6.1 Convexity-preserving operations

For the convex sets, we have known that if C and D are both convex sets, then
C+ D,C— D, C x D and Cn D are all convex sets. We wonder if there exist

similar convexity-preserving operations for functions.

Nonnegative Sums

Theorem

If f1, fo,..., f, are convex, and wy, ws, ..., w, > 0, then

f=wifi+...+wy,fn is convex.

Furthermore, if a two-dimension function f(z,y) is convex for any fixed y, and

there exist a series of cofficients w(y) > 0,y € Q, then
o) 2 [ w(u)i(e9) dy

is also a convex function.

We can verify the convexity of objective functions via Jensen inequality.

Pointwise Maximum

Theorem

If f1, fo,..., fm are convex, then
f(ZL') = max{fl(x), coog fm(w)}

is also convex.

Futhermore, if f(z,y) is convex for any fixed y, then

g(z) = sup f(z,y)
yeN

is also a convex function.



The proof is immediate by noting that the epigraph of the pointwise maximum
function is the intersection of the epigraphs of all f's.

Affine mapping

Theorem
Suppose f: R® — R is convex/concave, and A € R™"™ b € R"”, then
g:R™ >R £ f(Az +b)

is also convex or concave (the same as f).

Example

f(z) = ||Ax + b|| is convex for any norm ||-|| function.

By the triangle inequality, it holds that
10 + Oul| < [|62|| + |10yl = Ollz|| + Oyl

Therefore, ||-|| is convex and its affine transformation f(z) is also convex due to the
above theorem.

Scalar composition

Given two convex and differentiable functions g: R — R and f: R” — R, consider
their scalar composition h(z) = g(f(z)). When will h(z) also be convex?
When n = 1, we first compute the second order derivative of h:



h'(z) = g (f(2)) - f'(@)h"(z) = §"(f(2)) - f'(2)" + ¢ (f(2)) - f"(2).

With the help of the direct computation results, we have the following theorem:

Theorem

h is convex if g is convex and one of the following proposition is true:
g is increasing and f is convex;
g is decreasing and f is concave.

h is convex if g is concave and one of the following proposition is true:
g is increasing and f is concave;

g is decreasing and f is convex.

Proof

We just show the proof of case 2, the other three cases can reuse this proof. If
f is concave and g is decreasing, then

f(0z + By) > 0f(z) + 6f(y) .

Let z = Oz + Oy. We have

B(2) = 9(£(2) < 9 (0£(2) + 81(v))
< 0g(f(x) + 0g(f(y)) = Oh(z) + Oh(y).

Note that for other four cases, we can not determine whether h is convex just by
the monotonic and convexity.

Example

h(x) = e® Q7 is convex if Q = 0 (but if Q # 0, we have no idea whether
h(z) is convex or not).

If g(z) = e ® and f(z) = 22, then h(z) = e * is neither convex nor
concave.

If () = —logx and f(z) = e” + 1, then h(xz) = —log(e® + 1) is concave.
(log-sum-exp) If g(x) = logz and f(z) = e® + e + ... + e, then

h(z) = log(e™ 4 ...+ €e™)



iS convex.

We should explain more on the log-sum-exp function. This function is very useful
for approximately computing the maximum of z1,...,x, (

h(z) ~ max{xy,Ts,...,T,}).

We usually hope the objective function of the optimization problem is
differentiable. However max is not. So log-sum-exp gives a good approximation of
max (log-sum-exp is a smooth function).

Given a series of points z1, ... z,, the softmax function % returns a probability

2
distribution. Moreover, the distribution is equal to the gradient of the log-sum-exp.

Vector composition

Suppose g: R* = R, f: R" = Réor f= (f1, fo,---» o), fi : R* = RV1<i<{.
Let

h(z) = g(fi(z), f2(x),.. ., fo(e)).

Then we have the following theorem by defining "increasing" as: g(x) > g(y) if
x; >y; foralll <i </

Theorem

h is convex if g is convex and one of the following proposition is true:
g is increasing and f; is convex for all 7;
g is decreasing and f; is concave for all 4.

h is concave if g is concave and one of the following proposition is true:
g is increasing and f; is concave for all i;

g is decreasing and f; is convex for all <.

Minimization over convex sets

Theorem

Suppose f(z,y) is convex, and C # 0 is convex, then g(z) £ inf,cc f(z,y) is
convex. (e.g., g(x) = dist(z, C) = inf ||z — y||.)



Proof

We prove this theorem by verifying the Jensen's inequality. In other words, we

want to show that
Vzi1,x2 € domg, g(0z1 + 0x2) < Og(x1) + Og(z2) .

By the definition of g, for any € > 0, there exist y;,ys € C such that
f(zi,yi) < g(x;) + e. Therefore,

0f(x1,y1) + 0f(x2,92) < 0(g(z1) + €) + 0 (g(z2) + €)
= 0g(z1) + Og(z3) + €.

Since f is convex and C' is convex, we have

0f(x1,y1) + 0f(x2,y2) > f (0901 + Oz, Oy1 + éyz) > g(0z1 + Oz2) .

Therefore, for any € > 0,
g(0zq + 0z5) < Og(z1) + Og(xs) + €.

Taking the limit e — 0, it certifies the Jensen's inequality.

6.2 Applications of convexity

Now we consider the problem of the triangle inequality for general L?-norms,
which we omitted before. Let us first prove ||u + v||2 < ||ul|2 + ||v||2 as warm-up.

Jutvllz = (utv,uto)
= [lull® + [lv]l* + 2{u, v)
< HUH2 + ||UH2 + 2||ul| - ||| by Cauchy-Schwarz inequality
2
= ([l +{lv[})

To verify the triangle inequality for all p, we need a generalized version of Cauchy-
Schwarz. We first introduce the monotonicity for L? norms.

Proposition

Let & € R". Then ||z||,, > |||, if 1 < p2 < po.

Proof



If py = oo, |||, = max{|zy|,..., |za|} < 2],
If p; < oco. First we normalize x. Let ¢ = ||x|/,, and & = =/q (namely,
Z; = z,;/q), then we have ||&||,, = 1. Thus,

] = (X 127) ™
= (X ()=
< (S 157) = 1=l

Recall the detail of the proof of L2-norm, we can notice that the key point is to
apply the Cauchy-Schwarz inequality: for any two vectors z,y € R",

[fl2 - lyll2 = (2, ).

When considering general LP-norm, we wonder if there also exists an inequality in
form of ||z||g - ||lyllo > (z,y). In fact, there exists an important inequality called
Holder's inequality.

Theorem (Holder' inequality)

Let p and g be two conjugate exponents, i.e., 1/p + 1/q = 1. Then for any two
vectors u, v € R”, the following inequality holds:

lellp - [lvllg = (u,v) .

Proof v

Without loss of generality, we assume that u;,v; > 0 for any 7. If ). uw,;v; = 0,
the inequality obviously holds. Otherwise, we first normalize these two
vectors. Let

u - v
V= .
[l [0l

u =

Then ||@||, = ||®||, = 1. So our goal is to prove that (@,?) = ), 4,;0; < 1.
We first claim that

Q=

Vz,y > 0, a:%y < +2.
q

7
p



Taking the logarithm on both sides, it is equivalent to the following inequality:

1 1
Vz,y >0, —log(z)+ —log(y) <log (E - E).
p q b q

By the Jensen's inequality, the above inequality holds since f(z) = log(z) is

concave.
Next, applying this claim to z = @] and y = 4, we have @;7; < @} + <9 .
Summing them up we have
1 1 1 1 1 1
@i0; < —aﬁ+—0ﬁ::—( mj+—( W) =-+==1.
s <3 (o« got) = 5 () + (S = 5+

Now we are going to show the triangle inequality for L? norms, which is also
called the Minkowski inequality.

Theorem (Minkowski inequality)

For any two vectors u,v € R"”, and any p such that 1 < p < oo, the following
inequality holds:

lullp +llvllp > [le 4ol -

Proof
Assuming 1 < p < oo, we have
Ju+ v||f = Z lus + vi|” = Z i + i - i + viP
i i

< Z Jwi] - wi +vil P+ i - us 40P
5

By the Holder's inequality,



3 fusil - Juti 4 03P Jog] - g+ v P
7

p=1 Pt
& p—1 ;% ’ & p—1 ;% g
< Nullp { D (lui + i) + ol | Y- (s +wil*)

) )

= [l (Z jui + vi’”) + vl (Z i + vil”)

= llullpllw + vl + [[ollplw + vl .

=1l
p

p-1
p

Therefore, we conclude that ||u + v, < |Jul|, + ||v|,

6.3 Convex optimization problems

After defining and discussing properties of convex sets and convex functions, we

now introduce what type of optimization problems we should consider in this
course.

Recall that, in general, an optimization problem is to find the minimum value of

f(z) where x satisfies g(x) = 0 and h(x) < 0. Namely, it can be written as the
following forms.

Definition (Optimization Problem)

The following problem P is the standard form of an optimization problem.
minimize f(x) objective function
subject to  g;(x) = 0,1 <17 < k; constraint functions
hj(z) <0,1<j</{ constraint functions
The domain of P is given by
D = dom fN (Ndomg;) N (Ndom hy;).
The feasible set of P is given by
Q={zeD|Vi,gi(x)=0andVj,h;(xz) <0}.

The optimal value of P is

f* = inf f(x) or f* = min f(z) if exists.
zef) ze)



The optimal solution of P (if exists) is

z* = argmin f(x).
ze

For convenience, we usually allow f* to take the extended value +oo.
Conventionally,

f* = oo if P is infeasible (i.e., Q = 0);

f* = —oo if f(z) is unbounded below over ;

z* is an optimal solution iff z* € ? and f(z*) = f*

x* is a locally optimal point if there exists § > 0 such that f(z) > f(«*) holds
for all x € DN B(z*,9).

In particular, in this course, we mainly consider the convex optimization.

Definition (Convex optimization problem)

Given an optimization problem P, it is called a convex optimization, if the
objective function f is convex, every equality constraint g; is affine, and every

inequality constraint h; is convex.

Clearly, the domain of P is convex, since all domains of f, g; and h; are convex
and the domain of P is their intersection.

We also note that the feasible set () is a convex set, since the solution sets

{z | gi(z) = 0} is affine, the 0-sublevel sets {z | hj(z) < 0} are all convex, and 2 is

their intersection.

Proposition

For a convex optimization problem, any local minimum is also a global
minimum.

The set of optimal solutions Q. = {z* | Vz # z*, f(x) > f(«*)} is also
convex.

In particular, if f is strictly convex, there is at most one optimal solution.

Proof of item 2



For any two optimal solutions z,y € Qq, for all 8 € [0,1], 6z + (1 — §)y € Q
since {2 is convex. By the Jensen's inequality, we have

F0x + (1= 0)y) < 0f(x) + (1 - 6)f(y) = f~.

Obviously, f(6x + (1 — 0)y) > f*. Therefore, Oz + (1 — )y € Qopt.

In fact, we can show that the c-sublevel set of a function, defined by
{z | f(z) <c},

is convex if f is a convex function. (Exercise!)

Similarly, we can also define the c-level set of f as {x | f(x) = ¢} and define the c-
superlevel set of f as {x | f(x) > c}. The c-superlevel set of a concave function is
convex.

Thus, another proof of item 2 is to note that €2, is the intersection of two convex
sets: 2 and the f*-sublevel set of f.

Now we can say that a convex optimization problem is to compute the minimum
value of a convex function over a convex set. However, the converse statement is
not true. Calculating the minimum of a convex function on a convex set is not

always a convex optimization problem. Consider the following example:

Example

The following optimization problem has convex objective function and convex
feasible set. But it is not a convex optimization problem.

min f(zq,zs) = a:l +:1:2
subject to g(x) = (.CL'1 —|— )2 =0
h(z)

<0.

2-!—1

The feasible set Q is just {(z1,x3) | 1 + 3 = 0,2; < 0}, which is a convex set.

However, g(z) = (z1 + x»)* is not affine and h(z) = —'5
2

this problem is not convex.

Here are some canonical types of convex optimization problems.

Linear programming



A linear programming is a convex optimization where the objective function and
constraint functions are all affine (linear).

Example (Linear programming)
min c'x

xcRn

s.t. Ajxz=0b;, A cR™", b c¢R™;
A,z < by, Ay € R by c RE.

Quadratic programming

A quadratic programming is a convex optimization where the objective function is

quadratic and constraint functions are all affine.

Example (Quadratic programming)

1
mJiRn EchQ:c +c'z (convex iff Q > 0)
xeR"

s.t. Ajxz=0b;, A € Rmxn’ b, e R™;
Asx < by, Ay € R*™, b, € RE.

Quadratically constrained quadratic programming

A quadratically constrained quadratic programming is a convex program where the
objective function and inequality-constraint functions are all quadratic functions.

Example (Quadratically constrained quadratic programming)

1

: T T
min oz Qr+c x
1
s. t. EwTin—kwiTa:—kdi <0

Az=b, AcR™", becR"

Note that it is convex iff @ > 0 and Q; > 0 for all 3.

The linear least square regression is a typical QP or QCQP. Given y € R",xz € R™*?,
our goal is to find w € R? to minimize ||y — Xw||. By the direct calculation, we have

w* = (XTX)leTy



since
Viy — Xw||?> = V(y — Xw)T(y — Xw) = 2X T Xw — 2X Ty

and the optimal solution w* satisfies V||y — Xw*||?> = 0.



