11
Alteration Method

We now introduce a method called alteration.

11.1 Alterations

We begin with an example. Recall that (Theorem 10.1) Erd6s gave a
probabilistic proof to show that R(k, k) > n if

<Z> 21-0) < 1.

In its proof, we color the edges of K;, independently and uniformly
at random. Fixaset S € ([Z]). The probability that S induces a
monochromatic K is 21-(). We showed in the previous chapter
that by the union bound, if (2)21_(5) < 1 there exists a coloring such
that no monochromatic Kj exists. However, we could do something
more clever. If there exists a monochromatic Kj in the graph, we can
remove an vertex from the graph to obtain a graph and a coloring
without monochromatic Kj.

In fact, let X be the random variable of the number of monochro-
matic Kis. Then E[X] is () - 21-(). So there exists a coloring such
that the number of monochromatic Ky is at most E[X].

For any monochromatic Ky, we delete a vertex of it from the
graph. The remaining size will be at least n — E[X], which implies
the following theorem.

Theorem 11.1. For any k, n, we have

R(kk)>n— <Z) 21-0),
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Remark 11.2. Theorem 10.1 implies that

R(k, k) > <e\1/§ +o(1)> k2k'2

while Theorem 11.1 gives a better lower bound

R(kK) > (1 +0(1)) k2K/2

Note that for general Ramsey Number, we also have a similar
lower bound.

Theorem 11.3. Forany s,t,n and p € [0,1], we have
R(s,t) >n— (Z) p) — (T) (11— p)(é)_

This method is called alteration. When random structures do not
have all the desired properties but may have some “bad parts”, we
can alter the structure to remove all “bad parts”.

Another classic application of alteration is the problem of minimum
dominating set. We first give its definition as follows.

Definition 11.4 (Dominating set). For any graph G = (V, E), a vertex
subset U is a dominating set if forany v € V, N*(v) N U # @, where
N (v) is the set of v and all its neighbors, i.e.,, N*(v) = N(v) U {0v}.

Example 11.5. A vertex cover is a dominating set. A maximal inde-
pendent set is a dominating set.

However, for dominating sets, we would like to find the smallest
one. Vertex covers and maximal independent sets may be too large.
Actually, we can always find a dominating set which only depends
on the minimum degrees.

Theorem 11.6. For any graph of size n with minimum degree § > 1, there
exists a dominating set of size at most (%) n.

We first consider some naive attempts. For example, we can greed-
ily take a vertex into the dominating set and remove all its neighbors.
However, after taking the first vertex, we cannot bound the num-
ber of removed vertices at each step, since the minimum degree of
vertices in the remaining graph is no longer J.
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Proof. We use the alteration method. Let p € [0, 1] be a fixed parame-
ter to be determined later. We independently pick each vertex into set
X with probability p. Consider the vertices that are not dominated by
vertices in X. Let Y = V'\ N (X). Clearly, X U Y is a dominating set.
Now, let’s bound the size of XU Y.

Note that for any vertex v, Pr[v € Y] < (1 — p)'*?, since neither v
nor its neighbors are in X. Thus, we have

E[|XUY|] = E[|X|] + E[|Y]]
< pn+(1—p)*n

log(5+1))

< (p+e P (minimizing by setting p = <5*1

< log(6+1)+1 ",
- s+1
which completes the proof. O

Remark 11.7. We can also apply the same technique when we are
searching for an independent set. We independently pick each vertex
into set X with probability p. For each edge, if both of its endpoints
are selected, we remove one of them. In this way, the expectation on
the size of the independent set is pn — p>m. By setting p = n/(2m),
we can show that there exists an independent set of size at least 7,
which, unfortunately, is worse than Caro-Wei inequality (cf. Theo-
rem 10.13).

11.2  Markov’s inequality

Sometimes it is required not only to remove “bad events”, but also to
estimate the probability of removing too many events. The following
Markov’s inequality gives a simple probabilistic tool.

Theorem 11.8 (Markov’s inequality). Let X be a nonnegative random
variable. Then

Proof. E[X] = E[X | X > ] Pr(X > )+ E[X | X < t] Pr(X < t) >
tPr(X > ). O
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A classic example is the existence of graphs with high girth and Recall that the girth of a graph is the

large chromatic number. If a graph has a k-clique, then we can say

X > k. Conversely, if x is large, is it always possible to verify it by
observing local information? Surprisingly, this is far from being true,
even for “locally tree-like” graphs.

minimum length of cycles in the graph.
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Theorem 11.9 (Paul Erdss, 1959). For any (, k, there exists a graph with
girth larger than £ and chromatic number larger than k.

Proof. Let G ~ G(n,p) with p = (logn)?/n. Let X be the number of

cycles of length no larger than /. In Kj,, there are exactly () - @

cycles of length i. Therefore, we have

Co/n -1 &

Applying Markov’s inequality, we have Pr[X > 2] = 0(1) < %

Note that x(G) > % It suffices to show a(G) < %. By setting
_ 3logn
f = 22081

s We have

(t=1)t

) -(1—p)(§) <nt-eP 7T =0(1) < %

Prla(G) = 1 < (]
Let n be sufficiently large such that Pr[X < 5 Aa(G) < t] > 0. For
each cycle no larger than /, we remove a vertex from it. Suppose the
graph we get is G'. Then |V(G')| > . Also, its girth is larger than ¢,
and «(G') < a(G) < 310#, which implies that x(G') > 61;:)211 > k.
This completes the proof. O

Remark 11.10. Constructing such a graph is not that easy. Here we
introduce how to construct a triangle-free graph with large chro-
matic number. Let G be graph K;. Given G,,_; = (V,E) forn > 3,
construct G, = (VU V' U{w}, EUE') as follows:

e V'isacopy of V;

e For any (u,v) € E, add (#/,v) in E' where #’ is the copy of u in V’;
e Forany ¢’ € V/,add (v/,w) in E'.

It’s easy to check that G, is triangle-free and its chromatic number
equals to n.

Actually, even if we check the chromatic number of a sub-graph
induced by ¢ - n vertices, we still know nothing about the chromatic
number of the whole graph. Paul Erd6s proved the following theo-
rem.

Theorem 11.11 (Paul Erd6s, 1962). Forany k > 0, there existse > 0
such that for any sufficiently large n, there exists a graph G of size n with
xX(G) > k while x(G[S]) < 3forall |S| < e-n (whereG[S] is the
subgraph of G induced by the vertex set S).

G(n, p) is an Erd6és-Rényi random
graph on n vertices, where every two
vertices are connected with probability
p independently.
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Proof. For a fixed k, let ¢, ¢ satisfy ¢ > 2In2-k*H(1/k) and ¢ <
33¢75.¢3, where

H(x) = —xlog, x — (1 — x)log,(1 —x)

is the entropy function.

Set p = ¢/nand let G ~ G(n, p). Now, let’s prove that G satisfies
all requirements almost surely.

Let’s first discuss its chromatic number. If x(G) < k, then a(G) >
#. Let X be the number of independent sets of size . We have

E[X] = (Jk) (1= p) (%) < Qn(HA/K)+o(D) , g=en/2R(L+o(1),

which is 0(1) by our condition on c. This implies that x(G) > k
almost surely.

Now, let’s consider the other constraint. If there exists a set of
size no larger than ¢ - n such that the chromatic number of its in-
duced sub-graph is larger than 3, let S be the minimal set such that
X(G[S]) = 4. Thus, for any vertexv € S, x(G[S \ {v}]) = 3 which
implies that v has at least 3 neighbors in S. Therefore, there are at
least % in G[S]. Let t = |S| and &; be the event that there exists a
size-t induced sub-graph with at least % edges. We have

Pr[€] < (’Z) : (3&2/)2) .(%)3”2
< (" By

ot .(3 n
< (85/2 .373/2.3/2, m)t.

Now, we can show that

Z Pr[&] < Z (65/2 .373/2 -C3/2 . \/%)t _ 0(1)/

t<en t<en

which implies that V|S| < ¢-n, x(G[S]) < 3 holds with high probabil-
ity. This completes the proof. O

11.3  Greedy random coloring

In Section 10.1, we have introduced the problem of 2-colorable hyper-
graphs and defined m(k), which is the minimum number of edges in
a k-uniform hypergraph that is not 2-colorable. We have also proved
that 25=1 < m(k) < k? - 2k. Now, we will give a better bound of m (k).
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Theorem 11.12 (Radhakrishnan & Srinivasan, 2000). m(k) = (2 -

Vi)

Proof. (by Cherkashin & Kozik, 2015) Suppose H = (V, E) with
|E| = m. We randomly select a weight functionw : V. — [0,1].
Also, we color all vertices according to their weights from small to
large. For each vertex v, color it 0 if it does not form an all-0 edge.
Otherwise, we color it 1. In this way, we construct a coloring which
leads to no all-0 edge. Now, let’s bound the probability that an all-1
edge exists.

We can see that for any color-1 vertex v, there exists an edge e € E
such that v has the largest weight in e. This implies that for an all-1
edge f, there exists an edge e such that the vertex with the small-
est weight in f has the largest weight in e. In this case, we say the
edge pair (e, f) is conflicting. We try to bound the probability that a
conflicting edge pair exists.

LetL = [O,PTP), M = [PTP,HTP] and R = (HTp,l] where p
is determined later. For any edge e € E, Pr[Vv € e, w(v) lies in L] =
Pr[Vov € e,w(v) lies in R] = (PTP)" Therefore, Pr[3 all L or all R edge] <
2m - (52~

Now, let’s assume that no all-L or all-R edge exists. If (e, f) is
conflicting, then e N f is a single vertex of which the weight value lies
in M. Assume that v = e N f. Then, we have

(I4+p)/2

Pr[v lies last in e and first in f] = / (1 - ) ldx

(1-p)/2
S p/4k—1'

Therefore, we have
icti 1-p\' o P
Pr[3 conflicting (e, )] < 2m<2) +m?. 7=
< 21 Fme=Pk 4 (21 ki) 2p

<1

The last inequality is true when m < ¢ - 2k @ for some sulfficiently
small constant ¢ > 0. This completes the proof. O

Remark 11.13. What is the source of the gaininthethe L. U M U R
argument? The expected number of conflicting pairs is unchanged. It
must be that we are somehow clustering the bad events by consider-
ing the event when some edge lies in L or R.
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