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1.1 Introduction

1.1.1 What is Combinatorics?

Combinatorics is an area ofmathematics concernedwith properties of discrete structures, including counting,
existence, optimality, etc. For example, combinatorics contains following subfields:

enumerative and analytic combinatorics, which focus on counting the number of certain combinatorial
objects;
extremal and probabilistic combinatorics, which focus on how large or how small a combinatorial
object can be, if it has some certain properties;
graph theory, which studies graph, an important type of combinatorial structures; here are some
interesting topics in graph theory that will not be covered in this course:

structural graph theory
Neil Robertson and Paul Seymour proved the graph minor theorem as follows.

Theorem 1.1 (Robertson–Seymour Theorem)

♥

For any minor closed property P , ∃ a finite set {H1, . . . ,Hm} such that ∀G, G satisfies
P ⇐⇒ 6∃ i such that Hi is a minor of G.

For instance, we know that K5 and K3,3 are not planar graphs. Wagner’s theorem states that
planar graphs can be defined as graphs without K5 or K3,3 as its minor. A minor of a given
graph is another graph formed by deleting vertices, deleting edges, and contracting edges. When
an edge is contracted, its two endpoints are merged to form a single vertex.
spectral graph theory

· · ·

In this course, we will mainly concentrate on extremal combinatorics, and probabilistic and linear algebra
tools.
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1.1.2 Some interesting problems

one problem from final exam last semester
Problem 1.1 For any graph G, define f(G) as the number of cliques of size 3 plus the number of
independent sets of size 3. For any 6-regular graph of size 30, what’s the maximal (minimal) value of
G?
Answer: Consider the number of triples (u, v, w) such that u and v are adjacent, while u and w are
not. As graph G is a 6-regular graph of size 30, there are 30 × 6 × 23 such triples in total. For any
three vertices that do not form a clique or an independent set, there exists exactly two such triples.
Therefore, f(G) equals to

(
30
3

)
− 1

2 × 30× 6× 23.
Extensions: How about non-regular graphs?
unit distance problem (distinct distance problem)
incidence geometry
Problem 1.2 Does there exist n points andm lines such that each line passes through 3 points?
When n = 7 andm = 6, Fano plane is a solution.

graph drawings and crossing number
Problem 1.3What is the least number of crossing points if we draw aK3,3 on a plane?
error-detecting/correcting codes

Identity Card number
Madhu Sudan’s list-decoding algorithm

1.2 Ramsey Number

1.2.1 Definition of Ramsey Number

We start from two simple problems as follows.

Problem 1.4 Prove that for any 2-coloring of edges ofK6, there exists a yellowK3 or a blueK3.

Proof Consider a vertex u in K6, there are 5 edges connecting u, which implies that there exists at least
3 monochromatic edges connecting u. Without loss of generality, assume that there are 3 yellow edges
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connecting u and a, b, c, respectively. Now, consider the three edges between a, b, c. If all of them are blue,
then they form a blue K3. Otherwise, assume that the edge between a and b is yellow, then u, a, b form a
yellowK3, which completes the proof.

It is easy to find a 2-coloring of edges ofK5 such that the conclusion doesn not hold.

Problem 1.5 Prove that for any 2-coloring of edges of K10, there exists a yellowK3 or a blueK4.

Proof Consider a vertex u in K10. Among the 9 edges connecting u, there exists 4 yellow ones or 6 blue
ones.

If there are 4 yellow edges connecting u and a, b, c, d, respectively. Consider the edges between a, b, c, d. If
all of them are blue, then they form a blue K4. Otherwise, assume that the edge between a and b is yellow,
then u, a, b form a yellowK3.

If there are 6 blue edges connecting u and other 6 distinct vertices. Consider the induced subgraph of these
6 vertices. According to Problem 1.4, there exists a yellow K3 or a blue K3. If a yellow K3 exists, then the
proof is completed. If a blueK3 exists, then these 3 vertices and u form a blue K4.

Notice that the same conclusion holds for any 2-coloring of edges ofK9. This is because we can always find
a vertex u that there exists 4 yellow edges or 6 blue edges connecting it.

Now, we introduce the definition of Ramsey Number as follows.

Definition 1.1 (Ramsey Number)

♣

R(s, t) is defined as the smallest n satisfying: Given Kn, for any 2-coloring of edges of Kn, either a
yellowKs or a blueKt exists.

From above, we already know that R(3, 3) = 6 and R(3, 4) ≤ 9. We can also find that R(s, t) ≤
R(s− 1, t) +R(s, t− 1) of which the proof is similar to that in Problem 1.5. We will give an upper bound
for R(s, t) in the next lecture.

The key to the above proofs is the Pigeonhole Principle.

Theorem 1.2 (Pigeonhole Principle)

♥

Let N,R be two finite sets of size |N |= n > r = |R|. Consider a mapping f : N → R and
non-negative integers a1, a2, . . . , ar such that

∑r
i=1 ai < n. Then, there exists s ∈ R such that

|f−1(s)|≥ as + 1.

1.2.2 Erdős-Szekeres Theorem (Happy ending problem)

The “happy ending problem" is the following statement.
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Theorem 1.3 (Esther Klein, 1933)

♥

Any five points in a plane in general position has a subset that forms a convex quadrilateral. General
position means that no two points coincide and no three points are collinear.

In 1935, Paul Erdős and George Szekeres proved the following generalisation:

Theorem 1.4 (Paul Erdős & George Szekeres, 1935)

♥

For any positive n, any sufficiently large finite set of points in general position has a subset of n that
forms a convex polygon.

Remark. It is a fundamental theorem of combinatorial geometry. Four years later (1937), Esther Klein
became Esther Szekeres. (That’s why Erdős name it the "happy ending problem"!) During World War II,
George and Esther escaped to China and lived in Hongkew, Shanghai. They moved to Australia after the war.

Before giving the proof of this theorem, let’s first see another theorem proved by Paul Erdős and George
Szekeres at the same time.

Theorem 1.5 (Paul Erdős & George Szekeres, 1935)

♥

Any sequence of lengthmn+ 1 with distinct numbers has an increasing subsequence of length n+ 1

or a decreasing subsequence of lengthm+ 1.

Proof Define ai, bi as the length of the longest increasing, decreasing subsequence that ends at the i-th
number, respectively. For any i < j, ai 6= aj or bi 6= bj holds. (This is because if the i-th number is smaller
than the j-th one, then ai < aj . Otherwise, bi < bj .)

If the longest increasing subsequence has length at most n and the longest decreasing subsequence has length
at mostm, then there must exist i < j such that ai = aj and bi = bj due to the Pigeonhole Principle, which
leads to the contradiction.

Now, let’s introduce the proof of Theorem 1.4.

Proof Let’s prove that for any
(
p+q
p

)
+1 points in general position, there exists a concave polyline of length

p+1 or a convex polyline of length q+1. (Note that a concave/convex polyline will lead to a convex polygon.
If we have proved this, then set p = q = n− 2 and the whole proof will be completed.)

Figure 1.1: The left picture shows a concave polyline of length 5, while the right one shows a convex polyline
of length 5.
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We will finish the proof by induction on p and q. It obviously holds when p = 1 or q = 1. Suppose there are(
p+q
p

)
+1 points in general position and no convex polyline of length q+1 exists. By induction hypothesis, a

concave polyline of length p exists as
(
p+q
p

)
+ 1 ≥

(
p+q−1
p−1

)
+ 1. Remove the rightmost point of the concave

polyline and add the point into a set S. Repeat the process for
(
p+q
p

)
+ 1 −

(
p+q−1
p−1

)
=
(
p+q−1

p

)
+ 1 times.

Based on the induction hypothesis, there exists either a concave polyline of length p+1, or a convex polyline
of length q in S. If there exists a concave polyline of length p+ 1, then we’re done. Otherwise there exists
a convex polyline of length q in S. In this way, we can find p+ q + 1 points such that the left p+ 1 points
form a concave polyline while the right q+ 1 points form a convex polyline. It’s easy to show that either the
left p+ 2 points form a concave polyline of length p+ 1, or the right q + 2 points form a convex polyline of
length q + 1, which completes the proof.

Figure 1.2: The picture shows the case that 11 points form a polyline of length 10, where p = q = 5. It is
easy to see that left 7 points form a concave polyline of length p+ 1 = 6.

1.2.3 Generalization and Applications of Ramsey Problem

In this section, we introduce generalized Ramsey theorem.

Theorem 1.6 (Frank Ramsey, 1930)

♥

Let r ≥ 1 and qi ≥ r for 1 ≤ i ≤ s. There exists a minimal integer N = R(q1, . . . , qs; r) such that
for any coloring f : E(K

(r)
N ) → [s] of edges of the complete r-uniform hypergraph K

(r)
N , ∃i ∈ [s]

and a copy of K(r)
qi of color i.

Denote R(

s times︷ ︸︸ ︷
q, . . . , q; r) by Rs(q; r).

With this theorem, we can prove Schur’s theorem.

Theorem 1.7 (Issai Schur, 1916)

♥

Given any c > 0, there exists S(c) such that no matter how we color [S(c)] with c colors, there exists
monochromatic x, y, z that x+ y = z.

Proof Take S(c) = Rc(3; 2). For any edge (i, j) in graph KS(c), color it by |i − j|’s color. According
to Theorem 1.6, there exists a monochromatic K3 in graph KS(c). Assume that u < v < w form a
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monochromatic K3. Set x = v − u, y = w − v, z = w − u. Obviously, x, y, z have the same color and
x+ y = z, which completes the proof.

Also, we obtain an easier proof of Theorem 1.4.

Proof N = R(n, 5; 4) points suffice. For any four vertices, if they form a convex quadrilateral, use the first
color (let’s assume it’s blue) to color the corresponding hyperedge. Otherwise, use the second color (let’s
assume it’s yellow). According to Theorem 1.6, there exists a blueK(4)

n or a yellowK
(4)
5 . However, a yellow

K
(4)
5 can never exist based on Theorem 1.3, which implies that there exists n points where any 4 of them

form a convex quadrilateral. It further yields that these n points form a convex polygon (why?).
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