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8.1 General Form of the Lovász Local Lemma

Recall that last week we have introduced the definition of the dependency graph: for any event Ai, it is
independent from {Aj : j ̸= i, j ̸∈ N(i)}. Also, we have introduced the symmetric form of the Lovász Local
Lemma as follows.

Theorem 8.1 (Lovász Local Lemma, symmetric version) Let A1, . . . , An be events with Pr[Ai] ≤ p.
Suppose that each Ai is independent from all other Aj except at most d of them. If ep(d + 1) ≤ 1, then
Pr[

⋂
Ai] > 0.

In this section, we will introduce the asymmetric/general form of the Lovász Local Lemma as follows.

Theorem 8.2 (Lovász Local Lemma, asymmetric/general version) Let A1, . . . , An be events and Ai

is independent from {Aj : j ̸= i, j ̸∈ N(i)}. If there exists x1, . . . , xn ∈ [0, 1) such that for any 1 ≤ i ≤ n,

Pr[Ai] ≤ xi ·
∏

j∈N(i)

(1− xj),

then

Pr[
⋂

Ai] ≥
n∏

i=1

(1− xi).

Proof: We claim that for any i ̸∈ S ⊆ [n], we have

Pr[Ai|
⋂
j∈S

Aj ] ≤ xi.

If it holds, then

Pr[
⋂

Ai] = Pr[Ai] ·Pr[A2|A1] . . . ≥
n∏

i=1

(1− xi),

which completes the proof.

Now, let’s prove our claim by induction on the size of S. Our claim is trivially true when |S|= 0.

We assume that for any set S′ of which size is less than S, the claim always holds. Let’s consider the set S.
For i ̸∈ S, let S1 = S

⋂
N(i) and S2 = S\S1. Then we have

Pr[Ai|
⋂
j∈S

Aj ] =
Pr[Ai

⋂
(
⋂

j∈S1
Aj)|

⋂
j∈S2

Aj ]

Pr[
⋂

j∈S1
Aj |

⋂
j∈S2

Aj ]
:=

α

β
.
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Note that
α ≤ Pr[Ai|

⋂
j∈S2

Aj ] = Pr[Ai] ≤ xi ·
∏

j∈N(i)

(1− xj).

Also, let S1 = {t1, . . . , tr}. We have

β =

r∏
k=1

Pr[Atk |(
k−1⋂
ℓ=1

Atℓ)
⋂

(
⋂
j∈S2

Aj)]

≥ (1− xt1) . . . (1− xtr ) (by induction hypothesis)

≥
∏

j∈N(i)

(1− xj).

Therefore, α
β ≤ xi, which completes the proof.

Remark 1. To see the symmetric form, set xi =
1

d+1 < 1 for all 1 ≤ i ≤ n. Then,

xi

∏
j∈N(i)

(1− xj) ≥
1

d+ 1
(1− 1

d+ 1
)d >

1

e(d+ 1)
≥ p.

Remark 2. In 1985, Shearer proved that the constant e is best possible.

Let’s introduce a simple application of the Lovász Local Lemma. Consider a k-SAT formula:

φ = c1 ∧ c2 ∧ . . . ∧ cm

of which each clause has exactly k literals. Suppose that each variable appears in at most d clauses, then
based on the Lovász Local Lemma, we can claim that there exists a satisfying assignment when e·kd·2−k ≤ 1.

However, the Lovász Local Lemma only tells us the existence of such assignment. Can we find such a
satisfying assignment in polynomial time?

8.2 Algorithmic Lovász Local Lemma

In this section, we will discuss the algorithmic Lovász Local Lemma, which was awarded 2020 Gödel Prize.

Let’s start from a computationally hard example. Let q = 2k and f : [q] → [q] be a bijection. Let y ∈ [q]
be a fixed element. We sample x ∈ [q] uniformly at random. Define Ai as the bad event that f(x) and y
disagree at the i-th bit. All Ai’s are mutually independent, so the Lovász Local Lemma applies. This means
that there exists x such that f(x) = y. However, this conclusion is meaningless as we have already known
that f is a bijection. Also, finding such an x may be extremely hard. (For instance, consider the problem of
discrete logarithm: f : Fq → Fq = gx.)

The example above shows that it’s sometimes hard for us to find an assignment such that no “bad events”
occur if we add no constraints to events. For simplicity, we only talk about random variable models, where
each event only depends on some variables.

Robin Moser and Gábor Tardos gave the following algorithm:

• Step 1: Initialize each variable a random value independently.
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• Step 2: While some bad event Ai occurs (if several bad events occur simultaneously, pick Ai arbitrarily),
re-sample all variables that Ai depends on. Denote by vbl(Ai) the set of these variables.

In 2010, they proved the following theorem.

Theorem 8.3 (Robin Moser & Gábor Tardos, 2010) If the condition of Lovász Local Lemma holds,
then Moser-Tardos algorithm returns an assignment that no bad event occurs in expected linear time. In
particular, the expected rounds of re-sampling is no more than

E =

n∑
i=1

xi

1− xi
.

Proof: Let the excution log L be the sequence of Ai’s that are picked in step 2. |L| may be infinite, but we
claim that E[|L|] ≤ E.

Construct witness trees as follows for each time t ≤ |L|. Let L = (Al1 , Al2 , . . . , Alt , . . .). Read prefix
Alt , . . . , Al1 .

• Let the root of the witness tree T (t) be a vertex labelled with lt.

• For t′ = t− 1, . . . , 1:

– If none of the events corresponding to vertices in T shares variables with Alt′ , continue.

– Otherwise, find a deepest node v such that vbl(A[v]) ∩ vbl(Alt′ ) ̸= ∅ and add a vertex labelled
with lt′ as v’s child.

The following picture demonstrates a valid witness tree for better understanding.

Figure 8.1: The left picture is the dependency graph of events, while the right one is a valid witness tree
when L = (C,E,B,D,A,B,B,E,C).

Now, consider properties of the witness trees. For convenience, denote by [v] the label assigned to vertex v.

• T (t1) ̸= T (t2) for different times t1 ̸= t2.

If Alt1
̸= Alt2

, then the roots of T (t1) and T (t2) have different labels. If Alt1
= Alt2

= Ar, then label
r appears different times in T (t1) and T (t2), which implies that T (t1) ̸= T (t2).
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• For any T = T (t) and u, v ∈ T of the same depth, vbl(A[u]) ∩ vbl(A[v]) = ∅.

The first property implies that

E[|L|] =
∑
T

E[XT ] =
∑
T

Pr[T is a witness tree].

We claim that
Pr[T appears as a witness tree for some time t] ≤

∏
v∈T

Pr[A[v]].

In order to illustrate the above inequality more clearly, we give two simple examples. Consider T is a tree
with one single vertex A as its root. If T is a valid witness tree for some time t, then A happens at the
beginning, which implies that Pr[T appears as a witness tree for some time t] ≤ Pr[A]. If T is a tree with
two vertices and A is its root while B is a child of A, then clearly B happens at the beginning. After
re-sampling vbl(B), event A occurs. Therefore, the probability that T is a valid witness tree is no larger
than Pr[B] ·Pr[A].

Now, we start to prove our claim strictly. In general, consider the reverse BFS order of T : v1, v2, . . .. Assume
for each variable, we have an infinite list of values, of which each is independently sampled and then fixed.
When simulating the Moser-Tardos algorithm or checking A[v1], A[v2], . . . independently, we look up the value
table of each variable instead of sampling. We prove our claim by induction on the depth from bottom to
top.

For each v ∈ T and any u ∈ T with vbl(A[u]) ∩ vbl(A[v]) ̸= ∅, u is deeper than v if and only if A[u] appears
before A[v] in the execution log. For any z ∈ vbl(A[v]), let nz,v be the number of u’s before v such that
z ∈ vbl(A[u]). In the simulation of the Moser-Tardos algorithm, when checking whether Av occurs, look up
the (nz,v + 1)-th value of variable z. When checking the reverse BFS order sequence A[v1], A[v2], . . ., we also
look up the (nz,v + 1)-th value of variable z at the time checking A[v]. So the event that T is valid has the
same distribution as the sequence occur. Namely,

Pr[T is valid for some time t] =
∏
v∈T

Pr[A[v]].

Certainly,

Pr[T is a witness tree T (t)] ≤
∏
v∈T

Pr[A[v]],

which proves our claim.

Let W be the set of all possible witness trees.

E[|L|] =
∑
T∈W

Pr[T = T (t) for some t] ≤
∑
T∈W

∏
v∈T

Pr[A[v]].

If T ∈ W , then T has the following properties:

• T is finite;

• For any u → v in T , A[u] and A[v] overlap;

• For any u, v ∈ T have the same depth, A[u] and A[v] are disjoint.

Let W ′ be the set of trees that only satisfy the second property. Let W ′
B be the set of trees in W ′ and rooted

at event B. We generate trees in W ′
B by a random process (Galton-Watson process):
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• Let B be the root of the tree.

• For any vertex v, we find all its “potential” children N+(v) = N([v]) ∪ {[v]} whose variables overlap
with vbl(A[v]).

• For each “potential” child Ai, add a vertex labelled with i as the child of vertex v in the tree with
probability xi (xi is the value corresponding to event Ai in the statement of the local lemma) and call
it an alive children of v.

Let D(v) be the set of alive children of vertex v. Let PT be the probability that Galton-Watson process
generates T . Thus, we have

PT =
1

xB

∏
v∈T

x[v]

∏
v∈T

∏
k∈N+(v)\D(v)

(1− xk)

=
1− xB

xB

∏
v∈T

x[v]

1− x[v]

∏
k∈N+(v)

(1− xk)

=
1− xB

xB

∏
v∈T

x[v]

∏
k∈N(v)

(1− xk)

≥ 1− xB

xB

∏
v∈T

Pr[Av].

Clearly,
∑

T∈W ′
B
PT = 1. Therefore,

∑
T∈WB

∏
v∈T

Pr[A[v]] ≤
∑

T∈W ′
B

PT · xB

1− xB
=

xB

1− xB
,

which implies that

E[|L|] ≤
n∑

i=1

xi

1− xi
.

This completes the whole proof.

8.3 Several Examples

In this section, we will introduce several classical applications of the Lovász Local Lemma.

8.3.1 Ramsey Number, Revisit

Theorem 8.4 (Spencer, 1977) If

e

((
k

2

)(
n

k − 2

)
+ 1

)
· 21−(

k
2) < 1,

then R(k, k) > n.
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Proof: Color Kn randomly. For any set of vertices S of size k, let ES be the event that S induces a

monochromatic Kk. Thus, Pr[ES ] = 21−(
k
2).

For any k-vertex sets S, ES is independent from all ET where |S ∩ T |< 2. Therefore, the maximal degree of
the dependency graph is at most

(
k
2

)
·
(

n
k−2

)
. Then, the Lovász Local Lemma applies.

Remark. Optimizating the choice of n, it gives the best bound so far

R(k, k) > (
√
2/e+ o(1)) · k · 2k/2.

Recall that by the union bound we obtain R(k, k) > (1/(e
√
2)+ o(1)) ·k · 2k/2, and by the alteration method

we obtain R(k, k) > (1/e+ o(1)) · k · 2k/2. The Lovász Local Lemma does not improve much.

Let K =
(
n
k

)
be the number of all events, then d = |N(S)|≈ K1−O(1/k). There are so many “dependencies”,

so the Lovász Local Lemma does not work well.

Now, let’s consider R(k, 3). Let p be a fixed parameter to be determined later. For each vertex, color it
0 with probability p, and 1 with probability 1 − p. Let S, T be two vertex sets where |S|= 3 and |T |= k.
Define AS as the event that S forms a monochromatic K3 with color 0 and BT as the event that T forms a
monochromatic Kk with color 1. Clearly,

Pr[AS ] = p3, Pr[BT ] = (1− p)(
k
2) ,

and two event are adjacent in the dependency graph if the intersection of their corresponding subsets has
size at least 2.

For AS , there exists at most 3(n− 3) S′ such that AS ∼ AS′ and at most
(
n
k

)
T ′ such that AS ∼ BT ′ . For

BT , there exists at most
(
k
2

)
(n− 2) < k2n

2 S′ such that BT ∼ AS′ and at most
(
n
k

)
T ′ such that BT ∼ BT ′ .

Apply the Lovász Local Lemma, if there exists p, x, y such that{
p3 ≤ x(1− x)3n(1− y)

(
n
k

)
(1− p)(

k
2) ≤ y(1− x)k

2n/2(1− y)(
n
k)

,

then R(k, 3) > n.

By setting p = c1 · n−1/2, k = c2 · n1/2 log n, x = c3 · n−3/2 and y = c4/
(
n
k

)
, we have R(k, 3) > c5 · k2/log2 k.

The best known lower bound is c6 ·k2/log k. Analogously, R(k, 4) > k
5
2+o(1), which is better than any known

result without the Lovász Local Lemma.

8.3.2 Large Independent Sets from Partition

Previously, we have introduced the Caro-Wei inequality, where we learned how to find an independent set of

size at least |V |
∆+1 when given a graph with maximal degree ∆. Today, we will show that there exists a large

independent set from any “good” partition.

Theorem 8.5 Let G = (V,E) be a graph with maximal degree at most ∆. V = V1 ∪ . . . ∪ Vr is a parition
where |Vi|≥ 2e∆ for any 1 ≤ i ≤ r. Then, there exists an independent set which contains a vertex from each
Vi.

Proof: Let k = ⌈2e∆⌉ and assume that |Vi|= k for all 1 ≤ i ≤ r. Pick vi ∈ Vi u.a.r. For any edge e ∈ E,
let Be be the event that both of its endpoints are chosen. Thus, Pr[Be] ≤ 1

k2 . In the dependency graph,



Lecture 8: November 1 8-7

Be ∼ Bf if there exists Vi that intersects both e and f . Therefore, the maximal degree of the dependency
graph d ≤ 2k∆. Then, the Lovász Local Lemma applies.

Remark. Some choices of bad events are better than others. If we define Ai,j = {vi ∼ vj} for any
1 ≤ i < j ≤ r, then Pr[Ai,j ] ≤ ∆

k . In the dependency graph, Ai,j ∼ Ak,l if {i, j} ∩ {k, l} ≠ ∅. The maximal
degree of the dependency graph is d ≤ 2k∆. However, this upper bound is still too large.

8.3.3 Directed Cycles of Length Divisible by k

Theorem 8.6 (Alon & Linial, 1989) For any directed graph G with minimal out-degree at least δ and
maximal in-degree at most ∆ contains a cycle of length divisible by k when

k ≤ δ

1 + log(1 + δ∆)
.

Proof: Assume that every vertex v ∈ V has out-degree δ. (Otherwise, we delete some edges from v.) Assign
xv ∈ Z/kZ to v uniformly randomly. Now, we look for cycles that the label increase by 1 at each step.

Let Av = {none out-neighbor of v has label xv + 1}. Thus,

Pr[Av] = (1− 1/k)δ ≤ e−δ/k.

Let Nout(v) be the set of out-neighbors of vertex v. Naively we may use the dependency graph where
Au ∼ Av if and only if {u} ∪Nout(u) intersects {v} ∪Nout(v).

In fact we can construct a directed dependency graph and improve the bound. Note that Pr[Av] is (1−1/k)δ

as long as Nout(v) are free, even if v is assigned. So Av is independent from all Au’s where N
out(v) does not

intersect {u} ∪Nout(u). Therefore, the maximal degree of the dependency graph d ≤ ∆δ. As

e1−δ/k(1 + ∆δ) ≤ 1,

we are done by the Lovász Local Lemma.

Remark. The dependency is not symmetric in this proof.


