
We now introduce convex functions. For convenience, use θ̄ to denote 1 − θ for any

θ ∈ R.

Geometrically, the line segment between (x, f(x)) and (y, f(y)) lies above the

graph of f.

Convex Functions

5.1 Definition

Definition (Convex functions)

Let f : Ω ⊆ Rn → R be a real-valued function. Then it is convex if

The function f is concave if −f is convex.

the domain dom f is convex;

f satisfies the Jensen’s inequality, i.e., for all x,y ∈ dom f and θ ∈ [0, 1], it

holds that

f(θx + θ̄y) ≤ θf(x) + θ̄f(y) .

Definition (Strictly convex functions)

Let f : D ⊆ Rn → R be a real-valued function. Then it is strictly convex if

the domain dom f is convex;



Note that an affine function f(x) = wTx + b is both convex and concave, but not

strictly convex or strictly concave. The following proposition shows that if a

function is both convex and concave, then it must be an affine function.

Why? Suppose there exists θ1 ∈ (0, θ0) such that f(θ1x + θ̄1y) < θ1f(x) + θ̄1f(y).

Then choose any θ2 ∈ (0, θ0) and note that (θ0x + θ̄0y) is a convex combination of

(θ1x + θ̄1y) and (θ2x + θ̄2y). Applying the Jensen’s inequality on them, we can

obtain contradictions.

Why these functions are called convex? Someone may think their graphs are

somehow concave. Actually, what we concern is the area above the graphs of

The function f is strictly concave if −f is strictly convex.

f satisfies the strict Jensen’s inequality, i.e., for all x ≠ y ∈ dom f and

θ ∈ [0, 1], it holds that

f(θx + θ̄y) < θf(x) + θ̄f(y) .

Proposition

Let f be convex. If f(θx + θ̄y) = θf(x) + θ̄f(y) for some θ = θ0 ∈ (0, 1), then it

holds for any θ ∈ [0, 1], i.e., g(θ) = f(θx + θ̄y) is an affine function for θ ∈ [0, 1]

.



convex functions.

Definition

Given a real-valued function f : D ⊆ Rn → R,

the graph of f is defined as

{(x, f(x)) ∈ R
n+1 ∣ x ∈ D};

the epigraph of f is defined by

epi(f) ≜ {(x, y) ∈ R
n+1 ∣ x ∈ D, y ≥ f(x)} ;

the hypograph of f is defined by

hyp(f) ≜ {(x, y) ∈ R
n+1 ∣ x ∈ D, y ≤ f(x)} .

Theorem

Let f : D ⊆ Rn → R be a real-valued function. Then f is convex if and only if

epi(f) is convex.



Why do we consider convex functions? One of the most important properties of

convex functions is that local minimum points must be global minimum.

Proof

" ⟸ ". Given any x,y ∈ D and θ ∈ [0, 1], since epi(f) is convex, and both

(x, f(x)) and (y, f(y)) in epi(f), then

(θx + θ̄y, θf(x) + θ̄f(y)) ∈ epi(f) ,

which implies that θx + θ̄y ∈ D and

f(θx + θ̄y) ≤ θf(x) + θ̄f(y) .

Thus D is convex and the Jensen’s inequality holds.

" ⟹ ". Given (x1,x2), (y1, y2) ∈ epi(f) where x1,y1 ∈ D and x2,y2 ∈ R,

and θ ∈ [0, 1], let

z1 = θx1 + θ̄y1, z2 = θx2 + θ̄y2 .

By the convexity of D, z1 ∈ D. By the definition of epi(f),

Then, (z1, z2) ∈ epi(f), which means epi(f) is convex.

z2 = θx2 + θ̄y2

≥ θf(x1) + θ̄f(x2)

≥ f (θx1 + θ̄x2)
= f(z1)

Example

(Univariate functions) f(x) = 1
x

 where x > 0, f(x) = ex and f(x) = − logx

where x > 0 are all strictly convex. (Or we say f(x) = 1
x

 and

f(x) = − logx are convex over (0,∞), and f(x) = ex is convex over R.)

(Norm functions) Any norm ∥⋅∥ is a convex function, but can not be strictly

convex (e.g., L1-norm, not strictly convex by absolute homogeneity).

Theorem



Suppose the domain of function f is not Rn. Then we can extend the value of f to

R ∪ {∞} so that the domain of f can be extended to Rn, namely, we can define
~
f : Rn → R ∪ {∞} for a function f : D → R as follows:

~
f(x) = {

where we assume ∞+ x = ∞, ∞ ⋅ x = ∞ for any x > 0 and ∞ ⋅ 0 = 0.

Note that the extended-value function of a convex function is still convex, since the

epigraph remains the same.

It is easy to show the following generalization of Jensen’s inequality by induction.

Intuitively we can generalize the inequality to the convex combination of infinite

many variables. We actually have the following generalized form of the Jensen’s

If f(x) : D ⊆ Rn → R is a convex function and has a local minimum point

x∗ ∈ D, then x∗ is a global minimum point.

Proof

Assume not. Then there exists y∗ ∈ D such that f(y∗) < f(x∗). Since x∗ is a

local minimum point, there exists ε > 0 such that for all x ∈ D ∩ B(x∗, ε),

f(x) ≥ f(x∗). Choose θ ∈ (0, 1) sufficiently small such that θ∥y∗ − x∗∥ < ε.

Then z = x∗ + θ(y∗ − x∗) = θ̄x∗ + θy∗ ∈ B(x∗, ε). By the convexity of f, z ∈ D

and thus f(z) ≤ θ̄f(x∗) + θf(y∗) < f(x∗), which contradicts that x∗ is local

minimum.

Extended-value functions

f(x), x ∈ D

∞, x ∉ D

Generalization of the Jensen’s inequality

Proposition

Suppose f : Rn → R is a convex function. Then for any θ1, θ2,… , θm ∈ [0, 1]

where ∑
i
θi = 1 and any x1,x2,… ,xm ∈ Rn, it holds that

f(θ1x1 +⋯+ θmxm) ≤ θ1f(x1) +⋯+ θmf(xm) .



inequality but we should note that the proof of it is nontrivial since we cannot use

induction!

Now we would like to proof that f(x) = − lnx is a convex function over (0,∞).

We verify the Jensen's inequality:

θ lnx + θ̄ ln y ≤ ln(θx + θ̄y) .

Taking the exponent on the both sides, it is equivalent to show that

xθ ⋅ yθ̄ ≤ θx + θ̄y .

If θ = 1/2, it is trivial by the AM-GM inequality. However, how can we verify the

inequality for θ ≠ 1/2, or is it sufficient for us to verify Jensen's inequality only for

θ = 1/2 ?

We say a function f : D → R is midpoint convex if the Jensen's inequality holds for

θ = 1/2 and every x, y ∈ D. Clearly, convex functions are midpoint convex.

Theorem

 Let (Ω,F,μ) be a probability space, X be an integrable real-valued random

variable and f be a convex function. Then it holds that

f(E[X]) ≤ E[f(X)] .

Equivalently we have the following measure-theoretic form

f(∫
Ω

X dμ) ≤ ∫
Ω

f(X) dμ .

5.2 Properties and conditions of convexity

Midpoint convexity

Remark

Technically we cannot use the weighted AM-GM inequality here, since the

weighted version is usually proved by the Jensen's inequality and concavity of

the logarithm, which is what we want to show!



Conversely, it is not necessarily true. But luckily, if the function is also continuous,

then it is convex.

Now we use this theorem to verify a more complicated example:

f(X) = − log detX is convex for positive definite matrix X ∈ S
n
++.

We admit the fact that f(X) is continuous. Then we verify the midpoint convexity:

det
X + Y

2
≥√(detX)(detY ) .

Theorem (Jensen, 1905)

If f is a continuous midpoint convex function defined on a convex set D, then

f is convex.

Proof ​

Prove by contradiction. Assume ∃x, y ∈ D and θ ≠ 1/2 such that

f(θx + θ̄y) > θf(x) + θ̄f(y). Let

g(α) = f(αx + ᾱy) − (αf(x) + ᾱf(y)), α ∈ [0, 1] .

Then we have g(0) = g(1) = 0 and g(θ) > 0. By the compactness of [0, 1], there

exists M = maxα∈[0,1] g(α) > 0, and exists α ∈ [0, 1] such that g(α) = M.

Now let α0 = inf {α ∈ [0, 1] : g(α) = M}. By the continuity of g,

g(α0) = M > 0. Thus α0 ≠ 0, 1. Select δ > 0 sufficiently small such that

(α0 − δ,α0 + δ) ⊆ (0, 1). Since f is midpoint convexity , we have

g(α0 − δ) + g(α0 + δ) ≥ 2f(α0x + ᾱ0y) − (2αf(x) + 2ᾱ0f(y)) = 2g(α0) .

However, by the definition of α0, we have g(α0) < M, g(α0) = M, and

g(α0 + δ) ≤ M, which leads to a contradiction.

Warning

There exists midpoint convex but not convex functions if we admit the axiom

of choice. Such a function would have to be non-measurable.



Since X ≻ 0, X−1 exists and detX−1 > 0. So our goal is equivalent to show that

det
I + X−1Y

2
≥√detX−1Y .

Note that

det(λI − X−1Y ) = 0 ⟺ det( λI−X−1Y
2 ) = 0 ⟺ det( 1+λ

2 I − I+X−1Y
2 ), so

λi( I+X−1Y
2 ) = 1+λi(X−1Y )

2 , where λi(A) is the i-th eigenvalue of matrix A. Thus we

have

det
I + X−1Y

2
=∏λi(

I + X−1Y

2
) =∏

1 + λi(X−1Y )

2

and

√detX−1Y =√∏λi(X−1Y ) .

Now it suffices to show that λi(X
−1Y ) ≥ 0 for all i. Since X ≻ 0, consider the

eigen-decomposition X = UΛU −1. It implies that there exists

X1/2 = UΛ
1/2U −1 ≻ 0 and invertible (note that (X1/2)2 = UΛU −1 = X).

If X−1Y v = λv, then

X
1/2

X
−1

Y X
−1/2(X1/2v) = X

1/2(X−1
Y v) = λX

1/2v ,

and vice versa. So

λi(X
−1Y ) = λi(X

1/2X−1Y X1/2) = λi(X
−1/2Y X−1/2) .

Note that X−1/2Y X−1/2 is symmetric, and ∀ v ≠ 0, vTX−1/2Y X−1/2v = uTY u ≥ 0,

where u = X−1/2v. Hence, X−1/2Y X−1/2 ⪰ 0, which yields that all eigenvalues are

nonnegative.

Combining all of above, we conclude that f(X) is convex.

We now consider some properties of convexity. Conversely, these properties also

provide some criteria to verify convexity.

Let f be a single-variable function. Usually it is easy to verify the Jensen's

inequality. So our first condition is that, f is convex if and only if its restriction to

any line is convex.

Zeroth order condition

Theorem



If f is further differentiable, we have the following important criterion (and an

important property) for convex functions.

Suppose f is a function defined on a convex set D ⊆ Rn. Then f is convex iff

∀x ∈ D,v ∈ Rn, g(t) = f(x + tv) is convex.

Example

f(x1,x2,… ,xn) = ex1+x2+⋯+xn  is convex, since ∀u,v ∈ Rn,

g(t) = f(u + tv) = eu1+⋯+un ⋅ e(v1+⋯+vn)t is convex.

Proof

" ⟹ ". Assume f is convex. Fix x ∈ D. For any v ∈ Rn, let t1, t2 ∈ dom g.

It suffices to show that ∀ θ ∈ [0, 1], (i) θt1 + θ̄t2 ∈ dom g; (ii)

g(θt1 + θ̄t2) ≤ θg(t1) + θ̄g(t2).

Let xi = x + ti ⋅ v. Since t1, t2 ∈ dom g, x1,x2 ∈ D. Thus,

θx1 + θ̄x2 = x + (θt1 + θ̄t2)v ∈ D, which indicates that θt1 + θ̄t2 ∈ dom g.

Furthermore,

g(θt1 + θ̄t2) = f(θx1 + θ̄x2) ≤ θf(x1) + θ̄f(x2) = θg(t1) + θ̄g(t2).

" ⟸ ". Given x,y ∈ D, let v = y − x and g(t) = f(x + tv). Since g is

convex and 0, 1 ∈ dom g, we have that ∀ θ ∈ [0, 1], θ ∈ dom g. Thus

x + θ(y − x) = θ̄x + θy ∈ D. Moreover,

g(θ) = f(θ̄x + θy) ≤ θ̄g(0) + θg(1) = θ̄f(x) + θf(y), which implies that f is

convex.

First order condition

Theorem

Suppose f is differentiable in an open convex set D = dom f. Then f is convex

in D iff

∀x, y ∈ D, f(y) ≥ f(x) + ∇f(x)T(y − x) .



The first order condition shows that convex functions have linear lower bounds.

We usually use ⟨⋅, ⋅⟩ to denote the inner product. So the first condition is also

written as f(y) ≥ f(x) + ⟨∇f(x), y − x⟩.

Example (Bernoulli's inequality)

1. (1 + x)r ≥ 1 + rx if r ≥ 1 and x ≥ −1;

2. ex ≥ 1 + x.

Proof

" ⟹ ". Fix any x, y ∈ D. Let v = y − x. By the Jensen's inequality,

∀ t ∈ [0, 1], f(x + tv) ≤ (1 − t)f(x) + tf(y).

Rearranging it, we have

f(x + tv) − f(x) ≤ t(f(y) − f(x)) .

Recall that ∇f(x)Tv = limt→0
f(x+tv)−f(x)

t
. Taking the limits t → 0 on both

sides, we have

∇f(x)Tv ≤ f(y) − f(x) .

" ⟸ ". For all x, y ∈ D and θ ∈ [0, 1], let z = θx + θ̄y. The first-order

condition gives that

{ .

Then θ(1) + θ̄(2) immediately implies that θf(x) + θ̄f(y) ≥ f(z).

f(x) ≥ f(z) + ∇f(z)T(x − z) (1)

f(y) ≥ f(z) + ∇f(z)T(y − z) (2)



The first order condition also holds for the strict convexity if applying strict

inequality. For the proof for strict convexity, the ⟸  direction remains the same.

However how can we prove the ⟹  direction? Note that taking the limit cannot

keep the strict inequality.

Corollary

1. In particular, if ∇f(x) = 0, then f(y) ≥ f(x) for all y ∈ D. If f is further

strictly convex, x is the unique global minimum point.

2. Given x0 ∈ D, {(x, y) ∈ Rn+1 ∣ y = f(x0) + ∇f(x0)T(x − x0)} is a

supporting hyperplane of epi f at x0.

Theorem (First order condition for strict convexity)

Suppose f is differentiable in an open convex set D = dom f. Then f is strictly

convex in D iff

∀x ≠ y ∈ D, f(y) > f(x) + ∇f(x)T(y − x).

Proof

Let v = y − x, similar to the proof of non-strict version, we have

f(x + tv) − f(x)

t
< f(y) − f(x) .

Consider another coefficient s such that 0 < t < s < 1, then we also have

f(x + sv) − f(x)

s
< f(y) − f(x) .



An important corollary of the first order condition is the property of monotone

gradient.

Applying Jensen inequality (writing x + tv as a convex combination of x and

x + sv), it's easy to verify that

f(x + tv) − f(x)

t
<

f(x + sv) − f(x)

s
.

Taking t → 0, we have

which prove the first order condition for strictly convex functions.

∇f(x)T(y − x) = lim
t→0

f(x + tv) − f(x)

t

≤
f(x + sv) − f(x)

s
< f(y) − f(x) ,

Corollary (Monotone gradient)

Let f : Rn → R be a continuously differentiable function. Then, f is a convex

function if and only if ∇f is monotone, i.e., ⟨∇f(x) − ∇f(y),x − y⟩ ≥ 0.

Proof ​

" ⟹ ". When f is convex, for all x, y ∈ Rn, by the first order condition,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩,

f(x) ≥ f(y) + ⟨∇f(y),x − y⟩.



The property of monotone gradients indicates that the second order derivative is

somehow nonnegative. Assume f : R → R is a univariate function. Then

(f ′(x) − f ′(y))(x − y) ≥ 0

implies that f ′(x) is increasing and thus f ′′(x) is nonnegative. If f : Rn → R be a

multivariate function, the second order derivative is ∇2f(x) ∈ Rn×n. A generalized

notion of f ′′(x) ≥ 0 is ∇2f(x) ⪰ 0 in this case.

Then,

Thus we obtain the monotone gradient.

0 ≥ ⟨∇f(x) − ∇f(y), y − x⟩.

" ⟸ ". When ∇f is monotone, for all x, y ∈ Rn, define the function

g(t) = f(t̄x + ty). Then

For t1, t2 ∈ [0, 1], by elementary calculation

Note that (t̄1x + t1y) − (t̄2x + t2y) = (t1 − t2)(y − x). Then

This means, we can assume the dimension n = 1. For all x, y ∈ R (without

loss of generality, assuming x < y), by the mean value theorem, there

exists c ∈ [x, y] such that

Since (f ′(c) − f ′(x))(c − x) ≥ 0, we have f ′(c) ≥ f ′(x), which leads to the

first order condition f(y) ≥ f(x) + f ′(x)(y − x).

g′(t) = ⟨∇f(t̄x + ty), y − x⟩.

(g′(t1) − g′(t2))(t1 − t2) = ⟨∇f(t̄1x + t1y) − ∇f(t̄2x + t2y), (t1 − t2)(y − x)⟩

(g′(t1) − g′(t2))(t1 − t2) ≥ 0.

f(y) − f(x) = f ′(c)(y − x) .

Second order condition

Theorem

Suppose f is twice differentiable in an open convex set D = dom f. Then f is

convex over D iff ∀x ∈ D, ∇2f(x) ⪰ 0.



For strict convexity, we can replace ⪰ by ≻ and ≥ by > in the " ⟸ " direction, and

apply the first order condition for strict convexity. However, for the " ⟹ "

direction, similar argument cannot be true, since strictly optimal point cannot

imply ∇2f ≻ 0.

Furthermore, if ∀x ∈ D, ∇2f(x) ≻ 0, then f is strictly convex over D (but not

vice versa).

Example

f(x) = −x logx is strictly concave over R>0, since f ′(x) = −(1 + logx) and

f ′′(x) = − 1
x

.

f(x) = eax is strictly convex for all a ∈ R ∖ {0}, since f ′′(x) = a2eax.

f(x) = xa is convex over (0,∞) for a ≥ 1 or a < 0, and concave otherwise.

The log-sum-exp function f(x) = log(ex1 + ex2 +⋯+ exn) is convex over

Rn. (Exercise. Hint: 
∂f

∂xi
= exi

∑ exk
, 

∂ 2f

∂x2
i

= exi(∑ exk)−(exi)2

(∑ exk)2
, 

∂ 2f

∂xixj
= − e

xi+xj

(∑ exk)2
,

so ∇2f(x) = 1
S(x)2 (S(x) diag{ex1 ,… , exn}−s(x)s(x)T), where

s(x) = (ex1 ,… , exn)T and S(x) =∑ exk , thus vT∇2f(x)v =?)

Proof

" ⟹ ". For any x ∈ dom f, we define g(y) = f(y) − f(x) − ∇f(x)T(y − x),

where y ∈ dom f. Hence g(x) = 0. By the first order condition, g(y) ≥ 0 for

all y ∈ dom f, which implies ∇2g(x) ⪰ 0 by the second-order condition for

optimality. So we have ∇2f(x) = ∇2g(x) ⪰ 0.

" ⟸ ". Given two arbitrary points x, y ∈ dom f, let v = y − x, and

g(t) = f(x + tv). Applying Taylor series with Lagrange remainder to g,

there exists θ ∈ [0, 1] such that

f(y) = f(x + v) = f(x) + ∇f(x)Tv +
1

2
vT∇2f(x + θv)v .

Since, ∇2f(x) ⪰ 0 for all x ∈ dom f, it follows that

f(y) ≥ f(x) + ∇f(x)Tv .

Therefore, f is convex by the first order condition.



However, for a series of special functions, the equivalent relation of strict convexity

holds. Consider quadratic functions,

f(x) =
1

2
xTQx + wTx + b .

Without loss of generality, we can assume Q is symmetric. This is because

xTQx =
1

2
xTQx +

1

2
(xTQx)

T

= xT ( Q + QT

2
)x .

It is easy to compute that ∇2f(x) = Q. Then the following propositions are true:

Example

Consider the function f(x) = x4. It is strictly convex, but f ′′(0) = 0 is not

strictly greater than zero.

Similarly, consider the function f(x1,x2) = x2
1 + x4

2. It is strictly convex, but

∇2f(x1,x2) = ( ), which is not positive definite for x2 = 0.
2 0

0 12x2
2

f is convex iff Q ⪰ 0. It can be implied by the above theorem.

f is strictly convex iff Q ≻ 0. The " ⟸ " direction is easy to verify. So we only

need to prove the " ⟹ " direction. Note that

Since f is strictly convex, we have f(x + v) > f(x) + ∇f(x)Tv for all v ≠ 0

(applying the first order condition). That is, vT∇2f(x)v > 0, which implies that

Q ≻ 0.

f(x + v) =
1

2
(x + v)TQ(x + v) + wT(x + v) + b

=
1

2
(xTQx + 2xTQv + vTQv) + wTx + wTv + b

= f(x) + ∇f(x)Tv +
1

2
vT∇2f(x)v .

Example

The following figures show the different convexity of f when Q takes different

values.



The first one is strict convex since Q ≻ 0.

The second one is convex since Q ⪰ 0.

The third one is not convex since Q ⪰̸ 0.


