13
Lovdsz Local Lemma

To apply the probabilistic method, a common problem is to bound
the probability of bad events. Let Ay,..., A, be n bad events. If they
are independent, we know that the probability of no bad events is
[1Pr(4;). Otherwise we have union bound. However, the union
bound is too weak if bad events are not disjoint.

13.1 Local lemma and examples

Suppose we have a set of events Ay, ..., Ay, each with probability
pi- If Y p; < 1, then by the union bound (or Markov’s inequality),
we know that Pr[NA;] > 0 or even almost surely if Y p; = o(1).
If Y pi = O(1) oreven }_p; — oo, then we know nothing about
Pr[NA;]. Let X; be the indicator of A;. If Var[X] = o(E[X]?), then
Pr[NA;] = Pr[X = 0] = o(1). However, what do we need if we want
to prove that Pr[NA;] > 0?

In this section, we will introduce the celebrated Lovdsz local lemma.
We start from the definition of dependency.

Definition 13.1 (Dependency graph). Suppose Ay, ..., A, are n “bad
events”. For each A;, let N(i) C [n] be a set such that A; is indepen-
dent from all other events except those in N (i), ie., A;is independent
from {A; | j & N(i) U {i}}.

Here we say an event A is independent from {A;,..., Ay} if for any
B; € {Ai/ Ai}r PI‘[A() | By, By, .. .,Bm] = PI'[A()].

We usually represent the dependency relations by a (di)graph whose

vertices are events, and A; — A; if and only if j € N(i).

Remark 13.2. Note that pairwise independence does not implies mu-
tually independence. For the local lemma we need a stronger notion
of independence. Consider x1,x2,x3 € {0,1} uniformly and A; is the

124 COMBINATORICS

event that } ;,; x; = 0. Then any two events are pairwise independent
but are not independent if we consider the third event. Thus, the
empty graph is not a valid dependency graph. But, any graph with at
least two edges is a valid dependency graph.

Theorem 13.3 (Lovasz Local Lemma, symmetric version). Let

Ay, ..., Ay, be n events with probability Pr[A;] < p. Suppose that each A;
is independent from all other A; except at most d of them. If ep(d +1) < 1,
then Pr[NA;] > 0.

Example 13.4. Consider the problem of k-SAT, a.k.a. k-CNF. A for-
mula is in conjunctive normal form (CNF) if it is a conjunction of clauses,
where each clause is a disjunction of literals, e.g., a formula of the
form

¢ = (X1Vﬁx2\/—\X4)/\(XZ\/—\X3VX5)/\-"

A formula is called k-SAT, or k-CNF if each clause consists of exactly k
literals. Clearly, if each variable is chosen true or false independently
and uniformly at random, the probability that a clause is not satisfied
is 2%, However it is difficult to determine whether a formula is
satisfiable since clauses are dependent.

Now we apply the Lovész local lemma. Construct a dependency
graph on clauses, where two clauses are adjacent if they share a
common variable. Thus we can show that if each variable appears
in at most d clauses, where d < 2%/ (ek), then a k-CNF formula is
satisfiable.

Example 13.5. Let’s take another example of hypergraph coloring.
Let H = (V,E) be a hypergraph. A coloring c is proper if there
doesn’t exist a monochromatic edge. We can construct a dependency
graph on edges such that for any two edgese, f € E,e ~ fifenf #
@. By the Lovasz local lemma, if the hypergraph is k-uniform, the
maximum vertex degree is at most A, and ekAg' ¥ < 1, then H is
g-colorable.

We now use the Lovész local lemma to prove more existence prob-

lems.
Theorem 13.6 (Independent transversal). Let G = (V,E) be a graph
with maximal degree at most A. V. =V U ... U V, is a parition where

|Vi| > 2eA forany 1 < i < r. Then, there exists an independent set which
contains a vertex from each V.

Proof. Let k = [2eA] and assume that |V;| = k forall 1 < i < r. Pick
v; € V;u.ar For any edge e € E, let B, be the event that both of its

LOVASZ LOCAL LEMMA

endpoints are chosen. Thus, Pr[B,| < kl—z In the dependency graph,
B, ~ By if there exists V; that intersects both e and f. Therefore, the
maximal degree of the dependency graph d < 2kA — 2. Then, the
Lovéasz Local Lemma applies. O

Remark 13.7. Some choices of bad events are better than others. If we
define A;; = {v; ~ v;} forany1 < i < j < r,thenPr[4;;] < 2. In
the dependency graph, A;; ~ Ay, if {i,j} N {k, I} # @. The maximal
degree of the dependency graph is d < 2kA — 1. However, this upper
bound is still too large.

Theorem 13.8 (Alon & Linial, 1989). For any directed graph G with
minimal out-degree at least 6 and maximal in-degree at most A contains a
cycle of length divisible by k when

1)
< — .
k< 1+1log(1+ dA)

Proof. Assume that every vertex v € V has out-degree 6. (Otherwise,
we delete some edges from v.) Assign x, € Z/kZ to v uniformly
randomly. Now, we look for cycles that the label increase by 1 at each
step.

Let A, = {none out-neighbor of v has label x, + 1}. Thus,

Pr[A,] = (1 —1/k)° < e79/k,

Let N°“(v) be the set of out-neighbors of vertex v. Naively we
may use the dependency graph where A, ~ A, if and only if {u} U
N (1) intersects {v} U N (v).

In fact we can construct a directed dependency graph and improve
the bound. Note that Pr(Ay) is (1 — 1/k)° as long as N°“(0v) are
free, even if v is assigned. So A, is independent from all A,’s where
N°¥(v) does not intersect {u} U N°%(u). Therefore, the maximal
degree of the dependency graph d < AJ. As

K14 A8) <1,

we are done by the Lovédsz Local Lemma. O

Remark 13.9. The dependency is not symmetric in this proof.

13.2 Asymmetric version of local lemma

In many cases, the probabilities of bad events are not necessary to
use a same upper bound. Thus we introduce the following asymmetric

125

126 COMBINATORICS

local lemma.

Theorem 13.10 (Lovasz local lemma, asymmetric version). Let
Ay, ..., Ay be events and A, is independent from {A; | j & N(i) U {i}}. If
there exists x1,...,x, € [0,1) such that forany 1 <i < n,

PI‘[AZ'] S X H (1 — x]'),

JEN(I)
then .
Pr[nA;] > [J(1 - x)).
i=1
To see the symmetric form, set x; = dlﬁ < 1foralll <i < n.
Then,

1 1 * 1
S VIR PO T R H
ety d+1 d+1 e(d+1)

Proof. We claim that for any i ¢ S C [n], we have
Pl‘[Ai| n Z]] < X;.
je€S
If it holds, then

n
Pr[[Aj] = Pr[A]] - Pr[AyAq] ... > [J(1 — xi),
i=1
which completes the proof.

Now, let’s prove our claim by induction on the size of S. Our claim
is trivially true when |S| = 0.

We assume that for any set S’ of which size is less than S, the
claim always holds. Let’s consider the set S. Fori ¢ S,let S =
SNN(i) and S; = S\S;. Then we have

Pr[A; N(Njes, A Njes, Ajl a

Pr|A; Aj] = A A TP
f |;Ds / Pr[(jes, Ajl Njes, 4]] P

Note that
a < Pl‘[Al'l m Z]] = PI‘[AI*] <x- H (1 - x])
j€S2 JEN()
Also, let S; = {f1,...,t}. We have
r . kfli .
B=TT1PrlAl(() A) () 4]
k=1 =1 j€s,
(T—xp)...(1—xy) (by induction hypothesis)

LOVASZ LOCAL LEMMA

Therefore, % < x;, which completes the proof. O

Remark 13.11. In 1985, Shearer proved that the constant e is best
possible.

As an example, we now use asymmetric Lovész local lemma to
bound Ramsey numbers.

Theorem 13.12 (Spencer, 1977). If

TEIRARERSS

then R(k, k) > n.

Proof. Color K, randomly. For any set of vertices S of size k, let Eg be
the event that S induces a monochromatic Ky. Thus, Pr[Eg] = 21-0).
For any k-vertex sets S, Eg is independent from all ET where |S N
T| < 2. Therefore, the maximal degree of the dependency graph is at
most (’2() - (42,)- Then, the Lovéasz Local Lemma applies. O

Remark 13.13. Optimizing the choice of 7, it gives the best bound so
far

R(k, k) > (V2/e+0(1)) - k- 2/2.

Recall that by the union bound we obtain R(k, k) > (1/(ev2) +
0(1)) - k - 2K/2, and by the alteration method we obtain R(k, k) >
(1/e +0(1)) - k - 2¥/2. The Lovész Local Lemma does not improve
much.

Let K = () be the number of all events, thend = [N(S)| =
K1=C(/k) There are so many “dependencies”, so the Lovész local
lemma does not work well for diagonal Ramsey numbers. However,
on the other hand, it performs well in asymmetric cases.

Let’s first consider R(k,3). Let p be a fixed parameter to be de-
termined later. For each vertex, color it 0 with probability p, and 1
with probability 1 — p. Let S, T be two vertex sets where |S| = 3 and
|T| = k. Define Ag as the event that S forms a monochromatic K3
with color 0 and Bt as the event that T forms a monochromatic Kj
with color 1. Clearly,

k
Pr[Ag] = p°, Pr[Br] = (1-p)®,

and two event are adjacent in the dependency graph if the intersec-
tion of their corresponding subsets has size at least 2.

127

128 COMBINATORICS

For Ag, there exists at most 3(n — 3) S’ such that A ~ Ag and at
most (V) T' such that As ~ Byr. For By, there exists at most (%) (1 —
2) < sz" S’ such that Br ~ Ag and at most (}) T’ such that By ~ By

Apply the Lovasz local lemma, if there exists p, x, y such that

P < (1 =™ (1= ()
(1-p)@ <y —x)fn21-y®

then R(k,3) > n. By settingp = ¢; -n" 2,k = ¢ -n'/?logn,
x=c3-n2andy = cs/(}), we have R(k,3) > c5-k?/log® k. The
best known lower bound is c¢ - k2/ log k.

Analogously, we can show R(k,4) > k3+o) by the asymmetric
Lovasz local lemma, which is better than any known result without
the Lovasz Local Lemma.

13.3 Algorithmic local lemma

In many problems, such as k-SAT or hypergraph colorings, the Lovész
local lemma only tells us the existence of desired assignments. Can
we find such a satisfying assignment in polynomial time?

Let’s start from a computationally hard example. Let ¢ = 2F and
f :[q] — [q] be a bijection. Let y € [q] be a fixed element. We sample
x € [gq] uniformly at random. Define A; as the bad event that f(x)
and y disagree at the i-th bit. All A;’s are mutually independent,
so the local lemma applies. This means that there exists x such that
f(x) = y. However, this conclusion is meaningless as we have already
known that f is a bijection. Also, finding such an x may be extremely
hard. For instance, consider the problem of discrete logarithm where
f(x):F; = F; =g~

The example above shows that it’s sometimes hard for us to find
an assignment such that no “bad events” occur if we add no con-
straints to events. For simplicity, we only talk about random variable
models, where each event only depends on some variables.

In 2010, Robin Moser and Gabor Tardos gave a Las Vegas algorithm
to find a satisfying assignment in expected linear time, as long as
the condition of the local lemma is satisfied. In this section, we will
introduce a simple and elegant proof for a special case of algorithmic
local lemma, due to Robin Moser in 2009.

Consider a k-SAT formula:

¢=CACA...ACy

of which each clause has exactly k literals. Robin Moser gave a fix-it
algorithm to find a valid assignment as follows:

They won Godel Prize in 2020 based on
this work.

This proof is actually based on Moser’s
talk in STOC 2009. Moser won the
best paper award in STOC 2009 based
on the constructive proof of local
lemma, but the argument in his paper
is quite a bit more complicated. Moser
presented a version of the proof below
in his conference talk, and his ideas
were popularized by Fortnow and
Tao. (Fortnow called Moser’s talk
“one of the best STOC talks ever”.)
Tao introduced the phase entropy
compression argument to describe
Moser’s influential idea.

LOVASZ LOCAL LEMMA

Algorithm 1: Moser’s fix-it algorithm for k-SAT problem
Input: A k-SAT formula: ¢ = C; ACy A ... ACy.
1 Function Solve(¢):

2 randomly initialize vq,...,vy

3 while there exists unsatisfied clause C; do

4 | Fix(Cy)

5 Function Fix(C;):

6 Resample the variables in C; uniformly at random

7 | while there exists unsatisfied clause C; overlapping with C; do
s | | Fix(C)

Robin Moser proved that when each caluse does not intersect with
too many other clauses, Solve(g) can find a satisfying assignment
in polynomial time with high probability. Precisely, the theorem is as
follows:

Theorem 13.14 (Robin Moser). Let d be the maximum degree of clauses,
i.e., each cluase intersects with at most d clauses (including itself). Then,

Solve(¢) finds a satisfying assignment in polynomial time with high
probability as long as d < 2k=3,

Proof. Consider the recursion tree.

Figure 13.1: The graph shows an

Solve example of the recursion tree.
Fix Fix o Fix

AN AN

Fix Fix Fix Fix Fix

Suppose there are T times of Fix calls before terminating. Clearly,
Solve(g) used n + kT random bits in total. We now argue that if T is
sufficiently large, the number of 01 bits used by the recursion tree is
smaller than kT.

A key observation is that for each sub-tree rooted at some Fix(C),
all satisfied clauses before Fix(C) cannot become unsatisfied after all
Fix calls in the sub-tree have been executed. Thus we can see that all
clauses in the first level are distinct. Denote by m 0/1 bits whether
each clause is fixed at the first level.

129

130 COMBINATORICS

For any other node in the recursion tree, it is clear that each Fix
call has at most d children. So we only need to record it by its index
in the children of its parent node. Denote by [log, d] bits.

To record the structure of the recursion tree, consider its DFS se-
quence. For each node, use “1” to denote that the node is pushed in
stack, and use “0” to record the outing. Overall, the number of bits
we need is at most m + ([log,d| +2)T < m + (k —1)T. Finally,
we use another 7 bits to record the final assignment. Note that every
random bit used in Moser’s algorithm is determined uniquely by the
final assignment and the recursion tree, since for each Fix(C) call,
the assignment of variables in C is determined before Fix(C). There-
fore, we use m + (k — 1) T + n bits to uniquely encode a sequence of
n + kT random bits.

Now, we need the following incompressibility theorem.

Claim 13.15 (Incompressibility theorem). N uniform random bits
cannot be encoded to no more than N — ¢ bits with probability
at least 1 — O(27°).

In Moser’s proof, n + kT random bits are encoded to n + m + (k —
1)T bits. However, T is not a fixed integer, which implies that we
cannot use the incompressibility theorem directly. We need to find
some other methods.

Let’s fix t = m + log, n, and we provide only n + kt random
bits in total. The algorithm will be forced to terminate if all random
bits have been used up. If the algorithm succeeds after T steps of
Fix calls, n + kt random bits are decoded into n +m + (k — 1)T +
k(t — T) bits. Otherwise when the algorithm fails to find a satisfying
assignment, then n + kt random bits are encoded into at most n + m +
(k— 1)t bits. According the incompressibility theorem, the probability
that the algorithm fails is at most

2(n+m+(kfl)t)7(n+kt) _ zflogzn =1/n
which completes the proof. O

The general algorithm was given by Robin Moser and Gabor Tar-
dos.

Algorithm 2: Moser-Tardos algorithm

Input: n bad events Ay, ..., Ay, in the variable model.
1 Function Solve:
2 Initialize each variable a random value independently.
3 while some bad event A; occurs do
4 L re-sample all variables that A; depends on

LOVASZ LOCAL LEMMA 131

Theorem 13.16 (Robin Moser & Gabor Tardos, 2010). If the condition
of Lovdsz Local Lemma holds, then Moser-Tardos algorithm returns an as-
signment that no bad event occurs in expected linear time. In particular, the
expected rounds of re-sampling is no more than

n o
E=) 1
i=1

1—x1-'

Proof. Let the execution log L be the sequence of A;’s that are picked

in the while loop. |L| may be infinite, but we claim that E[|L|] < E.
Construct witness trees as follows for each time t < |L|. Let L =

(Ag, Agyro v Ay, .. .). Read prefix right to left: Ay,,..., A,

1

* Let the root of the witness tree T(t) be a vertex labelled with Ay,

ot (A——s)

e Fors=t—1,...,1:

- If none of the events corresponding to vertices in T shares vari-
ables with A, , continue.

C @ E
- Otherwise, find a deepest node v such that the event A, shares
common variables with A, namely, vbl(A[,)) Nobl(Ay,) # O,
and then add a node labelled with A,_as v’s child. G

The margin picture demonstrates a valid witness tree as an exam-

ple. ° e

Now, consider properties of the witness trees with node labels. For
convenience, denote by [v] the label (the index of event) on node v.

e T(t1) # T(ty) for different times t; # t,. G G
If Ay, # Ay, then the roots of T(t;) and T(t;) have different
labels. If Agtl = Agtz = Ay, then A, appears different times in the e
node labels of T(t;) and T(t;), which implies that T(t) # T(t2).
_ Figure 13.2: The first picture is the
e Forany T = T(t) and u,v € T of the same depth, vbl(A},)) N dependency graph of events, while the
vbl (A[v]) = Q. second one is a valid witness tree when

L= (CEB,D,A,B,B,E,C).
The first property implies that

E[|L]] =)} E[X7] =)_Pr[T is a witness tree].
T T

We claim that

Pr[T appears as a witness tree for some time t] < [| Pr[Af].
veT

In order to illustrate the above inequality more clearly, we give two
simple examples. Consider T is a tree with one single vertex labeled

132 COMBINATORICS

with A as its root. If T is a valid witness tree for some time ¢, then
event A is picked at time f, and no events picked before time ¢ share
a common variable with A, so A occurs at beginning, which implies
that

Pr[T appears as a witness tree for some time t] < Pr[A].

If T is a tree with two vertices where A is its root while B is a child of
A, then clearly B happens at the beginning. After re-sampling vbl(B),
event A occurs. Therefore, the probability that T is a valid witness
tree is no larger than Pr[B] - Pr[A].

Now, we start to prove our claim strictly. Let a simulation of T to
be the following process: visit all nodes of T in the reverse BFS or-
der. At each node v, resample all the variables that A[,| depends on,
and then check if the event occurs. The simulation succeeds if all bad
events encountered do occur. Assume for each variable, we have a list
of (infinite many) 0/1 values, of which each is independently sam-
pled and then fixed. When simulating the Moser-Tardos algorithm
and simulating a witness tree, we look up the (same) value table of
each variable instead of sampling.

Foreachv € Tandany u € T with vbl(Ay,) Nobl(Ap) #

@, u is deeper than v if and only if A, appears before A, in the
execution log. For any z € vbl(A[,)), let n, be the number of u’s
before v such that z € vbl(A[,)). In the simulation of the Moser—
Tardos algorithm, there is an initialization of all variables, so the

first value of each variable in the list is looked up at the begining.
Then, during execution, for each node v of the witness tree, we know
that Ay occurs where each variable z of A|) is assigned with the
(nz,p + 1)-th value. For the simulation of a witness tree T, we also
look up the (1,0 + 1)-th value of variable z at the time checking A).
Since we look up the same value table, if T appears as a witness tree
at some time ¢, the simulation of T must succeed. Thus, we have

Pr(T is a witness tree] < Pr[simulation of T succeeds] = [| Pr[Ap],
veT

which proves our claim.
Let W be the set of all possible witness trees.

E[|L]] =) Pr[T=T(t) forsomet] < Y T[] Pr[Af].
TeW TeWoeT

If T € W, then T has the following properties:
e T is finite;
* Forany u — vin T, variables in A, and Ay, are overlapping;

* Forany u,v € T have the same depth, A, and A, are disjoint.

Here we actually construct a coupling
between two processes.

LOVASZ LOCAL LEMMA 133

Let W’ be the set of trees that only satisfy the second property, and
W/ be the set of trees in W’ and rooted at event A;. We generate trees
in W/ by a random process (Galton-Watson process):

e Let the label of the root be k.

¢ For any vertex v, we find all its “potential” children N* (v) =
N([v]) U {[v]} whose variables overlap with vbl(A,)).

¢ For each “potential” child A;, add a vertex labelled with i as the
child of vertex v in the tree with probability x; (x; is the value
corresponding to event A; in the statement of the local lemma)
and call it an alive children of v. Denote by D(v) the set of alive
children of v.

Let Pr be the probability that Galton-Watson process generates T.
Thus, we have

Hx[v I1T II (a-x)

kveT UETieN+(z;)\D(v)

=1‘ka T (a-x)

vet 1 x[v] ieN+(v)
=T IT =)
veT zeN()
2 xk []PrA
veT

Clearly, ZTeW,Q Pr < 1. Therefore,

> [Prlag)< ¥ Prog Xk

7
TEW, 0T Tew, - xk 1 — Xk

which implies that

B[] <y %

=1 1 — Xk

This completes the whole proof. O

	Lovász Local Lemma
	Local lemma and examples
	Asymmetric version of local lemma
	Algorithmic local lemma

