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We have introduced Paul Erdős’s proof of the lower bound of
R(k, k) last time. This week, we will continue the introduction of the
probabilistic method. We start from the review of probability.

3.1 Review of Probability and Basic Probabilistic Method

Here are some interesting problems we have discussed in class.

• What is the probability of throwing a six on a dice? Can we say
that the probability is 1

2 as there are just two outcomes, six or not
six?

• Can we uniformly randomly pick a natural number?

• Consider an equilateral triangle inscribed in a circle. Suppose a
chord of the circle is chosen at random. What is the probability
that the chord is longer than a side of the triangle? (This is also
known as Bertrand paradox.)

What do we really mean when we talk about “probability”? Before
using the probabilistic method, we should clearly define what “prob-
ability” is.

3.1.1 Review of Probability

We present the definition of a probability space (Ω,F , Pr[·]) as fol-
lows:

• Ω is the set of “outcomes", which is also the sample space. It can
be countable or uncountable.

• F is a σ-algebra (a set of all possible “events"), on which we can
define probability. We say F is a σ-algebra if it satisfies:

– ∅ ∈ F ;

– ∀A ∈ F , A{ ∈ F ;

– ∀A1, . . . , An , . . . ∈ F , ∪Ai ∈ F .

• Pr[·] : F → [0, 1] if a function such that

– Pr[∅] = 0, Pr[Ω] = 1;

– For any disjoint sets A1, . . . , An, . . . ∈ F , Pr[∪Ai] = ∑ Pr[Ai].
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The probabilistic method in combinatorics is based on the follow-
ing fact:

Pr[A] > 0 =⇒ A 6= ∅ .

We may use the following tools to bound probabilities:

• Union Bound: For any countable sets A1, . . . , An, . . ., Pr[∪Ai] ≤
∑ Pr[Ai];

• Principle of inclusion and exclusion:
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• Boole-Bonferroni Inequality:
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• Conditional probability: Pr[A|B] = Pr[A ∩ B]/Pr[B].

Roughly speaking, a probability function is a weight function
for each subset, and is countably additive. In principle, the finite
probability arguments can be rephrased as counting proofs, but are
usually more complicated without probabilities.

We first give two basic examples to show the power of the proba-
bilistic method.

3.1.2 2-Colorable Hypergraphs

We say a k-uniform hypergraph H = (V, E), where E ⊆ (V
k ), is

2-colorable if V can be colored with 2 colors such that no edge is
monochromatic. For instance, when k = 2, it’s easy to find that a 2-
uniform hypergraph is a graph, and is 2-colorable if and only if it is
bipartite.

Define m(k) as the minimal number of edges in a k-uniform hyper-
graph that is not 2-colorable. When k = 2, it’s simple to show that
m(2) = 3 (triangle). When k = 3, we can prove that m(3) = 7 and Fano
plane is the graph with minimal number of edges.

Figure 3.1: Fano plane

It is also known that m(4) = 23. However, we still don’t know how
large m(k) is when k ≥ 5.

In 1964, Paul Erdős derived a lower bound of m(k) through the
probabilistic method as follows.

Theorem 3.1 (Paul Erdős, 1964) m(k) ≥ 2k−1.
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Proof: For any graph with m < 2k−1 edges, we randomly color
each vertex. For any edge, the probability that it is monochromatic is
21−k. Therefore, the probability that a monochromatic edge exists is
no larger than m · 21−k, which is smaller than 1. This completes the
proof.

In fact, a good upper bound is also obtained by him at the same
time.

Theorem 3.2 (Paul Erdős, 1964) m(k) = O(k2 · 2k).

Proof: Fix the number of vertices as n, which will be determined
later. We uniformly choose m edges from ([n]

k ) to form a k-uniform
hypergraph with m edges. For any coloring χ : V → {0, 1}, define Aχ

as the event that χ is a proper coloring in the random hypergraph.
As we want to prove that there exists a k-uniform hypergraph with m
edges that is not 2-colorable, it suffices to show that ∑χ Pr[Aχ] < 1.

If coloring χ colors a vertices with 0, and b vertices with 1, then for
each edge e, we have Note that f (x) = (x

k) is convex.

Pr[e is monochromatic] =
(a

k) + (b
k)

(n
k)

≥ 2 ·
(n/2

k )

(n
k)

.

Define p = (n/2
k )

(n
k)

. Therefore,

Pr[Aχ] = (1− Pr[e is monochromatic])m ≤ (1− 2p)m,

which implies that

∑
χ

Pr[Aχ] ≤ 2n · (1− 2p)m < en ln 2−2mp.

Obviously, n ln 2− 2mp < 0 suffices. Setting n = k2, we can see that
m > n ln 2/(2p) = O(k2 · 2k), which completes the proof.

3.1.3 List Chromatic Number

In this section, we will introduce the list chromatic number ch(G),
which is also known is the choice number. A list coloring of a graph
is a proper coloring where each vertex is assigned a list of allowable
colors. A graph G is said to be k-choosable, or k-list-colorable, if it
has a proper coloring no matter how one assigns a list of k colors to
each vertex. Then ch(G) is defined as the minimum value of k such
that G is k-choosable. It’s easy to see that χ(G) ≤ ch(G). However,
the equality may not hold. Consider K3,3 and the following allow-
able color lists: for the 3 vertices of the left part, assign color list
{2, 3}, {1, 3}, {1, 2} to them respectively, and assign the same three
color lists to the vertices on the right.
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The following proposition reveals the relationship between k-
choosable bipartite graphs and 2-colorable hypergraphs.

Proposition 3.3 If there exists a non-2-colorable k-uniform n-edge hyper-
graph, then ch(Kn,n) > k.

Proof: Let H = (V, E) be a non-2-colorable k-uniform hypergraph
where |E|= n. Label vertices in Kn,n by ue and ve, and assign color
list e of size k. If Kn,n has a proper coloring, let C be the set of used
colors among n vertices in the left part. Then, for any vertex in H, if
it belongs to C, color it by 0. Otherwise color it by 1. Clearly for each
edge e ∈ E, the color of ue is in C while the color of ve is not in C. So
it forms a 2-coloring of hypergraph H, which leads to a contradiction.

Corollary 3.4 ch(Kn,n) > (1− o(1)) log2 n. Since m(k) = O(k2 · 2k).

Theorem 3.5 If n < 2k−1, then ch(Kn,n) ≤ k.

Proof: For each color, uniformly i.i.d. mark it as L or R. For any ver-
tex in the left/right part of Kn,n, we only use colors marked L/R to
color it. For each vertex, the probability that there is no valid color
for it is 2−k. As long as 2n · 2−k < 1, the probability that there ex-
ists valid marking is greater than zero, which implies that a valid
marking and a proper coloring exist.

Corollary 3.6 ch(Kn,n) = (1± o(1)) log2 n.

Actually, it has been proved that ch(G) > (1 + o(1)) log2 d where d is
the average degree of graph G. The proof is based on the hypergraph
container method, which we may discuss in the future.

3.2 Linearity of Expectation

Expectation is also a powerful tool in combinatorics. We list some
relative definitions and properties first.

• Random variable: X : Ω→ R;

• Event: A = X−1(a);

• Conditional expectation: E[X|Y] (which is function f (y) = E[X|Y =
y]);

• Law of total expectation: E[X] = E[E[X|Y]];

• Averaging principle: E[X] = a =⇒ X ≥ a/X ≤ a is possible;
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• Linearity of expectations: Let X = c1X1 + . . . + cnXn, then E[X] =
c1E[X1] + . . . + cnE[Xn]. (Note that we do not need to ensure that
these random variables are independent.)

We now introduce some applications of expectations.

3.2.1 Hamiltonian Paths in Tournaments

Theorem 3.7 (Szele, 1943) There exists a tournament (a directed graph
where each pair of vertices has exactly one directed edge between them) of
size n with at least n! ·21−n Hamiltonian paths.

Proof: Pick a random tournament. Define X as the number of Hamil-
tonian paths. For each permutation π, let Xπ be 1 if π(1) → π(2) →
· · · → π(n) is a path in the tournament. Otherwise, let Xπ be 0.

Therefore,

X = ∑
π

Xπ =⇒ E[X] = ∑
π

E[Xπ] = n! ·21−n,

which completes the proof.
We usually call Xπ an indicator random variable. The expectation

of Xπ is exactly the probability of the event it indicates.
This theorem was considered the first use of the probabilistic

method. Szele conjectured that the maximal number of Hamiltonian
paths is n! /(2− o(1))n, which was proved by Noga Alon in 1990.

3.2.2 Sum-free Sets

Now, we will introduce a “cute" result from Paul Erdős.

Theorem 3.8 (Paul Erdős,1965) Let A = {a1, . . . , an} be a set of n non-
zero integers. There is a subset B ⊆ A such that B is a sum-free set (i.e., no
a, b, c ∈ B with a + b = c) of size at least n/3.

Proof: For θ ∈ [0, 1], let Sθ = {n ∈ A : {nθ} ∈ ( 1
3 , 2

3 )}, where
{x} ∈ [0, 1) is defined as the fractional part of a real number x. If Sθ

is not sum-free, then there exists a + b = c in Sθ and aθ + bθ = cθ,
which leads to a contradiction as ( 1

3 , 2
3 ) is sum-free for fractional

parts. Therefore, Sθ is sum-free.
Choose θ u.a.r. from [0, 1]. Thus, Pr[n ∈ Sθ] = 1

3 as {nθ} u.a.r. By
linearity, E[|Sθ |] = n/3, which completes the proof.

This problem was used in an exam for Chinese mathematics
olympiad training team. Up till now, the best lower bound we have
known is (n + 2)/3, which was proved by Jean Bourgain in 1977.
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3.2.3 Crossing Number

Define cr(G) as the minimal number of crossings in a drawing of
graph G with n vertices and m edges. Recall that in the first lecture,
we have introduced that K3,3 is not a planar graph. It’s easy to show
that cr(K3,3) = 1. In this section, we will show a lower bound of cr(G).

We first give an “easy bound” by the Euler’s formula.
We claim that for all planar graphs (may be disconnected), |E|≤

3|V|. Recall the Euler’s formula that v− e + f = 2 for every connected
planar graph. Computing the number of incident pairs (e, f ), it’s easy
to show that 3 f ≤ 2e. Plugging it back, we have |E|≤ 3|V|−6 for Is it true for an isolated vertex?

all connected planar graphs. As a dis-connected planar graph can be
divided into several connected ones, |E|≤ 3|V| for all planar graphs. We ignore constants to avoid some

counterexmples.For any graph, we consider its drawing. For each crossing, remove
an edge incident to it. Then the remaining graph is planar. Therefore,
|E|−cr(G) ≤ 3|V|, which implies that cr(G) ≥ m− 3n.

However this bound is not tight, as it only shows that cr(G) =
Ω(n2) when m = Ω(n2), while the upper bound of cr(G) is (m

2 ) =
Ω(n4). In 1973, Erdős and Guy conjectured that cr(G) ≥ c ·m3/n2 for
some constant c > 0. In 1982, the inequality was proved when c = 1

100 .

Theorem 3.9 (Ajtai-Chvátal-Newborn-Szemerédi, 1982) cr(G) ≥
1

100 ·m3/n2.

The constant factor was improved to 1
64 later, and the proof was

based on the probabilistic method.

Theorem 3.10 (Chazelle-Sharir-Welzl) cr(G) ≥ 1
64 · m3/n2 as long as

m ≥ 4n.

Proof: For each graph G = (V, E) and a drawing, pick a real number The proof which we now present arose
from e-mail conversations between
Bernard Chazelle, Micha Sharir and
Emo Welzl.

p ∈ (0, 1) (to be determined later). For each vertex v ∈ V, we remove
it with probability 1− p. Thus, we obtain an induced subgraph G′ =
(V′, E′). Obviously, we have

E[|V′|] = pn,

E[|E′|] = p2m,

E[cr(G′)] ≤ E[number of remaining crossings] = p4cr(G).

Note that the easy bound cr(G) ≥ m − 3n holds for any graph G.
Therefore,

E[cr(G′)− (|E′|−3|V′|)] ≥ 0

=⇒ p4cr(G)− p2m + 3pn ≥ 0

=⇒ cr(G) ≥ p−3(pm− 3n).
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Assume that m ≥ 4n and set p = 4n/m, we can find that cr(G) ≥
1
64 ·

m3

n2 .
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