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Second Moment Method

12.1 Chebyshev’s inequality

Markov’s inequality is an important tool when bounding probability.
It states that Pr[X ≥ t] ≤ E[X]

t for a > 0. However, can we do better?
We sometimes need a sharper bound to control the concentration of
random variables.

Theorem 12.1 (Chebyshev’s inequality). Pr[|X − E[X] | ≥ t] ≤ Var[x]
t2 .

Notation 12.2. Variance Var [X] = E
[
(X − E[X])2] = E

[
X2]− E[X]2,

which is usually denoted σ2. E[X] is usually denoted µ.

Proof.

σ2 = E[(X − µ)2] = Pr[|X − µ| ≥ t] · E[(X − µ)2 | |X − µ| ≥ t]

+ Pr[|X − µ| ≤ t] · E[(X − µ)2 | |X − µ| ≤ t]

≥ Pr[|X − µ| ≥ t] · t2.

The use of Chebyshev’s inequality is called the second moment
method. Now, we will introduce two applications.

Question 12.3. Let S be a positive integer set of size k of which all 2k

subset sums are distinct. What is the minimum possible value of the
largest element in S?

A simple argument shows that max S ≥ 2k/k since all subset sums
are at most k max S. However, we can bound max S in a more clever
way, because most subset sums “concentrate” to the mean value by
the Chebyshev’s inequality.

Theorem 12.4. max S ≳ 2k
√

k
.
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Proof. Let S = {x1, . . . , xk} and n = max S. For 1 ≤ i ≤ k, choose
εi ∈ {0, 1} independently and uniformly at random. Let X = ∑ εixi.
Thus, we have µ = E[X] = ∑ xi

2 . Also, the variance σ2 = Var[X] =
∑ x2

i
4 ≤ nk2

4 .
By Chebyshev’s inequality, Pr[|X − µ| < n

√
k] ≥ 3

4 . Since X takes
distinct values for distinct (ε1, . . . , εk) ∈ {0, 1}k, we have Pr[X = r] ≤
2−k for all r. Thus, we have Pr[|X − µ| < n

√
k] ≤ 2−k · 2n

√
k, which

implies that 2−k · 2n
√

k ≤ 3
4 . This completes the proof.

Remark 12.5. In 2020, Dubroff, Fox and Xu showed that

max S ≳
(√

2
π

+ o(1)
)

2k
√

k
.

Now, we introduce an application of the second moment method
to analysis.

Theorem 12.6 (Weierstrass approximation theorem). Suppose
f : [0, 1] → R is a continuous function. For every ε > 0, there exists a
polynomial p(x) such that

∀x ∈ [0, 1], |p(x)− f (x)| ≤ ε.

Proof. (by Bernstein, 1912) Since [0, 1] is compact, f is uniformly
continuous and bounded. Without loss of generality, assume | f (x)| ≤
1. There exists δ > 0 such that | f (x)− f (y)| ≤ ε

2 for all |x − y| ≤ δ.
Now, we approximate f by

Pn(x) =
n

∑
i=0

Ei(x) f (
i
n
),

where

Ei(x) = Pr[Bin(n, x) = i] =
(

n
i

)
xi(1 − x)i.

Note that Ei(x) peaks at i
n and decays away from i

n . Since Bin(n, x)
has expectation nx and variance nx(1 − x) ≤ n

4 , with Chebyshev’s
inequality we have

∑
i:|i−nx|>n2/3

Ei(x) = Pr[|Bin(n, x)− nx| > n2/3] ≤ n−1/3.

Note that ∑n
i=0 Ei(x) = 1. Taking n > max{64ε−3, δ−3}, we have

|Pn(x)− f (x)| ≤
n

∑
i=0

Ei(x)| f (
i
n
)− f (x)|

≤ ∑
|i−nx|≤n2/3

Ei(x) · ε

2
+ 2n−1/3 < ε,
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which completes the proof.

12.2 Threshold function for graph properties

We now study the properties of random graphs G(n, p).

Definition 12.7. A graph property P is a subset of all graphs.

We say a graph property P is monotone increasing/decreasing if
for any G ∈ P , any graph we obtain through adding/deleting edges
in G always belongs to P . For instance, for a fixed graph H, the
graph property P1 = {G | H is an induced sub-graph of G} is mono-
tone increasing. The graph property P2 = {G | G is a connected planar graph}
is monotone decreasing. However, P3 = {G | G contains a vertex of degree 1}
is not monotone.

A graph property P is non-trivial if for any sufficiently large n,
there always exists a graph with n vertices in P and another graph
not in P .

What we want to discuss is the following natural problem.

Question 12.8. Given a graph property P , for which p = pn is P true
for G(n, p) with high probability?

Notation 12.9. We will use f ≪ g to denote f = o(g), and use f ≫ g
to denote g = o( f ).

Let’s start from the easiest case. Suppose P = {G : K3 ⊆ G}. Now,
consider G ∼ G(n, pn). Let X be the number of K3 in graph G, which
is a random variable. Clearly, E[X] = (n

3)p3.
If p ≪ 1

n , then Pr[X ≥ 1] = o(1) by Markov’s inequality. If p ≫ 1
n ,

let’s first prove that Var[X] = o(E[X]2). Denote S as the set of all
subsets of vertices in G of size 3, and denote XT the indicator variable
of the set T inducing a triangle in G. Obviously, X = ∑T∈S XT . Notice
that

Cov[XT1 , XT2 ] = E[XT1 XT2 ]− E[XT1 ] · E[XT2 ]

= p|E(T1∪T2)| − p|E(T1)+E(T2)|

=

{
0 |V(T1 ∩ T2)| ≤ 1
p5 − p6 |V(T1 ∩ T2)| = 2

.

Also, we have

Var[XT ] = E[X2
T ]− E[XT ]

2 = p3 − p6.
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Therefore,

Var[X] = ∑
T∈S

Var[XT ] + ∑
T1,T2∈S
T1 ̸=T2

Cov[XT1 , XT2 ]

=

(
n
3

)
(p3 − p6) + ∑

T1,T2∈S
T1 ̸=T2

|V(T1∩T2)|=2

(p5 − p6)

=

(
n
3

)
(p3 − p6) +

(
n
2

)
(n − 2)(n − 3)(p5 − p6)

≲ n3 p3 + n4 p5

= o(n6 p6).

The last equality above holds as p ≫ 1
n . This implies that Var[X] =

o(E[X]2). Based on Chebyshev’s inequality, we can see that Pr[X =

0] = o(1).
Here, we give the definition of the threshold function as follows.

Definition 12.10. We say rn is a threshold function for some graph
property P if

Pr[G(n, pn) ∈ P ] →
{

0 if pn/rn → 0
1 if pn/rn → ∞

.

From above, we are able to show to the following theorem.

Theorem 12.11. A threshold function for containing a K3 is 1
n .

Exercise 12.12. Show that p = n−2/3 is a threshold for containing a K4.

We now consider some general cases. Suppose we have a random
variable X = X1 + . . . + Xm, where Xi is the indicator of event Ei.
By Markov’s inequality, it is easy to show that X = 0 with high
probability if E[X] = o(1). However, it is difficult to show X > 0 with
high probability if E[X] ̸= o(1). To apply Chebyshev’s inequality, we
need to bound the variance first.

We say i ∼ j if i ̸= j and Ei, Ej are not independent. If i ̸= j and
i ̸∼ j, we clearly have Cov[Xi, Xj] = 0. Otherwise,

Cov[Xi, Xj] = E[XiXj]− E[Xi]E[Xj] ≤ E[XiXj] = Pr[Ei ∧ Ej].

Also note that Var[Xi] ≤ E[X2
i ] = E[Xi], which implies that

Var[X] ≤ E[X] + ∑
i∼j

Pr[Ei ∧ Ej].
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Define ∆ := ∑i∼j Pr[Ei ∧ Ej]. We hope Var[X] = o(E[X])2, so if
E[X] → ∞, ∆ = o(E[X])2 suffices. Moreover,

∑
i∼j

Pr[Ei ∧ Ej] = ∑
i

Pr[Ei]∑
j∼i

Pr[Ej | Ei].

In many symmetric cases, ∑j∼i Pr[Ej | Ei] does not depend on i.
Denote ∆∗ this value. Therefore, ∆ = ∑i Pr[Ei]∆∗ = E[X]∆∗. This Or we may set

∆∗ = max
i

∑
j∼i

Pr[Ej | Ei ]

in asymmetric cases.

gives us the following lemma.

Lemma 12.13. If E[X] → ∞ and ∆∗ = o(E[X]), then X > 0 with high
probability.

In fact, by Chebyshev’s inequality, we have

Pr((1 − ε)E[X] ≤ X ≤ (1 + ε)E[X]) ≥ 1 − Var[X]

ε2E[X]2
= 1 − o(1)

for any constant 0 < ε < 1.
Now consider the property of containing K4. For any set S con-

sisting of exactly four vertices, let ES be the event that S forms a K4

in the random graph. For any S, T of size 4, S ∼ T if and only if
|S ∩ T| ≥ 2. There are two cases:

• |S ∩ T| = 2:

∑
T

Pr[ET |ES] ≤ 6
(

n
2

)
Pr[ET |ES] = 6

(
n
2

)
p5 ≈ n2 p5;

• |S ∩ T| = 3:

∑
T

Pr[ET |ES] = 4(n − 4)Pr[ET |ES] ≤ 4np3 ≈ np3.

Therefore, ∆∗ ≈ n2 p5 + np3 = o(n4 p6) = o(E[X]) if n2 p ≫ 1 and
np ≫ 1.

One may ask letting X be the number of a general graph H, can
we still say that X > 0 with high probability if E[X] → ∞? This is
actually not correct. Suppose H is the graph obtained by adding an
edge to K4. Then, E[X] ≈ n5 p7 → ∞ if p ≫ n−5/7. However, there is
no K4 in G(n, p) if p ≪ n−2/3.

So, can we find a threshold function for containing a general
graph? The following theorem tells us the answer.

Definition 12.14. The edge-vertex ratio of G = (V, E) is defined as
ρ(G) = |E|/|V|. The maximum sub-graph ratio is given by m(G) =

maxH⊆G ρ(H).
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Theorem 12.15 (Bollobás, 1981). Let H = (V, E) be a fixed graph. Then
p = n−1/m(H) is a threshold function for containing H as a subgraph. Fur-
thermore, if p ≫ n−1/m(H), then XH (number of copies of H in G(n, p))
with high probability satisfies

XH ≈ E[X] =

(
n
|V|

)
|V|!

|Aut(H)| p|E| ≈ n|V|p|E|

|Aut(H)| .

Proof. Let H′ be the sub-graph of H achieving the maximum edge-
vertex ratio, i.e., m(H) = ρ(H′). If p ≪ n−1/m(H), then E[XH′ ] = o(1),
which implies that XH′ = 0 with high probability.

Now assume that p ≫ n−1/m(H). Count the labelled copies of H
in G(n, p). Let L be a labelled copy of H in Kn. AL be the event of
L ⊆ G(n, p). For fixed L, we have

∆∗ = ∑
L′∼L

Pr[AL′ |AL] = ∑
L′∼L

p|E(L′)\E(L)|.

Note that the number of L′ such that L′ ∼ L is approximately
n|V(L′)\V(L)|, and

p ≫ n−1/m(H) ≫ n−1/ρ(L′∩L) = n−|V(L′)∩V(L)|/|E(L′)∩E(L)|.

So, we have

∆∗ ≈ ∑ n|V(L′)\V(L)|p|E(L′)\E(L)| ≪ n|V(L)|p|E(L)|,

which implies that ∆∗ ≪ E[XH ]. Therefore, Var[X] = E[XH ] +

o(E[XH ])
2, which completes the proof.

12.3 Existence of thresholds

In this section, we consider for which graph property P does a
threshold function exist?

Let’s start from a simpler question. Assume that P is monotone
increasing, is f (p) = Pr[G(n, p) ∈ P ] increasing? We first discuss the
question on upward closed sets.

Let F be a family of subsets of [n]. We call F an upward closed set
(or up-set) if for any S ⊆ T and S ∈ F , we have T ∈ F . We have the
following theorem.

Theorem 12.16. Suppose F is a non-trivial (F ̸= ∅ or 2[n]) up-set of [n].
Let Bin([n], p) be a random set where each number in [n] is chosen indepen-
dently with probability p. Then f (P) = Pr[Bin([n], p) ∈ F ] is a strictly
increasing function.
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Proof. We prove it by coupling. For any 0 ≤ p < q < 1, construct
a coupling as follows. Pick a uniform random vector (x1, . . . , xn) ∈
[0, 1]n. Let A = {i : xi ≤ p} and B = {j : xj ≤ q}. Clearly, A has
the same distribution as Bin([n], p) and B has the same distribution
as Bin([n], q). Notice that A ⊆ B. Thus, we have

f (p) = Pr[A ∈ F ] < Pr[B ∈ F ] = f (q),

which completes the proof.

Here, we give another proof, which is based on two-round expo-
sure coupling.

Proof. Let 0 ≤ p < q ≤ 1. Construct A, B as follows:

• For any i ∈ [n], add i into A with probability p.

• If i ∈ A, add i into B. Otherwise, add it into B with probability
1 − 1−q

1−p .

Notice that Pr[i ∈ B] = p + (1 − p) · (1 − 1−q
1−p ) = q. Therefore, A has

the same distribution as Bin([n], p) and B has the same distribution
as Bin([n], q). The rest of the proof is the same.

Now, let’s prove that every non-trivial monotone increasing graph
property has a threshold function.

Theorem 12.17 (Bollobás & Thomason, 1987). Every non-trivial mono-
tone increasing graph property has a threshold function.

Proof. Consider k independent copies G1, G2, . . . , Gk of G(n, p). Their
union G1 ∪ . . . ∪ Gk has the same distribution of G(n, 1 − (1 − p)k).
According to the monotonicity of P , if G1 ∪ . . . ∪ Gk ̸∈ P , then Gi ̸∈ P
for all 1 ≤ i ≤ k. Note that these k copies are independent, we have

Pr[G(n, 1 − (1 − p)k) ̸∈ P ] ≤ Pr[G(n, p) ̸∈ P ]k.

Let f (p) = fn(p) = Pr[G(n, p) ∈ P ]. Note that (1 − p)k ≥ 1 − kp.
For any monotone increasing property P and any positive integer
k ≤ 1

p , we have

1 − f (kp) ≤ 1 − f (1 − (1 − p)k) ≤ (1 − f (p))k.

For any sufficiently large n, define a function as follows. Since
f (p) is a continuous strictly increasing function from 0 to 1 as p goes
from 0 to 1, there is some critical pc = pc(n) such that f (pc) =

1
2 . We

claim that pc is a threshold function.
If p = p(n) ≫ pc, then letting k = ⌈p/pc⌉ → ∞, we have

1 − f (p) ≤ (1 − f (pc))k = 2−k → 0. Therefore, f (p) → 1.
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Analogously, if p ≪ pc, then letting ℓ = ⌈p/pc⌉ → ∞, we have
1
2 = 1 − f (pc) ≤ (1 − f (p))ℓ. Thus, f (p) → 0 as n → ∞. This
completes the proof.

12.4 Sharp thresholds

In fact, using the method of moments, the number of triangles in a
random graph converges to a Poisson distribution. We have

Pr[A triangle exists in G(n, cn/n)] →


0 if cn → −∞
1 − e−c3/6 if cn → c
1 if cn → ∞

.

However, consider some other properties, such as “no isolated
vertex”. We have

Pr[G(n, p) has no isolated vertex] = e−e−c

if cn → c, where p =
log n+cn

n and c ∈ R ∪ {−∞, ∞}. (We leave it
as an exercise.) Note that if cn → −∞, even though cn = −o(log n),
we have the probability goes to e−e−c

= 0. Analogously, e−e−c
= 1

if cn → ∞, even though cn = o(log n). So this property shows a
stronger notion of threshold: sharp threshold.

Definition 12.18. We say rn is a sharp threshold for some graph prop-
erty P if for any δ > 0, we have

Pr[G(n, pn) ∈ P ] →
{

0 if pn ≤ (1 − δ)rn

1 if pn ≥ (1 + δ)rn
.

Roughly speaking, any monotone graph property with a coarse
threshold may be approximated by a local property (having some
H as a sub-graph). This is the famous Friedgut’s sharp threshold
theorem, which was proved in 1999.

A well-known conjecture is if the property of not being k-colorable
has a sharp threshold for some constant (only depending on k)
threshold dk. Namely, we are interested in whether a constant dk

exists, such that

Pr[G(n, pn) is k-colorable] →
{

1 if d(n) < dk

0 if d(n) > dk
.

The following theorem shows that the property of being k-colorable
indeed has a sharp threshold.
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Theorem 12.19 (Achlioptas & Friedgut, 2000). For any k ≥ 3, there ex-
ists a function dk(n) such that for any ε > 0, we have

Pr[G(n, pn) is k-colorable] →
{

1 d(n) < dk(n)− ε

0 d(n) > dk(n) + ε
.

However, it still remains an open question whether dk(n) has a
limit dk.

Example 12.20. We now concern the clique numbers of G(n, 1/2). Let
X be the number of k-cliques in G(n, 1/2). Then we have

E[X] =

(
n
k

)
2−(k

2).

Denote it f (k). Clearly ω < k if f (k) → 0. Now assume f (k) → ∞.
Let AS be the event that S forms a clique in G(n, 1/2). Fix S, T of size
k. Then S ∼ T if |S ∩ T| ≥ 2. So we have

∆∗ = ∑
T∼S

Pr(AT | AS) =
k−1

∑
ℓ=2

(
k
ℓ

)(
n − k
k − ℓ

)
2(

ℓ
2)−(k

2) .

We claim that ∆∗ = o( f (k)) if f (k) → ∞. Thus we have X > 0 (i.e.,
ω ≥ k) with high probability. Overall, we showed that

ω(G(n, 1/2)) ≈ 2 log2 n

with high probability.
In fact, we can show that it is a sharp threshold. For k = (1 ±

o(1))2 log2(n), we have

f (k + 1)
f (k)

=
n − k
k + 1

· 2−k = n−1+o(1).

So f (k) decreases rapidly when k ≈ 2 log2 n.
Let k0 = k0(n) be the value such that f (k0) ≥ 1 > f (k0 + 1). For n

such that f (k0) → ∞ and f (k0 + 1) → 0, it is known that

ω(G(n, 1/2)) = k0

with high probability.
If f (k0) = O(1) (or f (k0 + 1) = O(1), then we increacse k0 by 1),

we have f (k0 − 1) → ∞ and f (k0 + 1) → 0. Thus,

ω(G(n, 1/2)) ∈ {k0 − 1, k0}

with high probability. This completes the proof.
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