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Discrete Geometry and Extremal Set Systems

9.1 Extremal systems on points and lines

Why can’t we embed the Fano plane into the R2 plane?

Theorem 9.1 (Sylvester–Gallai theorem). For every n points in the
plane, if they are all on the same line, then there is a line that contains
exactly two of them.

Proof. Let (p0, ℓ0) ∈ P × L be the pair such that p0 ̸∈ ℓ0 and the
distance between p0 and ℓ0 are smallest among all pairs. Then ℓ0 is a
desired line.

The Sylvester–Gallai theorem therefore shows that the Fano plane
cannot be embedded into the real plane, because each point p lies on
three lines where each line contains two points other than p.

We may ask how many such two-point lines every n-point config-
uration in the plane must contain. In 2012, Ben Green and Terence
Tao showed that for any sufficiently large n, if n is even then there
are at least n/2 two-point lines, and if n is odd, there are even at least
3⌊n/4⌋ such lines. Their result is the best possible.

The Sylvester–Gallai theorem directly implies another famous re-
sult on points and lines in the plane, due to Paul Erdős and Nicolaas
G. de Bruijn.

Theorem 9.2 (de Bruijn-Erdős theorem). Every noncollinear set of n
points in the plane determines at least n distinct lines.

Proof. Prove by induction on n. The base case is n = 3, which is triv-
ial. Suppose n > 3 and that the statement is true for n − 1. By Theo-
rem 9.1, there is a line containing exactly two points, say, p0 and p1.
Let p2, . . . , pn−1 be other n − 2 points. If p1, p2, . . . , pn−1 are collinear,
then p0 does not lie on this line, and thus p0 p1, p0 p2, . . . , p0 pn−1
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determines other n − 1 distinct lines. Otherwise, by induction,
p1, . . . , pn−1 determines at least n − 1 distinct lines, where each of
them differs from line p0 p1.

Another related question is how many incidence relations n points
and n lines can determine. As we mentioned before, let P denote the This is a fundamental problem in the

area called incidence geometry, where
we only consider points, lines and their
incidence relation.

set of points, L denote the set of lines, and I(P, L) denote the set of
incidence

I(P, L) ≜ {(p, ℓ) ∈ P × L | p ∈ ℓ} .

Then the following Szemerédi–Trotter theorem gives an asymptoti-
cally optimal bound.

Theorem 9.3 (Szemerédi–Trotter theorem). |I(P, L)| ≲ |P|2/3|L|2/3 +

|P|+ |L|.

Example 9.4. Let P = {(x, y) | x ∈ [k], y ∈ [2k2]} and L = {y =

ax + b | a ∈ [k], b ∈ [k2]}. Each line contains exactly k points, which
implies that |I(P, L)| = O(k4) while |P| = 2|L| = 2k3.

A useful observation is that there is no 2 × 2 all 1 submatrix in the
incidence matrix of points and lines by Euclid’s postulates.

Assumption 9.5 (Euclid’s postulates). Two points determine a
unique line. Two lines intersect at a unique point (if they are not
parallel).

We reformulate the proof of Theorem 8.8 to give an “easy bound”
to the incidence problem:

|I(P, L)|2 =

(
∑
ℓ∈L

∑
p∈P

[p ∈ ℓ]

)2

≤ |L| · ∑
ℓ∈L

(
∑
p∈P

[p ∈ ℓ]

)2

(Cauchy-Schwarz inequality)

= |L| · ∑
p1,p2∈P

∑
ℓ∈L

[p1 ∈ ℓ] · [p2 ∈ ℓ]

= |L| ·
(

∑
p∈P

∑
ℓ∈L

[p ∈ ℓ] + ∑
p1 ̸=p2

∑
ℓ∈L

[p1 ∈ ℓ ∧ p2 ∈ ℓ]

)
≤ |L| · (|I(P, L)|+ |P|2) .

It implies that |I(P, L)| ≲ |P| · |L|1/2 + |L|. If |P| ≈ |L| = O(n), we For convienience, we write f ≲ g to
denote f ≤ O(g) and write f ≈ g to
denote f = O(g).

have |I(P, L)| ≤ O(n3/2).
However, only applying Assumption 9.5 is not sufficient to obtain

the asymptotically tight bound. To get a better result, we roughly
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sketch the idea here. Suppose we can evenly divide the plane into D2

cells such that each cell contains |P| /D2 points and |L| /D lines, and
each line enters D cells. Then we apply the easy bound to each cell to
get

|Icell(P, L)| ≲ |P|
D2

(
|L|
D

)1/2

+
|L|
D

,

and thus

|I(P, L)| ≈ D2 |Icell(P, L)| ≲ |P|
(
|L|
D

)1/2

+ D |L| .

Choosing D = |P|2/3 |L|−1/3, it follows that |I(P, L)| ≲ |P|2/3 |L|2/3.
In fact, this idea can be realized by both the probabilistic method (Sec-
tion 10.3) and the polynomial method. We will introduce details later.

Probably a surprising fact is that de Bruijn–Erdős theorem (i.e.,
Theorem 9.2) can be derived by only Eculid’s postulate (i.e., Assump-
tion 9.5).

Theorem 9.6. Let U be a set of n ≥ 3 elements, and S1, . . . , Sm be proper
subsets of U, such that every pair of elements of U is contained in precisely
one set Si. Then it holds that m ≥ n.

Proof. Assume each Si has size at least 2. Otherwise remove all sin-
gleton sets, which does not change the condition, but decrease the
value of m.

For any u ∈ U, let ru be the number of sets Si containing u. Note
that each Si is a proper subset, so ru ≥ 2. For any u and Si such
that u ∈ Si, there exists v ̸= u ∈ Si and w ̸∈ Si. Thus there exists
a set Sj such that v, w ∈ Sj but u ̸∈ Sj. This gives that ru < m.
Moreover, if u ̸∈ Si, then ru ≥ |Si|, since the sets containing u and an
element in Si must be distinct. Now, suppose m < n, then we have
mn − m |Si| > mn − nru for u ̸∈ Si, and thus

1 = ∑
u∈U

1
n
= ∑

u∈U
∑

u ̸∈Si

1
n(m − ru)

> ∑
Si

∑
u ̸∈Si

1
m(n − |Si|)

= ∑
Si

1
m

= 1 ,

which leads to a contradiction.

Xiaomin Chen and Vesěk Chvátal have even partially extended the
de Bruijn-Erdős theorem to general metric spaces.

9.2 Intersecting set families

We now consider the intersection relation between sets. A family
of sets is called intersecting if any two of them have a nonempty in-
tersection. Let U be a set of n elements. We can ask the following
questions:
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• how many subsets of U are there at most such that each pair of
subsets is intersecting?

• how many nonempty subsets of U are there at most such that
none pair of subsets is intersecting?

However both of them are less interesting, because the answer to
the second one is trivially n + 1. For the first one, by the pigeonhole
principle, it is clear that the number of intersecting subsets cannot
exceed 2n−1, and this bound can be easily achieved by picking all
subsets containing 1.

An interesting problem is to find the largest intersecting family of
k-element sets. Clearly, if 2k > n, then (U

k ) is an intersecting family.
So we only consider 2k ≤ n. The lower bound is easy. All k-element
sets containing 1 is an intersecting family of size (n−1

k−1). But can we do
better?

Theorem 9.7 (Erdős–Ko–Rado theorem). The largest size of an inter-
secting family of k-element subsets of [n] is (n−1

k−1) when n ≥ 2k.

Paul Erdős, Chao Ko and Richard Rado found this result in 1938,
but it was not published until 23 years later.

Fisrt proof. The basic idea is to find a special type of extremal inter-
secting families, so that we can prove the theorem by induction. We
define a shift operator as follows. Given F ⊆ 2[n] and F ∈ F , the Erdős’ shifting technique.

(i, j)-shift is

Si,j(F)

(F \ {j}) ∪ {i} if i ̸∈ F, j ∈ F, and (F \ {j}) ∪ {i} ̸∈ F ,

F otherwise .

and the (i, j)-shift for family F is

Si,j(F ) = {Si,j(F) | F ∈ F} .

Roughly speaking, the (i, j)-shift operator is to replace j with i for
each set in F , if possible. By definition, we have

∣∣Si,j(F)
∣∣ = |F| and∣∣Si,j(F )

∣∣ = |F |. A key observation is the following claim.

Claim 9.8. If F is intersecting, so is Si,j(F ).

Otherwise, suppose Si,j(F) ∩ Si,j(G) = ∅. Clearly, it cannot happen
when both F, G are shifted, or neither F, G is shifted. Without loss of
generality, we may assume Si,j(F) = F and Si,j(G) ̸= G. So j ∈ G and
i ̸∈ G. Since F ∩ G ̸= ∅, and F ∩ Si,j(G) = ∅, we know that F ∩ G =

{j}, and i ̸∈ F. When performing the (i, j)-shift on F, why did not we
replace j with i? The only reason is F′ = (F \ {j}) ∪ {i} ∈ F . But
F′ ∩ G ̸= ∅, which contradicts to F ∩ G = {j}.
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Now we can give a proof by induction on n and k. The base case
is n = 2. So the only possible value for k is 1, which is trivial. Next,
suppose the statement is true for n − 1. We argue that it is also true
for n. If k = 1, it is trivial. If n = 2k, note that(

n − 1
k − 1

)
=

1
2

(
n
k

)
.

By the pigeonhole principle, any subset family of size > (n−1
k−1) con-

tains some k-element set F and its complement at the same time,
which is not intersecting.

For the case n > 2k, we shift the intersecting family F , namely,
apply Si,j to F for every i ∈ [n − 1] and j = n. Now let

Fn = {F ∈ F | n ∈ F} and Fn = F \ Fn .

For Fn, it is an intersecting family of subsets on [n − 1], and thus,
by induction, it has size |Fn| ≤ (n−2

k−1). For Fn, let F, G ∈ Fn be
two subsets, and F′ = F \ {n}, G′ = G \ {n} respectively. Since
|F′| + |G′| = 2k − 2 < n − 1, there exists t ∈ [n − 1] such that
t ̸∈ F ∪ G. Again, why did not we replace n with t in F and G when
applying St,n to F? Of course both F′ ∪ {t} and G′ ∪ {t} are in F . Here, we also need to note that any set

in F not containing n does not change
during shifting.

But (F′ ∪ {t}) ∩ G ̸= ∅. So we obtain F′ ∩ G′ ̸= ∅, which implies that
Fn is also an intersecting family if we remove n from each element
in Fn. Thus Fn has size at most (n−2

k−2) by induction. We conclude the
theorem by (

n − 1
k − 1

)
=

(
n − 2
k − 1

)
+

(
n − 2
k − 2

)
.

Second proof. The following great idea, due to G.O.H. Katona, is a Katona’s circle.

double counting by connecting intersecting sets and consecutive
subsequences in circular permutations.

Let π be a circular permutation on [n], and Cπ be the set of all
consecutive subsequences of length k in π. Namely, Cπ is given by

Cπ = {(πs+1, πs+2, . . . , πs+k) | s = 0, 1, 2, . . . , n − 1} ,

where π(n + t) = π(t) for 1 ≤ t ≤ n. Let F be an intersecting family.
A key observation is the following.

Claim 9.9. |F ∩ Cπ | ≤ k.

Suppose F ∩ Cπ ̸= ∅. Let B0 = (πs+1, πs+2, . . . , πs+k) ∈ F ∩ Cπ ,
and Bt = (πs+t+1, πs+t+2, . . . , πs+t+k) for 1 ≤ |t| ≤ k − 1. Clearly
in Cπ only above 2(k − 1) subsequences B(k−1), . . . , B−1, B1, . . . , Bk−1

are intersecting with B0. Since for each t, Bt ∩ Bt+k = ∅. Thus these
2(k − 1) subsequences can be partitioned into k − 1 pairs such that
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F contains at most one in each pair. By the pigeonhole principle, we
conclude Claim 9.9.

We now count in two ways the sum L of |F ∩ Cπ | over all circular
permutations. By the claim, L ≤ k(n − 1)!. But for each F ∈ F , there
are k!(n − k)! circular permutations that contains F as a consecutive
subsequence. It implies that L = |F | k!(n − k)!, and hence

|F | ≤ k(n − 1)!
k!(n − k)!

=

(
n − 1
k − 1

)
.

Remark 9.10. A natural question is whether all sets containing a same
element is the only largest case. The answer if true if n < 2k, but it is
false if n = 2k. Let F be a set family such that for every size-k subset
S ∈ (U

k ), exactly one of S and S is contained in F . It is easy to check
that F is intersecting, and in most cases ∩S∈FS = ∅.

A related problem is to ask the size of the largest intersecting
family where every pair of set has the same size intersection.

Theorem 9.11 (Fisher’s inequality). Let C1, . . . , Cm be distinct subsets
of [n] such that

∣∣Ci ∩ Cj
∣∣ = k for some fixed k ∈ [n] and every i ̸= j. Then

m ≤ n.

The whole proof requires a powerful tool: the linear algebraic
method. We postpone the whole proof to Chapter 14. But the case
k = 1 is equivalent to Theorem 9.6. We give a proof here.

Proof of the case k = 1. If there exists j ∈ [n] such that j ∈ Ci for
all i ∈ [m], then Ci \ {j} are disjoint. Since they are subsets of an
(n − 1)-set, there are at most n such subsets. So m ≤ n.

Now assume there is no j such that j ∈ Ci. Let Sj be the set of i’s
such that j ∈ Ci, namely, i ∈ Sj ⇐⇒ j ∈ Ci. So Sj ⊊ [m]. Note that
Ci is also the set of j’s such that i ∈ Sj. By assumption,

∣∣Ci1 ∩ Ci2

∣∣ = 1
for each pair of i1 ̸= i2 ∈ [m], which implies that {i1, i2} is contained
in precisely one set Sj. By Theorem 9.6, we conclude that m ≤ n.

On the other hand, it is easy to check that by using the same ar-
gument in reverse, Theorem 9.6 can derived from the case k = 1 of
Fisher’s inequality. So they are equivalent indeed.

9.3 Antichains revisit

The antichains for subset poset is an important topics for extremal set
families. Recall that, an antichain for sets is a family T of subsets of
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[n] such that no set in T contains another set in T . Sperner’s theorem
(i.e., Theorem 4.16) asserts that the largest antichain has size ( n

⌊n/2⌋).
We now introduce another proof, which gives a considerably sharper
result.

Theorem 9.12 (LYM inequality). Let T be an antichain over [n]. Then

∑
T∈T

(
n
|T|

)−1
≤ 1 .

This result is due to Lubell (1966), and was also discovered by
Meshalkin (1963) and by Yamamoto (1954). The following elegant
proof is also due to Lubell.

Proof. Given a permutation π on [n], let Pπ be the set of prefixes of π,
defined by

Pπ ≜ {{π(1), . . . , π(k)} | k = 1, 2, . . . , n} .

For any antichain T , note that |Pπ ∩ T | ≤ 1. So a double counting
argument gives that

∑
T∈T

|T|!(n − |T|)! = ∑
π

|Pπ ∩ T | ≤ n! ,

which yields that

1 ≥ ∑
T∈T

|T|!(n − |T|)!
n!

= ∑
T∈T

(
n
|T|

)−1
.

In fact, Lubell’s result is a special case of an earlier result of Bol-
lobás.

Theorem 9.13 (Bollobás). Let A1, . . . , Am and B1, . . . , Bm be two se-
quences of sets such that Ai ∩ Bj = ∅ if and only if i = j. Then

m

∑
i=1

(
ai + bi

bi

)−1
≤ 1 ,

where ai = |Ai| and bi = |Bi| for all 1 ≤ i ≤ m.

This theorem can also be proved by Lubell’s method of counting
permutations.

Proof. Let U be the union of all sets Ai ∪ Bi, and assume U = [n]
without loss of generality. Given two disjoint subsets A and B, we say
a permutation π separates the pair (A, B) if no element of B precedes
an element of A, i.e., if π(i) ∈ A and π(j) ∈ B then i < j.
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Claim 9.14. Each permutation separates at most one pair (Ai, Bi)

In fact, suppose π separates (Ai, Bi) and (Aj, Bj) for some i ̸= j.
Since Ai ∩ Bj ̸= ∅ and Aj ∩ Bi ̸= ∅, pick two elements in Ai ∩ Bj

and Aj ∩ Bi respectively, and let k, ℓ be their positions in π. Namely,
π(k) ∈ Ai ∩ Bj, and π(ℓ) ∈ Aj ∩ Bi. If π separates (Ai, Bi), then k < ℓ;
if π separates (Aj, Bj), then ℓ < k. Thus it leads to contradiction.

We now count the number of permutations separating a fixed pair.
For any permutation, it separates at most one pair, so the number is
at most n!. For each pair (Ai, Bi), the number of permutations than
can separate it is(

n
ai + bi

)
ai! bi! (n − ai − bi)! = n!

(
ai + bi

bi

)−1
.

Summing up over all m pairs we obtain the desired inequality.

Remark 9.15. To see that Theorem 9.12 is a special case of Theo-
rem 9.13, let A1, . . . Am be all sets in an antichain, and Bi = [n] \ Ai.


	Discrete Geometry and Extremal Set Systems
	Extremal systems on points and lines
	Intersecting set families
	Antichains revisit


