, we have

nm ≥ ∑
{u,v}∈E

d(u) + d(v) = ∑
v∈V

d(v)2 .

On the other hand, by Cauchy-Schwarz inequality, it yields that

nm ≥ ∑
v∈V

d(v)2 ≥
(
∑v∈V d(v)

)
|V| =

4m2

n
.

Third proof. Assign each vertex v a nonnegative weight wv such that This method is called the weight shifting
argument.



80 combinatorics

∑v∈V wv = 1, and let
For someone who loves linear algebra,
you can rewrite it as S = 1

2 ⟨w, Aw⟩,
or S = 1

2 wTAw, where A is the
adjacency matrix of G. S is offen called
the Lagrangian of G.

S ≜ ∑
{u,v}∈E

wuwv .

Note that we can let wv = 1/n for each v, and in this case it gives

S =
m
n2 .

Then we would like to shift weights so that the weights are concen-
trated on a complete subgraph and not decrease the value of S. For
any u ≁ v, let Wu = ∑u′∈N(u) Wu′ and Wv = ∑v′∈N(v) Wv′ . So S can be
rewritten as

S = Wuwu + Wvwv + ∑
{u′ ,v′}∈E,{u,v}∩{u′ ,v′}=∅

wu′wv′ .

Without loss of generality, assume Wu ≤ Wv. Now we can assign
wu + wv to v and 0 to u, i.e., shifting the weight of u to v, which does
not decrease the value of S. Hence, after shifting weights finite times,
there is an assignment which concentrates all of the weights on a
complete subgraph of G, and gives a nondecreasing value of S. How-
ever, G is triangle-free. That is, all weights are concentrated on the
endpoints of an edge, say wx and wy. Finally,

m
n2 ≤ S = max

wx+wy≤1
wxwy =

1
4

.

In general, denote ex(n, H) the maximum number of edges in a
n-vertex graph without H as a subgraph. So Mantel’s theorem can
be restated as ex(n, K3) ≤ n2/4. A natural generalization of Mantel’s
theorem is to consider forbbiden cliques. The answer is given by a
fundamental result of Pál Turán (Turán Pál in the native form), which Hungarian names are given in the

“Eastern name order”, with the family
name followed by the given name.

initiated extremal graph theory.

Theorem 8.3 (Turán’s theorem). If a graph G = (V, E) on n vertices has
no (r + 1)-cliques, then

|E| ≤
(

1 − 1
r

)
n2

2
.

Namely, ex(n, Kr+1) ≤
(
1 − 1

r
) n2

2 .

We first consider which kind of graphs is the extremal case? A
natural guess is the complete r-partite graphs. Partition V into V =

V1 ⊎ V2 ⊎ · · · ⊎ Vr with |Vi| = ni, and let u ∼ v iff u ∈ Vi and v ∈ Vj

for distinct i and j. The resulting graph is a complete r-partite graph,
denoted Kn1,...,nr . It is clear that there is no Kr+1 in such a r-partite
graph. To maximize the number of edges, we hope V1, . . . , Vr are
divided fairly.
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Definition 8.4 (Turán graph). A Turán graph on n vertices and with
no Kr+1, denoted T(n, r), is a complete r-bipartite graph Kn1,...,nr ,
where ni ∈ {⌊n/r⌋, ⌈n/r⌉} for all 1 ≤ i ≤ r.

The number of edges in Turán graph T(n, r) is (roughly)(
r
2

)
n2

r2 =
r − 1

r
n2

2
.

Turán’s theorem asserts that T(n, r) is an extremal graph of ex(n, Kr+1).
We now give some proofs of a different nature.

First proof. Prove by induction on n. If n ≤ r, it is trivial since Turán’s original proof.

ex(n, Kr+1) ≤ (n
2) ≤

(
1 − 1

r
) n2

2 .
Now assume n > r, and G = (V, E) has the maximum number of

edges. Clearly G has Kr. Let A be the set of vertices of such Kr, and
B = V \ A. We count the number of edges as follows:

• e(A) = (r
2);

• e(B) ≤
(
1 − 1

r
) (n−r)2

2 by induction;

• e(A, B) ≤ (r − 1)(n − r) since each vertex in B can only be adjacent
to at most r − 1 vertices in A.

Thus, we obtain

e(G) = e(A) + e(B) + e(A, B)

≤
(

r
2

)
+

r − 1
r

(n − r)2

2
+ (r − 1)(n − r)

=
r − 1

2r

(
r2 + (n − r)2 + 2r(n − r)

)
=

(
1 − 1

r

)
n2

2
.

Second proof. The second proof also uses induction. Suppose the
maximum degree is ∆, and the vertex of maximum degree is v. Then
N(v) is a set of ∆ vertices where G[N(v)] does not contain a copy of
Kr. Thus e(N(v)) ≤ ex(∆, Kr). Note that all edges other than E(N(v))
are incident to at least one vertex in V \ N(v). So we have

e(G) ≤ ex(∆, Kr) + ∆(n − ∆) ,

which, using induction, further gives that

e(G) ≤
(

1 − 1
r − 1

)
∆2

2
+ n∆ − ∆2

= n∆ − r
r − 1

∆2

2
≤

(
1 − 1

r

)
n2

2
.

Third proof. Prove by the weight shifting argument again. Define wv,
S the same as in the proof of Mantel’s theorem. The same argument
holds so that all weights are concentrated on a complete subgraph Kt.
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Without loss of generality, suppose their weights are w1, . . . , wt.
Let wt+1 = · · · = wr = 0. Then we have

2S = 2 ∑
1≤i<j≤r

wiwj =

( r

∑
i=1

wi

)2

−
r

∑
i=1

w2
i = 1 −

r

∑
i=1

w2
i .

Applying the Cauchy-Schwarz inequality, which gives

r

∑
i=1

w2
i ≥ 1

r

( r

∑
i=1

wi

)2

=
1
r

,

we conclude that
2m
n2 ≤ 2S ≤ 1 − 1

r
.

Fourth proof. Let G = (V, E) be a graph on n vertices without a
Kr+1 clique, and with the maximum number of edges. We need the
following claim.

Claim 8.5. G does not contain three vertices u, v, w such that u ≁
w, v ≁ w but u ∼ v.

To prove this claim, for the sake of contradiction, suppose there are
such vertices, and consider the following two cases.

• Case 1: d(w) < d(u) or d(w) < d(v). We may assume d(w) < d(u).
Then we duplicate vertex u, namely, add a new vertex u′ with the
same neighbor set as u, but do not add edge {u, u′}. The new
graph is still Kr+1-free, because otherwise u′ must be in the clique,
and thus G itself contains a (r + 1)-clique. Now we delete w in the
new graph. Since d(w) < d(u′), the new graph has n vertices, no
(r + 1)-clique, but more edges than G.

• Case 2: d(w) ≥ d(u) and d(w) ≥ d(v). Then we duplicate vertex w
twice, and delete u, v. Again, it is easy to see that the new graph is
still Kr+1-free. But the new graph has more edges than G, because
two copies of w contributes 2d(w) edges, and u, v contributes
d(u) + d(v)− 1 edges.

Now applying Claim 8.5, it is easy to see that for any v, V \ N(v)
(i.e., {v} ∪ {u | u ≁ v}) forms an independent set, and all vertices in
it are adjacent to all other vertices not in the set. Thus, G has to be a
complete k-partite graph for some k ≤ r. As we have already known,
T(n, r) gives the most edges among all complete r-partite graphs
(allowing empty parts).

Corollary 8.6. Turán graphs are the only possible extremal graphs.

Now we give a general upper/lower bound of ex(n, H) for an ar-
bitrary H. It depends on the chromatic number of H. Clearly, Turán
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graph T(n, r) is r-colorable. So if χ(H) ≥ r + 1, H cannot be a sub-
graph of T(n, r). Thus we have ex(n, H) ≥ (1 − 1

r )
n2

2 . You may guess
that we probably can do better. But in fact, the following result shows
that this bound is asymptotically optimal (quite surprising).

Theorem 8.7 (Erdős-Stone-Simonovits theorem).

ex(n, H) =

(
1 − 1

χ(H)− 1
+ o(1)

)(
n
2

)
.

This result is reputed to be the fundamental theorem in extremal
graph theory (first by Béla Bollobás).

8.2 Forbidden even cycles

The Erdős-Stone-Simonovits resolves the question of (asymptoti-
cally) determining ex(n, H) for many graphs H, but says nothing
about bipartite graphs. Indeed, if χ(H) = 2 then the result is that
ex(n, H) = o(n2), which is very imprecise. What is the correct asymp-
totic order of ex(n, H)?

Let’s start from C4.

Theorem 8.8.
ex(n, C4) ≤

n
4
(
1 +

√
4n − 3

)
.

Proof. Consider the number of triples (u, v, w) such that u ∼ w and
v ∼ w. For each pair (u, v), there exists at most one w such that
u ∼ w and v ∼ w. For any vertex w, the number of its corresponding
triples is at most (d(w)

2 ). Therefore, we have

∑
u

(
d(u)

2

)
≤

(
n
2

)
=⇒ ∑

u
d(u)2 ≤ n(n − 1) + ∑

u
d(u)

=⇒ (2|E|)2

n
≤ n(n − 1) + 2|E| (Cauchy–Schwarz)

=⇒ |E| ≤ n
4
(
√

4n − 3 + 1).

This bound is almost best. Here we give an extremal example,
which asymptotically achieves this bound.

Example 8.9. Let p be a sufficiently large prime, and n = p2 − 1. Now
we define G = (V, E) as

V = F2
p \ {(0, 0)} ,

E = {{(a, b), (x, y)} | ax + by = 1} .
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It is easy to check that G is C4-free, sincea1x + b1y = 1

a2x + b2y = 1

has at most one solution for distinct (a1, b1) and (a2, b2). Moreover,
the degree of each vertex (x, y) is p, or p − 1 (if x2 + y2 = 1). Thus G
has p2 − 1 vertices and

( 1
2 + o(1)

)
p3 edges.

A more sharp example requires more linear algebra. We will talk
about it later.

Theorem 8.10 (Bondy & Simonovits, 1974). Let t ≥ 2. There exists c >

0 such that ex(n, C2t) ≤ cn1+1/t.

It is still an open problem if Bondy-Simonovits is the correct
asymptotic. We know that it is asymptotically optimal if t = 2, 3, 5,
but not for any other values of t.

8.3 Zarankiewicz’s problem

We now consider the extremal problem of forbidden complete bipar-
tite graphs.

Theorem 8.11. Let t ≥ 2. There exists a constant c such that ex(n, Kt,t) ≤
cn2−1/t.

Proof. Suppose m = |E|. Consider the number of t-claws, that is,
the number of (u, {v1, . . . , vt}) where u ∼ vi for 1 ≤ i ≤ t. For any
t vertices {v1, . . . , vt}, there exists at most (t − 1) such u. For any
vertex u, the number of its corresponding t-claws is (d(u)

t ). Therefore,
we have

∑
u

(
d(u)

t

)
≤ (t − 1)

(
n
t

)
.

Notice that the function x 7→ (x
t) is convex. By Jensen’s inequality,

∑
u

(
d(u)

t

)
≥ n ·

(
2m/n

t

)
.

Since 1
t! (x − t)t ≤ (x

t) ≤
1
t! xt, we have

n
t!
(2m/n − t)t ≤ n ·

(
2m/n

t

)
≤ (t − 1)

(
n
t

)
≤ (t − 1)

nt

t!
.

It follows that
2m/n − t ≤ (t − 1)1/tn1−1/t



extremal graphs with forbidden subgraphs 85

and further implies

m ≤ 1
2
(t − 1)1/tn2−1/t +

1
2

tn ,

which completes the proof.

The same argument can be applied to the extremal problems in
bipartite graphs, which is equivalent to the following Zarankiewicz’s
problem.

Question 8.12 (Zarankiewicz’s problem). How many 1’s can an
n × n 0-1 matrix contain if it has no a × b submatrix whose entries are
all 1’s?

Denote ka,b(n) the maximum number of 1’s in a n × n matrix with
no all 1 submatrix. Usually we omit a subscript if a = b.

Theorem 8.13 (Kővári-Sós-Turán). Assuming 2 ≤ a ≤ b, we have

ka,b(n) ≤ O(b1/an2−1/a) .

Remark 8.14. In fact, we can show ex(n, Ka,b) ≤ ka,b(n) ≤ ex(2n, Ka,b).
Note that ex(n, Ka,b) = o(n2). So ka,b(n) and ex(n, Ka,b) only differ at
a constant factor.

A well-known conjecture is ka,b(n) = Θ(n2−1/a), which is widely
open. For general n ≥ t ≥ 2, a probabilistic argument can give a
lower bound

kt(n) ≥ O(n2−2/t) .

In particular, an algebraic construction similar to Example 8.9 gives
that

k2(n) ≥ (1 + o(1))n3/2 ,

which matches the upper bound Theorem 8.13.

Zarankiewicz’s problem is also related to the following problem
in incidence geometry: on the R2 plane there are n points and n lines,
how many “point-belongs-to-line” incidences between them?

Let P denote the set of points, L denote the set of lines, and I(P, L)
denote the set of incidence

I(P, L) ≜ {(p, ℓ) ∈ P × L | p ∈ ℓ} .

Since two points determine a unique line, there is no K2,2 in the inci-
dence matrix of P and L. Thus the result of k2(n) immediately gives
that |I(P, L)| ≤ O(n3/2). Unfortunately it is not the correct answer.
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The Szemerédi–Trotter theorem (Theorem 9.3) gives an asymptoti-
cally tight bound, which shows that if |P| = |L| = n, then

max |I(P, L)| = Θ(n4/3) .

Figure 8.1: Fano plane, consisting of 7
points and 7 lines

The reason is that no all 0-1 matrices could be an incidence matrix
of points and lines on R2 plane. For example, it is impossible to put 7
points and 7 lines on the plane such that every point lies on 3 distinct
lines and every line contains exactly 3 points. However, this incidence
can be realized on projective planes. It is actually the Fano plane, the
smallest possible projective plane.

An interesting fact is that we often make use of incidence matrices
in some spaces to design extremal graphs. For instance, Example 8.9
can be viewed as incidences between points {(x, y) ∈ F2

p | (x, y) ̸=
(0, 0)} and lines {ℓa,b | ℓa,b : ax + by = 1 in F2

p}.
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