
10
Basic Probabilistic Methods

We now introduce a powerful tool to prove existence: the probabilistic
method.

10.1 Probabilistic counting

We use the following definition for a probability space (Ω,F , Pr[·]):
• Ω is the set of “outcomes", which is also the sample space. It can

be countable or uncountable.

• F is a σ-algebra (a set of all possible “events"), on which we can
define probability. We say F is a σ-algebra if it satisfies:

– ∅ ∈ F ;
– ∀A ∈ F , A∁ ∈ F ;
– ∀A1, . . . , An, . . . ∈ F , ∪Ai ∈ F .

• Pr[·] : F → [0, 1] if a function such that

– Pr[∅] = 0, Pr[Ω] = 1;
– For any disjoint sets A1, . . . , An, . . . ∈ F , Pr[∪Ai] = ∑ Pr[Ai].

The probabilistic method in combinatorics is based on the simple
fact:

Pr[A] > 0 =⇒ A ̸= ∅ .

Roughly speaking, a probability function is a weight function for
each subset, and is countably additive. In principle, the finite proba-
bility arguments can be rephrased as counting proofs, but are usually
more complicated without probabilities.

Paul Erdős is considered as the father of the probabilistic method.
We start from his classic result on ramsey numbers.

Theorem 10.1 (Paul Erdős, 1947). R(k, k) > n if(
n
k

)
21−(k

2) < 1 .

Proof. Color the edges of Kn independently and uniformly at ran-
dom. Fix a set S ∈ ([n]k ). Let ES be the event that S induces a monochro-
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matic Kk. It’s easy to show that Pr[ES] = 21−(k
2). Thus, we have

Pr[∃ a monochromatic Kk] = Pr[∪ES] ≤ ∑
S

Pr[ES] =

(
n
k

)
21−(k

2) < 1.

It implies that the probability that no monochromatic Kk exists is not
zero, which completes the proof.

Here we use a simple but widely applied tool: the union bound.

Proposition 10.2 (Union bound). For any countable sets A1, . . . , An, . . .,
Pr[∪Ai] ≤ ∑ Pr[Ai].

We give more examples of basic probabilistic counting.
We say a k-uniform hypergraph H = (V, E), where E ⊆ (V

k ),
is 2-colorable if V can be colored with 2 colors such that no edge is It is also known as property B.

monochromatic. For instance, when k = 2, it’s easy to find that a
2-uniform hypergraph is a graph, and is 2-colorable if and only if it is
bipartite.

Figure 10.1: Fano plane, consisting of 7
vertices and 7 3-uniform edges

Define m(k) as the minimal number of edges in a k-uniform hy-
pergraph that is not 2-colorable. When k = 2, it’s simple to show
that m(2) = 3 (triangle). When k = 3, we can prove that m(3) = 7
and Fano plane is the graph with minimal number of edges. It is also
known that m(4) = 23. However, we still don’t know how large m(k)
is when k ≥ 5.

In 1964, Paul Erdős derived a lower bound of m(k) through the
probabilistic method as follows.

Theorem 10.3 (Paul Erdős, 1964). m(k) ≥ 2k−1.

Proof. For any graph with m < 2k−1 edges, we randomly color each
vertex. For any edge, the probability that it is monochromatic is
21−k. Therefore, the probability that a monochromatic edge exists is
no larger than m · 21−k, which is smaller than 1. This completes the
proof.

The probabilistic method can also give upper bounds.

Theorem 10.4 (Paul Erdős, 1964). m(k) = O(k2 · 2k).

Proof. Fix the number of vertices as n, which will be determined
later. We uniformly choose m edges from ([n]k ) to form a k-uniform
hypergraph with m edges. For any coloring χ : V → {0, 1}, define Aχ

as the event that χ is a proper coloring in the random hypergraph.
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As we want to prove that there exists a k-uniform hypergraph with m
edges that is not 2-colorable, it suffices to show that ∑χ Pr[Aχ] < 1.

If χ colors a vertices with 0, and b vertices with 1, then we have for
any edge e Note that x 7→ (x

k) is a convex function
on x.

Pr[e is monochromatic] =
(a

k) + (b
k)

(n
k)

≥ 2 ·
(n/2

k )

(n
k)

.

Define p =
(n/2

k )

(n
k)

. Therefore,

Pr[Aχ] = (1 − Pr[e is monochromatic])m ≤ (1 − 2p)m,

which implies that

∑
χ

Pr[Aχ] ≤ 2n · (1 − 2p)m < en ln 2−2mp.

Obviously, n ln 2 − 2mp < 0 suffices. Setting n = k2, we can see that
m > n ln 2/(2p) = O(k2 · 2k), which completes the proof.

A related problem is to determine the list chromatic number ch(G),
which is also known as the choice number. A list coloring of a graph
is a proper coloring where each vertex is assigned a list of allowable
colors. A graph G is said to be k-choosable, or k-list-colorable, if it
has a proper coloring no matter how one assigns a list of k colors to
each vertex. Then ch(G) is defined as the minimum value of k such
that G is k-choosable. It’s easy to see that χ(G) ≤ ch(G). However,
the equality may not hold. Consider K3,3 and the following allow-
able color lists: for the 3 vertices of the left part, assign color list
{2, 3}, {1, 3}, {1, 2} to them respectively, and assign the same three
color lists to the vertices on the right.

The following proposition reveals the relationship between k-
choosable bipartite graphs and 2-colorable hypergraphs.

Proposition 10.5. If there exists a non-2-colorable k-uniform n-edge hyper-
graph, then ch(Kn,n) > k.

Proof. Let H = (V, E) be a non-2-colorable k-uniform hypergraph
where |E| = n. Label vertices in Kn,n by ue and ve, and assign color
list e of size k. If Kn,n has a proper coloring, let C be the set of used
colors among n vertices in the left part. Then, for any vertex in H,
if it belongs to C, color it by 0. Otherwise color it by 1. Clearly for
each edge e ∈ E, the color of ue is in C while the color of ve is not
in C. So it forms a 2-coloring of hypergraph H, which leads to a
contradiction.
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Corollary 10.6. ch(Kn,n) > (1 − o(1)) log2 n.

Proof. By Theorem 10.4, m(k) = O(k2 · 2k).

Theorem 10.7. If n < 2k−1, then ch(Kn,n) ≤ k.

Proof. For each color, uniformly i.i.d. mark it as L or R. For any ver-
tex in the left/right part of Kn,n, we only use colors marked L/R to
color it. For each vertex, the probability that there is no valid color
for it is 2−k. As long as 2n · 2−k < 1, the probability that there ex-
ists valid marking is greater than zero, which implies that a valid
marking and a proper coloring exist.

Corollary 10.8. ch(Kn,n) = (1 ± o(1)) log2 n.

Actually, it has been proved that ch(G) > (1 + o(1)) log2 d where
d is the average degree of graph G. The proof is based on the hyper-
graph container method, which we may discuss in the future.

10.2 Linearity of expectation

The linearity of expectation is also a powerful tool in combinatorics.
Let X = c1X1 + . . . + cnXn, then E[X] = c1E[X1] + . . . + cnE[Xn].
(Note that we do not need to guarantee that these random variables
are independent.)

Theorem 10.9 (Szele, 1943). There exists a tournament of size n with at
least n! · 21−n Hamiltonian paths.

Proof. Pick a random tournament. Define X as the number of Hamil-
tonian paths. For each permutation π, let Xπ be 1 if π(1) → π(2) →
· · · → π(n) is a path in the tournament. Otherwise, let Xπ be 0.

Therefore,

X = ∑
π

Xπ =⇒ E[X] = ∑
π

E[Xπ ] = n! · 21−n,

which completes the proof.

We usually call Xπ an indicator random variable. The expectation
of Xπ is exactly the probability of the event it indicates.

Remark 10.10. This theorem was considered the first use of the prob-
abilistic method. Szele conjectured that the maximum number is
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n!
(2−o(1))n , which was proved by Noga Alon in 1990.

Now we consider a continuous probability space and introduce the
following “cute” result from Paul Erdős.

Theorem 10.11 (Paul Erdős,1965). Let A = {a1, . . . , an} be a set of n
nonzero integers. There is a subset B ⊆ A such that B is a sum-free set (i.e.,
no a, b, c ∈ B with a + b = c) of size at least n/3.

Proof. For θ ∈ [0, 1], let Sθ = {n ∈ A : {nθ} ∈ ( 1
3 , 2

3 )}, where
{x} ∈ [0, 1) is defined as the fractional part of a real number x. If Sθ

is not sum-free, then there exists a + b = c in Sθ and aθ + bθ = cθ,
which leads to a contradiction as ( 1

3 , 2
3 ) is sum-free for fractional

parts. Therefore, Sθ is sum-free.
Choose θ u.a.r. from [0, 1]. Thus, Pr[n ∈ Sθ ] =

1
3 as {nθ} u.a.r. By

linearity, E[|Sθ |] = n/3, which completes the proof.

Remark 10.12. This problem was used in an exam for Chinese math-
ematics olympiad training team. Up till now, the best lower bound
we have known is (n + 2)/3, which was proved by Jean Bourgain in
1977.

As we mentioned above, a probability function is a weight func-
tion for each subset, and thus a probabilistic argument is equivalent
to a counting argument. Now we reformulate some proofs we intro-
duced before in terms of the probabilistic method.

Probabilistic proof of Erdős-Ko-Rado Theorem. Let π be a random per-
mutation of [n]. Consider a circle and all contiguous blocks of size k.
That is, Cπ = {{π((i + j) mod n) : j ∈ [k]} : i ∈ [n]}. (We assume that
π(0) = π(n) here.)

For any S ∈ F , let XS be 1 if S ∈ Cπ and 0 otherwise. Therefore,

E[XS] = Pr[S ∈ Cπ ] =
n
(n

k)
.

Since F is an intersecting family, we have ∑ XS = |F ∩ Cπ | ≤ k.
To prove this, note that for every S ∈ Cπ , there exists 2(k − 1) other
subsets in Cπ intersecting S, but they can be paired off into k − 1
distinct pairs, and two subsets in each pair are disjoint. So ∑ XS =

|F ∩ Cπ | ≤ k, and thus ∑ E[XS] ≤ k, which completes the proof.

Probabilistic proof of LYM inequality. Consider a random permutation
π of [n]. Construct a chain

Cπ = {∅, {π(1)}, {π(1), π(2)}, . . . , {π(1), . . . , π(n)}}.
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For any S ∈ F , let XS be 1 if S ∈ Cπ and 0 otherwise. Therefore,

E[XS] = Pr[S ∈ Cπ ] =
|S|!(n − |S|)!

n!
=

1
( n
|S|)

.

Since F is an anti-chain, we have ∑ XS = |F ∩ Cπ | ≤ 1, which implies
that ∑ E[XS] ≤ 1. This completes the proof.

We can also give an alternate proof for Turán’s theorem.

Theorem 10.13 (Caro-Wei inequality). For any graph G,

α(G) ≥ ∑
v∈V(G)

1
d(v) + 1

.

Proof. Consider a random permutation π of V. Let I be the set of
vertices that appear before all its neighbors. Obviously, I is an inde-
pendent set.

For any vertex v, Pr[v ∈ I] = 1
d(v)+1 , which implies that E[|I|] =

∑v(d(v) + 1)−1. This completes the proof.

Notice that if we take the component of graph G, we have the
following corollary.

Corollary 10.14. For any graph G,

ω(G) ≥ ∑
v∈V(G)

1
n − d(v)

≥ 1
1 − 2m

n2

.

The last inequality above is due to Jensen’s inequality. After rear-
ranging, we have m ≤ (1 − 1

r ) ·
n2

2 if graph G is Kk+1-free, which is
the Turán’s Theorem (cf. Theorem 8.3).

10.3 Crossing numbers and discrete geometry

Define cr(G) as the minimal number of crossings in a drawing of
graph G with n vertices and m edges. Recall that in Section 5.5, we
have introduced that K3,3 is not a planar graph. It’s easy to show that
cr(K3,3) = 1. In this section, we will give a lower bound of cr(G).

By the Euler’s formula (Theorem 5.42), we know that |E| ≤ 3 |V| −
6 for any planar graph (Corollary 5.43). For any graph, we consider
its drawing. For each crossing, remove an edge incident to it. Then
the remaining graph is planar. Therefore, |E| − cr(G) ≤ 3|V|, which
implies that cr(G) ≥ m − 3n.

However this bound is not tight, as it only shows that cr(G) =

Ω(n2) when m = Ω(n2), while the upper bound of cr(G) is (m
2 ) =
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Ω(n4). In 1973, Erdős and Guy conjectured that cr(G) ≥ c · m3/n2

for some constant c > 0. In 1982, the inequality was proved when
c = 1

100 .

Theorem 10.15 (Ajtai-Chvátal-Newborn-Szemerédi, 1982). cr(G) ≥
1

100 · m3/n2.

The constant factor was improved to 1
64 later, and the proof was

based on the probabilistic method.

Theorem 10.16 (Crossing lemma). cr(G) ≥ 1
64 · m3/n2 as long as m ≥

4n.

Proof. For each graph G = (V, E) and a drawing, pick a real number The proof which we now present arose
from e-mail conversations between
Bernard Chazelle, Micha Sharir and
Emo Welzl.

p ∈ (0, 1) (to be determined later). For each vertex v ∈ V, we remove
it with probability 1 − p. Thus, we obtain an induced subgraph G′ =

(V′, E′). Obviously, we have

E[|V′|] = pn,

E[|E′|] = p2m,

E[cr(G′)] ≤ E[number of remaining crossings] = p4cr(G).

Note that the easy bound cr(G) ≥ m − 3n holds for any graph G.
Therefore,

E[cr(G′)− (|E′| − 3|V′|)] ≥ 0

=⇒ p4cr(G)− p2m + 3pn ≥ 0

=⇒ cr(G) ≥ p−3(pm − 3n).

Assume that m ≥ 4n and set p = 4n/m, we can find that cr(G) ≥
1
64 · m3

n2 .

Actually, the crossing lemma is not well-known in a long time,
until 1997 when László Székely surprisingly applied it to some geo-
metric problems.

We first give a proof of Szemerédi–Trotter theorem (Theorem 9.3).

Proof of Szemerédi–Trotter theorem. Construct a graph G = (V, E) such
that V = P, and E = {(p1, p2) : ∃ℓ ∈ L, p1, p2 ∈ ℓ are adjacent on ℓ}.

Obviously, we have |E| = ∑ℓ∈L(|P ∩ L| − 1) ≥ 1
2 (I(P, L) − |L|).

Note that two lines share at most a common point, so the crossing
number of this graph is at most |L|2. Based on the crossing lemma,
we have

|L|2 ≥ cr(G) ≳
|E|3
|V|2 ≳

I(P, L)3

|P|2

if I(P, L) ≥ 8|P|, which completes the proof of the theorem.
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Another application is the unit distance problem. Given n points on
a plane, how many pairs of points are at distance 1?

Example 10.17. In a grid of size
√

n ×
√

n, there are O(n) such pairs.

In 1946, Paul Erdős gave the following conjecture:

Conjecture 10.18 (Paul Erdős, 1946). For any n points, the number of
unit distances is at most n1+o(1).

However, Paul Erdős only derived an upper bound of O(n1.5). In
1973, Józsa and Szemerédi improved this bound to o(n1.5). In 1984,
Beck and Spencer gave a bound of O(n1.44). The best known bound is
O(n4/3), which was given by Spencer, Szemerédi and Trotter in 1984.
Here, we will introduce the proof by Székely in 1997 as follows.

Proof of Conjecture 10.18. For each point p, if there are at least 2 points
having unit distance to p, draw a unit circle centered at p. Then, for
any pair (p, q), if there exists more than one arc between them, we
only keep one and erase others.

Now, we have a drawing of a graph with n vertices and m edges,
where m ≥ (#unit distance − n)/2. Since any two circles intersect at
most two points, we have cr ≤ 2 · (n

2), which implies #unit distance ≲
n4/3.
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