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Discrete Geometry and Extremal Set Systems

9.1 Extremal systems on points and lines

Why can’t we embed the Fano plane into the R? plane?

Theorem 9.1 (Sylvester—Gallai theorem). For every n points in the
plane, if they are all on the same line, then there is a line that contains
exactly two of them.

Proof. Let (po, o) € P x L be the pair such that py ¢ {y and the
distance between py and ¢j are smallest among all pairs. Then ¢ is a
desired line. O

The Sylvester—Gallai theorem therefore shows that the Fano plane
cannot be embedded into the real plane, because each point p lies on
three lines where each line contains two points other than p.

We may ask how many such two-point lines every n-point config-
uration in the plane must contain. In 2012, Ben Green and Terence
Tao showed that for any sufficiently large n, if n is even then there
are at least n/2 two-point lines, and if n is odd, there are even at least
3|[n/4| such lines. Their result is the best possible.

The Sylvester-Gallai theorem directly implies another famous re-
sult on points and lines in the plane, due to Paul Erd6s and Nicolaas
G. de Bruijn.

Theorem 9.2 (de Bruijn-Erd&s theorem). Every noncollinear set of n
points in the plane determines at least n distinct lines.

Proof. Prove by induction on n. The base case is n = 3, which is triv-
ial. Suppose n > 3 and that the statement is true for n — 1. By Theo-
rem 9.1, there is a line containing exactly two points, say, pp and p;.
Let p,..., py—1 be other n — 2 points. If p1, p2,..., py—1 are collinear,
then pg does not lie on this line, and thus pop1, pop2, - - -, PoPn—1
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determines other n — 1 distinct lines. Otherwise, by induction,
P1,---,Pn—1 determines at least n — 1 distinct lines, where each of
them differs from line pgp;. O

Another related question is how many incidence relations n points
and 7 lines can determine. As we mentioned before, let P denote the
set of points, L denote the set of lines, and I(P, L) denote the set of
incidence

I(P,L) 2 {(p,f) EPxL|pel}.

Then the following Szemerédi-Trotter theorem gives an asymptoti-
cally optimal bound.

Theorem 9.3 (Szemerédi-Trotter theorem). |I(P,L)| < |P[*/3|L|?/3 +
[P+ |L].

Example 9.4. Let P = {(x,y) | x € [k], y € [2K’]}and L = {y =
ax+b | a € [k], b € [k*]}. Each line contains exactly k points, which
implies that |I(P,L)| = O(k*) while |P| = 2|L| = 2k>.

A useful observation is that there is no 2 x 2 all 1 submatrix in the

incidence matrix of points and lines by Euclid’s postulates.

Assumption 9.5 (Euclid’s postulates). Two points determine a
unique line. Two lines intersect at a unique point (if they are not
parallel).

We reformulate the proof of Theorem 8.8 to give an “easy bound”
to the incidence problem:

1P = (% }:[pee])z

leL peP

2
<L) ( Y lpe E]) (Cauchy-Schwarz inequality)

leL \peP
=ILl- Y. YImel-lpe/
p1,p2€P el
1 (LYlet+ ¥ Tlinetrped)
peP el p1#p2 LeL

< [L|- (JI(P,L)| +[PP).

It implies that |I(P,L)| < |P| - |L|Y2 + |L|. If |P| =~ |L| = O(n), we
have |I(P,L)| < O(n3/?).

However, only applying Assumption 9.5 is not sufficient to obtain
the asymptotically tight bound. To get a better result, we roughly

This is a fundamental problem in the
area called incidence geometry, where
we only consider points, lines and their
incidence relation.

For convienience, we write f < g to
denote f < O(g) and write f ~ g to
denote f = O(g).
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sketch the idea here. Suppose we can evenly divide the plane into D?
cells such that each cell contains |P| /D? points and |L| /D lines, and
each line enters D cells. Then we apply the easy bound to each cell to

get
1/2
|P| (|L] L]
|Ice11(P,L)|A<Jﬁ D +6’

and thus
2 L\
|I(P,L)| = D” |Ien(P, L)| S |P] (D) +D]JL|.

Choosing D = |P|*/®|L|~'/3, it follows that [I(P,L)| < |P|*®|L|*>.
In fact, this idea can be realized by both the probabilistic method (Sec-
tion 10.3) and the polynomial method. We will introduce details later.

Probably a surprising fact is that de Bruijn—Erd&s theorem (i.e.,
Theorem 9.2) can be derived by only Eculid’s postulate (i.e., Assump-

tion 9.5).

Theorem 9.6. Let U be a set of n > 3 elements, and Sy, ..., Sy be proper
subsets of U, such that every pair of elements of U is contained in precisely
one set S;. Then it holds that m > n.

Proof. Assume each S; has size at least 2. Otherwise remove all sin-
gleton sets, which does not change the condition, but decrease the
value of m.

For any u € U, let r, be the number of sets S; containing u. Note
that each S; is a proper subset, so r, > 2. For any u and S; such
that u € §;, thereexistsv # u € S; and w ¢ S;. Thus there exists
asetS; such that v, w € S; butu ¢ S;. This gives that r, < m.
Moreover, if u ¢ S;, then r, > |S;|, since the sets containing # and an
element in 5; must be distinct. Now, suppose m < n, then we have
mn —m |S;| > mn — nry, for u g S;, and thus

1
1—2**22 ZZ =) —=1,
wetu ™ Ul ugs; "(m —Tu) S; ugs; (” —15il) s, M
which leads to a contradiction. O

Xiaomin Chen and Vesék Chvatal have even partially extended the
de Bruijn-Erdés theorem to general metric spaces.

9.2 Intersecting set families

We now consider the intersection relation between sets. A family
of sets is called intersecting if any two of them have a nonempty in-
tersection. Let U be a set of n elements. We can ask the following
questions:
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* how many subsets of U are there at most such that each pair of
subsets is intersecting?

¢ how many nonempty subsets of U are there at most such that
none pair of subsets is intersecting?

However both of them are less interesting, because the answer to
the second one is trivially n + 1. For the first one, by the pigeonhole
principle, it is clear that the number of intersecting subsets cannot
exceed 2", and this bound can be easily achieved by picking all
subsets containing 1.

An interesting problem is to find the largest intersecting family of
k-element sets. Clearly, if 2k > n, then (%CI) is an intersecting family.
So we only consider 2k < n. The lower bound is easy. All k-element
sets containing 1 is an intersecting family of size (Zj) But can we do
better?

Theorem 9.7 (Erd6s—Ko—Rado theorem). The largest size of an inter-
secting family of k-element subsets of [n] is (}~) when n > 2k.

Paul Erdés, Chao Ko and Richard Rado found this result in 1938,
but it was not published until 23 years later.

Fisrt proof. The basic idea is to find a special type of extremal inter-
secting families, so that we can prove the theorem by induction. We
define a shift operator as follows. Given F C 2/"l and F € F, the

(i,)-shift is

5:,(F) {(F\{J’})U{i} ifigF jeF and (F\{j})U{i} £ F,

F otherwise.
and the (i, j)-shift for family F is
Sij(F) ={Sij(F) | Fe F}.

Roughly speaking, the (i, j)-shift operator is to replace j with i for
each set in F, if possible. By definition, we have |S; j(F)| = |F| and
|S;i(F)| = |F|. A key observation is the following claim.

Claim 9.8. If F is intersecting, so is S; j(F).

Otherwise, suppose S;j(F) N S;;j(G) = @. Clearly, it cannot happen
when both F, G are shifted, or neither F, G is shifted. Without loss of
generality, we may assume S; ;(F) = F and S;;(G) # G. So j € G and
i ¢ G.Since FNG # @,and FN S; j(G) = @, we know that FN G =
{j}, and i ¢ F. When performing the (i, j)-shift on F, why did not we
replace j with i? The only reason is F' = (F\ {j}) U{i} € F. But
F' NG # @, which contradicts to FN G = {j}.

Erd6s’ shifting technique.
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Now we can give a proof by induction on n and k. The base case
is n = 2. So the only possible value for k is 1, which is trivial. Next,
suppose the statement is true for n — 1. We argue that it is also true
for n. If k = 1, it is trivial. If n = 2k, note that

n—1\ _1/n

k—1) 2\k)’
By the pigeonhole principle, any subset family of size > (}_1) con-
tains some k-element set F and its complement at the same time,
which is not intersecting.

For the case n > 2k, we shift the intersecting family J, namely,
apply S;j to F for every i € [n — 1] and j = n. Now let

Fo={FeF|neF} and Fr=F\Fy.

For Fy, it is an intersecting family of subsets on [n — 1], and thus,
by induction, it has size | F| < (Z:f) For F,, let F,G € F, be
two subsets, and F/ = F\ {n},G' = G\ {n} respectively. Since
|[F'| +|G'| = 2k—2 < n—1, there exists t € [n — 1] such that

t ¢ FUG. Again, why did not we replace n with t in F and G when
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applying St,n to F? Of course both F/ U {t} and G' U {t} are in F. Here, we also need to note that any set
But (FFU{t}) NG # @. So we obtain F' N G’ # @, which implies that in 7 not containing 1 does not change

. . . o during shifting.
Fn is also an intersecting family if we remove n from each element
in F,. Thus F,, has size at most (Z:i) by induction. We conclude the
theorem by
n—1 n—2 n—2
6= () (52) :
Second proof. The following great idea, due to G.O.H. Katona, is a Katona’s circle.

double counting by connecting intersecting sets and consecutive
subsequences in circular permutations.

Let 7t be a circular permutation on [n], and Cj be the set of all
consecutive subsequences of length k in 77. Namely, C is given by

Cr = {(ms41, Msi2, .-, TWsyk) | $=0,1,2,...,n—1},

where 7t(n+t) = nt(t) for 1 <t < n. Let F be an intersecting family.
A key observation is the following.

Claim 9.9. |FNCxr| <k.

Suppose F N Cy # @. Let By = (7511, Ts12,- -+, Tsyk) € FNCp,
and By = (75441, ott42, - -, Msrprk) for 1 < [t| < k — 1. Clearly
in C, only above 2(k — 1) subsequences B(k-1),---,B-1,B1,...,Bx1
are intersecting with By. Since for each t, B; N By, = @. Thus these
2(k — 1) subsequences can be partitioned into k — 1 pairs such that
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F contains at most one in each pair. By the pigeonhole principle, we
conclude Claim 9.9.

We now count in two ways the sum L of |F N Cy| over all circular
permutations. By the claim, L < k(n — 1)!. But for each F € F, there
are k!(n — k)! circular permutations that contains F as a consecutive
subsequence. It implies that L = |F|k!(n — k)!, and hence

k(n—1)! n—1
|F|§k!(n—k)!:<k—1)‘ =

Remark 9.10. A natural question is whether all sets containing a same
element is the only largest case. The answer if true if n < 2k, but it is
false if n = 2k. Let F be a set family such that for every size-k subset
S € (l,’([), exactly one of S and S is contained in F. It is easy to check
that F is intersecting, and in most cases Ngc S = @.

A related problem is to ask the size of the largest intersecting
family where every pair of set has the same size intersection.

Theorem 9.11 (Fisher’s inequality). Let Cy,..., Cy, be distinct subsets
of [n] such that |C; N C;| = k for some fixed k € [n] and every i # j. Then
m < n.

The whole proof requires a powerful tool: the linear algebraic
method. We postpone the whole proof to Chapter 14. But the case
k =1 is equivalent to Theorem 9.6. We give a proof here.

Proof of the case k = 1. If there exists j € [n] such thatj € C; for
alli € [m], then C; \ {j} are disjoint. Since they are subsets of an
(n — 1)-set, there are at most n such subsets. So m < n.

Now assume there is no j such that j € C;. Let S; be the set of i’s
such that j € C;, namely, i € S; <= j € C;. So S; C [m]. Note that

C; is also the set of j’s such that i € S;. By assumption, |C;; N C;,| =1
for each pair of iy # i € [m], which implies that {i1,i,} is contained
in precisely one set S;. By Theorem 9.6, we conclude that m <n.  [J

On the other hand, it is easy to check that by using the same ar-
gument in reverse, Theorem 9.6 can derived from the case k = 1 of
Fisher’s inequality. So they are equivalent indeed.

9.3 Antichains revisit

The antichains for subset poset is an important topics for extremal set
families. Recall that, an antichain for sets is a family 7 of subsets of
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[n] such that no set in 7 contains another set in 7. Sperner’s theorem
(i.e., Theorem 4.16) asserts that the largest antichain has size (Lnl}z J)'
We now introduce another proof, which gives a considerably sharper
result.

Theorem 9.12 (LYM inequality). Let T be an antichain over [n]. Then

Zleg'

TeT

This result is due to Lubell (1966), and was also discovered by
Meshalkin (1963) and by Yamamoto (1954). The following elegant
proof is also due to Lubell.

Proof. Given a permutation 7t on [n], let Py be the set of prefixes of 7,
defined by

P2 {{n(1),...,1(k)} | k=1,2,...,n}.

For any antichain 7, note that |P, N 7| < 1. So a double counting
argument gives that

Y T (n—|T]) 'fZ|P7rﬂT| <n!,
TeT

which yields that

1>2mnwm_zle' -

TeT TeT

In fact, Lubell’s result is a special case of an earlier result of Bol-
lobas.

Theorem 9.13 (Bollobas). Let Ay,..., Ay and By, ..., By, be two se-
quences of sets such that A; N\ Bj = @ if and only if i = j. Then

i(al—i—b) <1,

where a; = |A;| and b; = |B;| forall 1 <i < m.

This theorem can also be proved by Lubell’s method of counting
permutations.

Proof. Let U be the union of all sets A; U B;, and assume U = [n]
without loss of generality. Given two disjoint subsets A and B, we say
a permutation 7t separates the pair (A, B) if no element of B precedes
an element of A, i.e., if 7(i) € A and 71(j) € B theni < j.

93
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Claim 9.14. Each permutation separates at most one pair (A;, B;)

In fact, suppose 7t separates (A;, B;) and (A;, B;) for some i # j.
Since A; N B; # @ and A; N B; # @, pick two elements in A; N B;
and A; N B; respectively, and let k, £ be their positions in 7z. Namely,
nt(k) € A;NBj, and 7t(¢) € A;jN B;. If 7 separates (A;, B;), then k < £;

if 7t separates (A}, B;), then £ < k. Thus it leads to contradiction.

We now count the number of permutations separating a fixed pair.
For any permutation, it separates at most one pair, so the number is
at most n!. For each pair (A;, B;), the number of permutations than
can separate it is

n a; + b\
<al~+bi) ai!bi!(n—ai—bi)!:n!< lbl‘ l> .
Summing up over all m pairs we obtain the desired inequality. O

Remark 9.15. To see that Theorem 9.12 is a special case of Theo-
rem 9.13, let Ay,... A, be all sets in an antichain, and B; = [n] \ A;.
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