Convex Functions

5.1 Definition

We now introduce convex functions. For convenience, use 6 to denote 1 — 6 for any
6 € R.

Definition (Convex functions)

Let f: Q2 C R"” — R be a real-valued function. Then it is convex if

the domain dom f is convex;

f satisfies the Jensen’s inequality, i.e., for all ,y € dom f and 6 € [0, 1], it
holds that

f(0z + Oy) < 0f(x) + 0f(y).

The function f is concave if — f is convex.

Geometrically, the line segment between (z, f(«)) and (y, f(y)) lies above the
graph of f.

Definition (Strictly convex functions)

Let f: D C R™ — R be a real-valued function. Then it is strictly convex if

the domain dom f is convex;



f satisfies the strict Jensen’s inequality, i.e., for all ® # y € dom f and
6 € [0, 1], it holds that

f(0xz + by) < 6f(x) + 0f(y).

The function f is strictly concave if — f is strictly convex.

Note that an affine function f(z) = w'x + b is both convex and concave, but not
strictly convex or strictly concave. The following proposition shows that if a
function is both convex and concave, then it must be an affine function.

Proposition

Let f be convex. If f(fz + Oy) = 0f(x) + 0f(y) for some § = 6, < (0,1), then it
holds for any 6 € [0,1], i.e., g(8) = f(6z + y) is an affine function for 8 € [0, 1]

Why? Suppose there exists 01 € (0,80) such that f(61z + 01y) < 61f(x) + 01f(y).
Then choose any 02 € (0,6,) and note that (fpx + foy) is a convex combination of
(61 + A1y) and (62 + H2y). Applying the Jensen’s inequality on them, we can
obtain contradictions.

Why these functions are called convex? Someone may think their graphs are
somehow concave. Actually, what we concern is the area above the graphs of



convex functions.

strictly convex function convex function

Y
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strictly concave function concave function

Definition
Given a real-valued function f: D C R" — R,
the graph of f is defined as
{(z, f(x)) €eR"" |z € D};
the epigraph of f is defined by
epi(f) £ {(z,y) eR"" [z € D,y > f()};
the hypograph of f is defined by

hyp(f) £ {(z,y) e R""" | @ € D,y < f(z)}.

Theorem

Let f: D C R™ — R be a real-valued function. Then f is convex if and only if
epi(f) is convex.



Proof

"«<=". Given any @,y € D and 6 € [0, 1], since epi(f) is convex, and both
(2, f()) and (y, f(y)) in epi(f), then

(02 + 0y, 05() + 0f(y) ) < epi(F),
which implies that 8« + 0y € D and

f(0x + 0y) < 0f(x) + 0f(y) .

Thus D is convex and the Jensen’s inequality holds.

"—". Given (x1, z2), (y1,y2) € epi(f) where ®,,y; € D and x5,ys € R,
and 6 € [0, 1], let

z1 = 0z, + éy1,Z2 = Oxo + éyz .
By the convexity of D, z; € D. By the definition of epi(f),

29 = Ozo + Oy
> 0f (1) + 0f(x2)
> f (0:{31 S §m2>
= f(z1)

Then, (21, 22) € epi(f), which means epi(f) is convex.

Example

(Univariate functions) f(z) = + where z > 0, f(z) = e and f(z) = —logx
where z > 0 are all strictly convex. (Or we say f(z) = < and

f(z) = —logx are convex over (0,00), and f(x) = e” is convex over R.)
(Norm functions) Any norm ||-|| is a convex function, but can not be strictly
convex (e.g., L'-norm, not strictly convex by absolute homogeneity).

Why do we consider convex functions? One of the most important properties of

convex functions is that local minimum points must be global minimum.

Theorem



If f(x) : D CR™ — R is a convex function and has a local minimum point
z* € D, then z* is a global minimum point.

Proof

Assume not. Then there exists y* € D such that f(y*) < f(«*). Since z* is a
local minimum point, there exists ¢ > 0 such that for all z € D N B(z*, ¢),
f(xz) > f(x*). Choose 0 € (0,1) sufficiently small such that 8||y* — z*|| < e.
Then z = z* + 6(y* — z*) = Oz* + Oy* € B(z*,¢). By the convexity of f, z € D
and thus f(z) < 0f(z*) + 6f(y*) < f(z*), which contradicts that z* is local
minimum.

Extended-value functions

Suppose the domain of function f is not R". Then we can extend the value of f to
R U {00} so that the domain of f can be extended to R", namely, we can define
f:R" = RU {oo} for a function f: D — R as follows:

o= {158

where we assume oo + ¢ = 00, 0o - & = oo for any z > 0 and oo - 0 = 0.
Note that the extended-value function of a convex function is still convex, since the
epigraph remains the same.

Generalization of the Jensen’s inequality

It is easy to show the following generalization of Jensen’s inequality by induction.

Proposition

Suppose f : R™ — R is a convex function. Then for any 6,,0,,...,0,, € [0,1]
where ) . 0; = 1 and any x;, x,, ..., z, € R, it holds that

fbrzy + -+ O0p2y) <O1f(21) + - + 0 f(2m) -

Intuitively we can generalize the inequality to the convex combination of infinite
many variables. We actually have the following generalized form of the Jensen’s



inequality but we should note that the proof of it is nontrivial since we cannot use
induction!

Theorem

Let (2,5, u) be a probability space, X be an integrable real-valued random
variable and f be a convex function. Then it holds that

FELX]) <E[f(X)].

Equivalently we have the following measure-theoretic form

f(/QXdu) < [ #0dn.

5.2 Properties and conditions of convexity

Midpoint convexity

Now we would like to proof that f(z) = —Inx is a convex function over (0, o).
We verify the Jensen's inequality:

flnz + Olny < In(z + Oy).
Taking the exponent on the both sides, it is equivalent to show that
wg-y9§9x+§y.

If § = 1/2, it is trivial by the AM-GM inequality. However, how can we verify the
inequality for 6 # 1/2, or is it sufficient for us to verify Jensen's inequality only for
0=1/27

Technically we cannot use the weighted AM-GM inequality here, since the
weighted version is usually proved by the Jensen's inequality and concavity of
the logarithm, which is what we want to show!

We say a function f: D — R is midpoint convex if the Jensen's inequality holds for
6 = 1/2 and every z,y € D. Clearly, convex functions are midpoint convex.



Conversely, it is not necessarily true. But luckily, if the function is also continuous,
then it is convex.

Theorem (Jensen, 1905)

If f is a continuous midpoint convex function defined on a convex set D, then

f is convex.

Proof v

Prove by contradiction. Assume Jz,y € D and 0 # 1/2 such that
f(0z + 0y) > 0f(x) + 0f(y). Let

g9(a) = flaz + ay) — (af(z) + af(y), a<cl0,1].

Then we have g(0) = g(1) = 0 and ¢(#) > 0. By the compactness of [0, 1], there
exists M = max,eo,1) g(a) > 0, and exists a € [0, 1] such that g(a) = M.

Now let ay = inf {a € [0, 1] : g(or) = M}. By the continuity of g,

g(ag) = M > 0. Thus oy # 0, 1. Select § > 0 sufficiently small such that

(ag — d, 9 + 8) C (0,1). Since f is midpoint convexity , we have

g(ao —6) + g(ao + 6) = 2f(cwz + aoy) — (2af(z) + 2a0f(y)) = 2g(c0) -

However, by the definition of o, we have g(ay) < M, g(ay) = M, and
g(ag + ) < M, which leads to a contradiction.

There exists midpoint convex but not convex functions if we admit the axiom
of choice. Such a function would have to be non-measurable.

Now we use this theorem to verify a more complicated example:
f(X) = —logdet X is convex for positive definite matrix X € S7_.

We admit the fact that f(X) is continuous. Then we verify the midpoint convexity:

X+Y

det
¢

> 1/ (det X)(det ).



Since X >~ 0, X ! exists and det X ! > 0. So our goal is equivalent to show that

I+ XY
det =~ ¥ > v/det X-1Y .
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Note that

det(AI—X—ly) — 0 <— det(%) Y N det(lL;\I_ I“g_ly),so

A(E3E) = A

, Wwhere \;(A) is the i-th eigenvalue of matrix A. Thus we
have

-1 -1 (x-1
I+ X Y:H)\i(I+X Y):Hl-l—)\l(X Y)

det 5 5 5

and

Vet XY = /[ M(X1Y).

Now it suffices to show that A\;(X~'Y) > 0 for all i. Since X ~ 0, consider the
eigen-decomposition X = UAU L. It implies that there exists

X2 = UAY?2U ! » 0 and invertible (note that (X'/2)? = UAU ! = X).

If X 'Yv = A, then

X1/2x—1YX—1/2(X1/2v) — X1/2(X_1Yv) _ )\X1/2,U,
and vice versa. So
)\i(Xle) = )\i(Xl/2X71YX1/2) — )\i(Xfl/2YX71/2) '

Note that X /2Y X /2 is symmetric, and Vv # 0, v X 2Y X 20 =4TYu > 0,
where u = X2y, Hence, X /2Y X'/ = 0, which yields that all eigenvalues are
nonnegative.

Combining all of above, we conclude that f(X) is convex.

Zeroth order condition

We now consider some properties of convexity. Conversely, these properties also
provide some criteria to verify convexity.

Let f be a single-variable function. Usually it is easy to verify the Jensen's
inequality. So our first condition is that, f is convex if and only if its restriction to

any line is convex.

Theorem



Suppose f is a function defined on a convex set D C R". Then f is convex iff
Ve € D,v € R", g(t) = f(x + tv) is convex.

Example

f(zq, o, ... ,x,) = e¥1T¥2t "+ {g convex, since Vu,v € R",
g(t) = f(u + tv) = et Fun . e(rtFo)t js convex.

Proof

"— ", Assume f is convex. Fix & € D. For any v € R", let t{,t5 € dom g.
It suffices to show that V6 € [0,1], (i) 6¢; + 0t, € dom g; (ii)

g(6t1 + 6t5) < Bg(ty) + Og(ts).

Let®; =« +t; - v. Since t1,ty € domg, &1, € D. Thus,

0z, + Oxy = x + (0t, + Oty)v € D, which indicates that 6, + ¢, € dom g.

Furthermore,
g(0t, + 0ty) = f(Oxy + 0zy) < 0f(x1) + Of(x2) = Og(t1) + Og(ts).

"<=".Given @,y € D, let v =y — « and g(t) = f(x + tv). Since g is
convex and 0,1 € dom g, we have that V6 € [0,1], § € dom g. Thus

x + 0(y — x) = Ox + Oy € D. Moreover,

g(0) = f(0z + Oy) < Og(0) + Og(1) = Of(x) + 6f(y), which implies that f is
convex.

First order condition

If f is further differentiable, we have the following important criterion (and an
important property) for convex functions.

Theorem

Suppose f is differentiable in an open convex set D = dom f. Then f is convex
in D iff

Va,ye D, f(y)> f(z) +Vf(z) (y—z).



The first order condition shows that convex functions have linear lower bounds.

foort o0 L0

We usually use (-, -) to denote the inner product. So the first condition is also
written as f(y) > f(z) + (Vf(z),y — x).

Example (Bernoulli's inequality)

(I1+z)">1+rzifr>1andz > —1;
e* >1+zx.

Proof

"— ". Fix any z,y € D. Let v = y — z. By the Jensen's inequality,
Vte[0,1], f(z+tv) <(1-1t)f(x)+tf(y)-
Rearranging it, we have
f(@ + tv) — f(z) <t(f(y) — f(=)).

Recall that V f(:n)Tv = lim;:_ w Taking the limits ¢ — 0 on both

sides, we have
Vi) v < fly) - f(a).

"«=".Forall z,y € Dand 6 € [0,1], let z = 0z + y. The first-order
condition gives that

{f(:v) > f(2) + V£(2) (z - 2) (1)
fY) = f(2) + VH(2) (y - 2) (2)

Then (1) + §(2) immediately implies that 0f(z) + 0f(y) > f(=).



Corollary

In particular, if V f(z) = 0, then f(y) > f(z) for all y € D. If f is further
strictly convex, x is the unique global minimum point.

Given zy € D, {(z,y) € R" |y = f(xo) + Vf(zo)(x — xo)} isa
supporting hyperplane of epi f at x,.

The first order condition also holds for the strict convexity if applying strict
inequality. For the proof for strict convexity, the <= direction remains the same.
However how can we prove the = direction? Note that taking the limit cannot
keep the strict inequality.

Theorem (First order condition for strict convexity)

Suppose f is differentiable in an open convex set D = dom f. Then f is strictly
convex in D iff

Ve#£yeD, fly)>flz)+Vf=) (y—z).

Proof

Let v = y — x, similar to the proof of non-strict version, we have

f(z +tv) — f()
t

< f(y) — f(z).
Consider another coefficient s such that 0 < ¢t < s < 1, then we also have

f(z + sv) — f(=)

< f(y) — f(z).



>
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Applying Jensen inequality (writing = + tv as a convex combination of z and
x + sv), it's easy to verify that

flzttv) — flz) _ fl@+sv) -~ flz)
t S

Taking ¢t — 0, we have

V()T (y— 7) = jim fz + “;) — f(=z)
< f(z + sv) — f(=)
< f(y) — f(z),

which prove the first order condition for strictly convex functions.

An important corollary of the first order condition is the property of monotone
gradient.

Corollary (Monotone gradient)

Let f: R™ — R be a continuously differentiable function. Then, f is a convex
function if and only if V f is monotone, i.e., (Vf(z) — Vf(y),z —y) > 0.

Proof v

"—". When f is convex, for all z,y € R", by the first order condition,

fy) = f(z) + (Vf(z),y — z),
f(z) > f(y) + (VI(y),z —y).



Then,
0> (Vf(z) = VI(y),y —z).

Thus we obtain the monotone gradient.

"<—". When Vf is monotone, for all z,y € R", define the function
g(t) = f(tz + ty). Then

g(t) = (Vi(tz +ty),y — z).
For t1,ts € [0, 1], by elementary calculation
(9'(t1) — ¢'(t2))(t1 — t2) = (Vf(trz + try) — Vf(taz + tay), (t1 — t2)(y — 2))
Note that (t;z + t1y) — (t22 + t2y) = (t1 — t2)(y — z). Then

(9'(t1) — g'(t2))(t1 — t2) > 0.

This means, we can assume the dimension n = 1. For all z,y € R (without
loss of generality, assuming « < y), by the mean value theorem, there
exists ¢ € [z, y| such that

fly) — f(x) = f'(e)(y— ).

Since (f'(c) — f'(z))(c — ) > 0, we have f'(c) > f'(x), which leads to the
first order condition f(y) > f(z) + f'(z)(y — z).

Second order condition

The property of monotone gradients indicates that the second order derivative is
somehow nonnegative. Assume f : R — R is a univariate function. Then

(f'(z) = f'(y)(x—y) >0

implies that f'(z) is increasing and thus f”(z) is nonnegative. If f : R® — R be a
multivariate function, the second order derivative is V2 f(z) € R"*". A generalized
notion of f”(z) > 0is V2f(z) = 0 in this case.

Theorem

Suppose f is twice differentiable in an open convex set D = dom f. Then f is
convex over D iff Vo € D, V2f(z) = 0.



Furthermore, if V& € D, V?f(z) = 0, then f is strictly convex over D (but not
vice versa).

Example

f(z) = —zlogz is strictly concave over R, since f'(z) = —(1 + logz) and
f!(z) = -+

f(z) = e is strictly convex for all @ € R \ {0}, since f”(z) = a’e®.

f(z) = 2% is convex over (0,00) for a > 1 or a < 0, and concave otherwise.
The log-sum-exp function f(z) = log(e” + €™ + - - - + €**) is convex over

Z3 e%i e%k)—(e%i)?2 Tt
R™. (Exercise. Hint: g—:fi = fezk, giﬁc = (%:ng)g = aizj = (iezk)z,,
so V2f(z) = ﬁ(S(w) diag{e™,...,e"} —s(x)s(a:)T), where

s(z) = (e”,...,e")T and S(z) = _ e, thus v" V2 f(z)v =7)

Proof

"—". For any z € dom f, we define g(y) = f(y) — f(z) — Vf(z)"(y — z),
where y € dom f. Hence g(x) = 0. By the first order condition, g(y) > 0 for
all y € dom f, which implies V2g(z) = 0 by the second-order condition for
optimality. So we have V2 f(z) = V2g(z) = 0.

" <", Given two arbitrary points x,y € dom f, let v =y — z, and

g(t) = f(x + tv). Applying Taylor series with Lagrange remainder to g,
there exists 6 € [0, 1] such that

fly) = f(x +v) = f(z) + Vf(z) v+ %vTvzf(a: + 6v)v.

Since, V2 f(z) = 0 for all z € dom £, it follows that

fy) > f(z) + Vi(z) v.

Therefore, f is convex by the first order condition.

For strict convexity, we can replace = by > and > by > in the " <= " direction, and
apply the first order condition for strict convexity. However, for the " ="
direction, similar argument cannot be true, since strictly optimal point cannot
imply V2f - 0.



Example

Consider the function f(z) = z*. It is strictly convex, but f”(0) = 0 is not
strictly greater than zero.
Similarly, consider the function f(zy,z2) = 2 + «3. It is strictly convex, but

o (2,0

, |» which is not positive definite for z» = 0.
0 12z;

However, for a series of special functions, the equivalent relation of strict convexity
holds. Consider quadratic functions,

f(z) = %:cTQx +w'z+b.

Without loss of generality, we can assume (@ is symmetric. This is because

Q+QT)
_— | X.

1 1 T
T T T T
:cQa:ZEx Qw+§(:c Q:c) =z ( 5

It is easy to compute that V2 f(x) = Q. Then the following propositions are true:

f is convex iff @ > 0. It can be implied by the above theorem.

f is strictly convex iff Q > 0. The " < " direction is easy to verify. So we only
need to prove the " = " direction. Note that

flet+v) = 5(e+0) Q@ +v) +w (z +v) +b
1

= E(mTQx +22 QU+ v Qu)+w'z+wv+b

1
= f(x) + Vf(z) v+ EvTvzf(x)v.

Since f is strictly convex, we have f(z +v) > f(x) + Vf(z) v for all v # 0
(applying the first order condition). That is, " V2 f(z)v > 0, which implies that
Q >~ 0.

Example

The following figures show the different convexity of f when @ takes different
values.



The first one is strict convex since @ > 0.

The second one is convex since @) > 0.

The third one is not convex since @ # 0.



