12
Second Moment Method

12.1  Chebyshev’s inequality

Markov’s inequality is an important tool when bounding probability.
It states that Pr[X > t] < % for a > 0. However, can we do better?

We sometimes need a sharper bound to control the concentration of
random variables.

Theorem 12.1 (Chebyshev’s inequality). Pr[|X —E[X]| > t] < Vatrz[x].

Notation 12.2. Variance Var [X] = E[(X — E[X])?] = E[X?] — E[X]?,
which is usually denoted ¢?. E[X] is usually denoted .

Proof.
o? = B[(X — u)*] = Pr[|X — p| > 1] - E[(X — p)* [ |X — p| > 1]
+Pe|X — | < -E[(X = p)? | X —p| <]
> Pr[|X —u| > t] - 2. O

The use of Chebyshev’s inequality is called the second moment
method. Now, we will introduce two applications.

Question 12.3. Let S be a positive integer set of size k of which all 2
subset sums are distinct. What is the minimum possible value of the
largest element in S?

A simple argument shows that max S > 2% /k since all subset sums
are at most k max S. However, we can bound max S in a more clever
way, because most subset sums “concentrate” to the mean value by
the Chebyshev’s inequality.
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Proof. LetS = {x1,...,x:} and n = maxS. For 1 < i < k, choose
¢; € {0,1} independently and uniformly at random. Let X = }_¢;x;.
Thus, we have ¢ = E[X] = % Also, the variance 0> = Var[X] =
L <

By Chebyshev’s inequality, Pr[|X — u| < nv/k] > 3. Since X takes
distinct values for distinct (¢1,...,¢&;) € {0, 1}", we have Pr[X = 7] <
27k for all . Thus, we have Pr[|X — u| < nvk] < 27 - 2nv/k, which
implies that 2% - 2nv/k < 3. This completes the proof. O

Remark 12.5. In 2020, Dubroff, Fox and Xu showed that

max$ > (\/Z_l_ 0(1)> \Z/k’;

Now, we introduce an application of the second moment method
to analysis.

Theorem 12.6 (Weierstrass approximation theorem). Suppose
f :[0,1] — R s a continuous function. For every e > 0, there exists a
polynomial p(x) such that

vxe0,1], [p(x)—flx)| <e

Proof. (by Bernstein, 1912) Since [0, 1] is compact, f is uniformly

continuous and bounded. Without loss of generality, assume |f(x)| <

1. There exists 6 > 0 such that |f(x) — f(y)| < 5 for all |x —y| < 4.
Now, we approximate f by

where
E;(x) = Pr[Bin(n,x) =i] = <TZ> xH(1—x)'.

Note that E;(x) peaks at L and decays away from . Since Bin(n, x)
has expectation nx and variance nx(1 — x) < %, with Chebyshev’s
inequality we have

Ei(x) = Pr[|Bin(n, x) — nx| > n?/3] < n=1/3,
it)i—nx|>n2/3

Note that Y7 E;(x) = 1. Taking n > max{64e~3,6~3}, we have
|Pu(x) = f(X)| < ) Ei(x)|f(%) - f(x)l
i=0

Y. Ei(x)- % +2n718 <,

li—nx|<n2/3

IN
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which completes the proof. O

12.2  Threshold function for graph properties

We now study the properties of random graphs G(n, p).
Definition 12.7. A graph property P is a subset of all graphs.

We say a graph property P is monotone increasing/decreasing if
for any G € P, any graph we obtain through adding/deleting edges
in G always belongs to P. For instance, for a fixed graph H, the
graph property P; = {G | H is an induced sub-graph of G} is mono-
tone increasing. The graph property P, = {G | G is a connected planar graph}
is monotone decreasing. However, P3 = {G | G contains a vertex of degree 1}
is not monotone.
A graph property P is non-trivial if for any sufficiently large n,
there always exists a graph with n vertices in P and another graph
not in P.
What we want to discuss is the following natural problem.

Question 12.8. Given a graph property P, for which p = p, is P true
for G(n, p) with high probability?

Notation 12.9. We will use f < g to denote f = 0(g), and use f > g
to denote g = o(f).

Let’s start from the easiest case. Suppose P = {G : K3 C G}. Now,
consider G ~ G(n, p,). Let X be the number of K3 in graph G, which
is a random variable. Clearly, E[X] = (§)p>.

If p < 1, then Pr[X > 1] = o(1) by Markov’s inequality. If p > 1,
let’s first prove that Var[X] = o(E[X]?). Denote S as the set of all
subsets of vertices in G of size 3, and denote Xt the indicator variable
of the set T inducing a triangle in G. Obviously, X = Y 7<s Xr. Notice

that

COV[XTl,XTZ] = E[XT] XTZ] — E[XT]} . E[XTZ]
= p\E(T1UTz)I _ pIE(TlHE(Tz)\

_ { 0 V(TiNT)

| <
pPP—p® [V(INT)| =

1
5 -
Also, we have

Var[Xy] = E[X2] - E[X/] = p* - p°.
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Therefore,

Var[X] = Z Var[X7] + Z Cov|[X7,, XT,]

TeS T1,TL€S
T#Tx
n
- <3> -+ X -
T1,T,€S
T#T,
[V(TiNTz)|=2

= (5)0F =+ (5) -2 =367 - )
5 n3p3 +n4p5
= o(n®p®).

The last equality above holds as p > 1. This implies that Var[X] =
0(E[X]?). Based on Chebyshev’s inequality, we can see that Pr[X =
0] = o(1).

Here, we give the definition of the threshold function as follows.

Definition 12.10. We say r;, is a threshold function for some graph
property P if

0 if py/ry —0

Pr(G (1, pn) € P] — { 1 if pu/ry — o0

From above, we are able to show to the following theorem.

Theorem 12.11. A threshold function for containing a Ks is %

2/3

Exercise 12.12. Show that p = n=</° is a threshold for containing a K.

We now consider some general cases. Suppose we have a random
variable X = Xj + ...+ X,;, where X; is the indicator of event E;.
By Markov’s inequality, it is easy to show that X = 0 with high
probability if E[X] = o(1). However, it is difficult to show X > 0 with
high probability if E[X] # o(1). To apply Chebyshev’s inequality, we
need to bound the variance first.

Wesay i ~ jifi # jand Ej, Ej are not independent. If i # j and
i 7 j, we clearly have Cov[X;, X;] = 0. Otherwise,

Also note that Var[X;] < E[X?] = E[X;], which implies that

Var[X] < E[X]+ ) _Pr[E; AEj].

i~j



Define A := Y;; Pr[E; A Ej|. We hope Var[X] = 0(E[X])?, so if
E[X] — oo, A = o(E[X])? suffices. Moreover,

ZPI‘[Ei A E]] = ZPI‘[EZ] ZPI‘[E] | EJ
i~j i jri

In many symmetric cases, };.; Pr[E; | E;] does not depend on i.
Denote A* this value. Therefore, A = Y, Pr[E;]A* = E[X]A*. This
gives us the following lemma.

Lemma 12.13. IfE[X] — ooand A* = o(E[X]), then X > 0 with high
probability.

In fact, by Chebyshev’s inequality, we have

Pr((1-¢)E[X] <X < (1+¢E[X]) >1— ZE[X]?
for any constant 0 < e < 1.

Now consider the property of containing K4. For any set S con-
sisting of exactly four vertices, let Eg be the event that S forms a K4
in the random graph. For any S, T of size 4, S ~ T if and only if
|SNT| > 2. There are two cases:

e ISNT|=2:

Y PriEres] < 6 ) Prierls] = 6 ) o
- 2 2

e |ISNT|=3:

Y Pr(Er|Es] = 4(n — 4)Pr[E7|Es] < 4np® ~ np’.
T

Therefore, A* ~ n?p> +np® = o(n*p®) = o(E[X]) if n?p > 1 and
np > 1.

One may ask letting X be the number of a general graph H, can
we still say that X > 0 with high probability if E[X] — co? This is
actually not correct. Suppose H is the graph obtained by adding an
edge to Ky. Then, E[X] ~ n°p” — oo if p > n~5/7. However, there is
no Ky in G(n, p) if p < n=2/3.

So, can we find a threshold function for containing a general
graph? The following theorem tells us the answer.

Definition 12.14. The edge-vertex ratio of G = (V,E) is defined as
p(G) = |E|/|V|. The maximum sub-graph ratio is given by m(G) =
maxgcg p(H).

SECOND MOMENT METHOD

Or we may set

A = mlaXZPr[Ej | Ej

j~i

in asymmetric cases.
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Theorem 12.15 (Bollobas, 1981). Let H = (V,E) be a fixed graph. Then
_ ,—1/m(H)
p=n
thermore, if p > n—
with high probability satisfies

is a threshold function for containing H as a subgraph. Fur-
1m(H) then Xy (number of copies of H in G(n, p))

N [ n V! E| n‘V|p‘E‘

o~ 80 = (1) iy ~ ety
Proof. Let H' be the sub-graph of H achieving the maximum edge-
vertex ratio, i.e., m(H) = p(H'). If p < n= /") then E[Xy] = o(1),
which implies that Xy = 0 with high probability.

Now assume that p > n~1/"(H)_ Count the labelled copies of H
in G(n, p). Let L be a labelled copy of H in K. A be the event of
L C G(n,p). For fixed L, we have

A=Y PrlAp|Al] = Y] plEENEL)]
L'~L L'~L

Note that the number of L’ such that L’ ~ L is approximately
VNV and

p s p=1/mH) 5,y =1/p(L0L) _ = V)NV |E(L)NE(L)]

So, we have

A* &~ Zn\V(L’)\V(L)Ip\E(L’)\E(L)I < nlVDIlEL

which implies that A* < E[Xp]|. Therefore, Var[X] = E[Xy] +
0(E[Xy])?, which completes the proof. O

12.3 Existence of thresholds

In this section, we consider for which graph property P does a
threshold function exist?

Let’s start from a simpler question. Assume that P is monotone
increasing, is f(p) = Pr[G(n, p) € P] increasing? We first discuss the
question on upward closed sets.

Let F be a family of subsets of [1n]. We call F an upward closed set
(or up-set) if forany S C T and S € F, we have T € F. We have the
following theorem.

Theorem 12.16. Suppose F is a non-trivial (F # @ or 2[") up-set of [n].
Let Bin([n], p) be a random set where each number in [n] is chosen indepen-
dently with probability p. Then f(P) = Pr[Bin([n],p) € F]|is a strictly
increasing function.
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Proof. We prove it by coupling. For any 0 < p < q < 1, construct
a coupling as follows. Pick a uniform random vector (x1,...,x,) €
[0,1]". Let A = {i : x; < p}and B = {j : x; < q}. Clearly, A has
the same distribution as Bin([n], p) and B has the same distribution
as Bin([n],q). Notice that A C B. Thus, we have

f(p) =Pr[A e F] <Pr[B € F| = f(q),
which completes the proof. O

Here, we give another proof, which is based on two-round expo-
sure coupling.

Proof. Let 0 < p < g < 1. Construct A, B as follows:
e For any i € [n], add i into A with probability p.

e Ifi € A, addiinto B. Otherwise, add it into B with probability
1—q
- =

Notice that Pr[i € Bl =p+ (1—p) - (1 — }_;Z) = gq. Therefore, A has
the same distribution as Bin([n], p) and B has the same distribution
as Bin([n],q). The rest of the proof is the same. O

Now, let’s prove that every non-trivial monotone increasing graph
property has a threshold function.

Theorem 12.17 (Bollobas & Thomason, 1987). Every non-trivial mono-
tone increasing graph property has a threshold function.

Proof. Consider k independent copies Gy, Gy, ..., Gy of G(n, p). Their
union Gy U.. .. U Gy has the same distribution of G(1,1 — (1 — p)¥).
According to the monotonicity of P, if Gy U...U Gy € P, then G; ¢ P
for all 1 <i < k. Note that these k copies are independent, we have

Pr(G(n,1— (1—p)*) & P] < Pr[G(n,p) & P".

Let f(p) = fu(p) = Pr[G(n, p) € P]. Note that (1 — p)* > 1 — kp.
For any monotone increasing property P and any positive integer
k< %, we have

1= flkp) <1—f1—(1-p)) < (1~ f(p))

For any sufficiently large n, define a function as follows. Since
f(p) is a continuous strictly increasing function from 0 to 1 as p goes
from 0 to 1, there is some critical p. = pc(n) such that f(p.) = 3. We
claim that p. is a threshold function.

If p = p(n) > pc, thenlettingk = [p/p.| — oo, we have
1—f(p) < (1— f(pc))* =27% — 0. Therefore, f(p) — 1.
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Analogously, if p < pc, then letting ¢ = [p/p.|] — oo, we have
1 =1-Ff(pe) < (1—f(p))". Thus, f(p) — Oasn — co. This
completes the proof. O

12.4 Sharp thresholds

In fact, using the method of moments, the number of triangles in a
random graph converges to a Poisson distribution. We have

0 if ¢, —» —o0
Pr[A triangle exists in G(n, ¢, /n)] — ¢ 1 — /6 ifc, —c
1 if ¢, — o0

However, consider some other properties, such as “no isolated
vertex”. We have

Pr[G(n, p) has no isolated vertex] = e~¢

ifcy, = ¢, wherep = bgn% and ¢ € RU {—o0,00}. (We leave it
as an exercise.) Note that if ¢, — —oo, even though ¢, = —o(logn),
we have the probability goes to e™ * = 0. Analogously, e™** = 1
if c;, — oo, even though ¢, = o(logn). So this property shows a

stronger notion of threshold: sharp threshold.

Definition 12.18. We say 1y, is a sharp threshold for some graph prop-
erty P if for any 6 > 0, we have

0 ifp, <(1—90)rn

Pr[g(n, Pn) € P] = { 1 ifp, > (1 +5>7'n

Roughly speaking, any monotone graph property with a coarse
threshold may be approximated by a local property (having some
H as a sub-graph). This is the famous Friedgut’s sharp threshold
theorem, which was proved in 1999.

A well-known conjecture is if the property of not being k-colorable
has a sharp threshold for some constant (only depending on k)
threshold di. Namely, we are interested in whether a constant dj
exists, such that

1 if d(l’l) < dy

P is k-col 1
r[G(n, pn) is k-colorable] —>{ 0 ifd(n) > dy

The following theorem shows that the property of being k-colorable
indeed has a sharp threshold.
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Theorem 12.19 (Achlioptas & Friedgut, 2000). For any k > 3, there ex-
ists a function dy(n) such that for any € > 0, we have

. 1 d(n) <di(n)—e
P , k-colorabl .
(G (n, pn) is k-colorable] — { 0 d(n) > dy(n)+e
However, it still remains an open question whether dy(n) has a
limit dj.

Example 12.20. We now concern the clique numbers of G(n,1/2). Let
X be the number of k-cliques in G(1,1/2). Then we have

Denote it f (k). Clearly w < kif f(k) — 0. Now assume f (k) — co.
Let Ag be the event that S forms a clique in G(n,1/2). Fix S, T of size
k. Then S ~ T if |[SNT| > 2. So we have

k-1
K\ (n—k\ 0k
* _ — 2)=()
A= ¥ Prlar | 4s) = T @ (k_g)z -5
We claim that A* = o(f(k)) if f(k) — oo. Thus we have X > 0 (i.e.,
w > k) with high probability. Overall, we showed that

w(G(n,1/2)) = 2log, n

with high probability.
In fact, we can show that it is a sharp threshold. For k = (1 +
0(1))2log,(n), we have

fk+1) _n—k ok _  1ve1)

fk)y " k+1

So f(k) decreases rapidly when k ~ 2log, n.
Let ko = ko(n) be the value such that f (ko) > 1 > f(kg+1). For n
such that f(kg) — co and f (kg +1) — 0, it is known that

w(G(n,1/2)) =ko

with high probability.
If f(ko) = O(1) (or f(ko+1) = O(1), then we increacse kg by 1),
we have f(kg—1) — oo and f(kg+ 1) — 0. Thus,

w(G(n,1/2)) € {ko—1,ko}

with high probability. This completes the proof.
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