
For the convex sets, we have known that if C and D are both convex sets, then

C + D, C − D, C × D and C ∩ D are all convex sets. We wonder if there exist

similar convexity-preserving operations for functions.

We can verify the convexity of objective functions via Jensen inequality.

6.1 Convexity-preserving operations

Nonnegative Sums

Theorem

If f1, f2, … , fn are convex, and w1,w2, … ,wn ≥ 0, then

f = w1f1 + … + wmfm is convex.

Furthermore, if a two-dimension function f(x, y) is convex for any fixed y, and

there exist a series of cofficients w(y) ≥ 0, y ∈ Ω, then

g(x) ≜ ∫
Ω
w(y)f(x, y) dy

is also a convex function.

Pointwise Maximum

Theorem

If f1, f2, … , fm are convex, then

f(x) = max{f1(x), … , fm(x)}

is also convex.

Futhermore, if f(x, y) is convex for any fixed y, then

g(x) = sup
y∈Ω

f(x, y)

is also a convex function.



The proof is immediate by noting that the epigraph of the pointwise maximum

function is the intersection of the epigraphs of all f 's.

By the triangle inequality, it holds that

∥θx + θ̄u∥ ≤ ∥θx∥ + ∥θ̄y∥ = θ∥x∥ + θ̄∥y∥ .

Therefore, ∥⋅∥ is convex and its affine transformation f(x) is also convex due to the

above theorem.

Given two convex and differentiable functions g : R → R and f : Rn → R, consider

their scalar composition h(x) = g(f(x)). When will h(x) also be convex?

When n = 1, we first compute the second order derivative of h:

Affine mapping

Theorem

Suppose f : Rn → R is convex/concave, and A ∈ Rn×m, b ∈ Rn, then

g : Rm → R ≜ f(Ax + b)

is also convex or concave (the same as f).

Example

f(x) = ∥Ax + b∥ is convex for any norm ∥⋅∥ function.

Scalar composition



h′(x) = g′(f(x)) ⋅ f ′(x)h′′(x) = g′′(f(x)) ⋅ f ′(x)2 + g′(f(x)) ⋅ f ′′(x) .

With the help of the direct computation results, we have the following theorem:

Note that for other four cases, we can not determine whether h is convex just by

the monotonic and convexity.

Theorem

h is convex if g is convex and one of the following proposition is true:

g is increasing and f is convex;

g is decreasing and f is concave.

h is convex if g is concave and one of the following proposition is true:

g is increasing and f is concave;

g is decreasing and f is convex.

Proof

We just show the proof of case 2, the other three cases can reuse this proof. If

f is concave and g is decreasing, then

f(θx + θ̄y) ≥ θf(x) + θ̄f(y) .

Let z = θx + θ̄y. We have

h(z) = g(f(z)) ≤ g(θf(x) + θ̄f(y))

≤ θg(f(x) + θ̄g(f(y)) = θh(x) + θ̄h(y) .

Example

h(x) = ex
TQx is convex if Q ⪰ 0 (but if Q ⪰̸ 0, we have no idea whether

h(x) is convex or not).

If g(x) = e−x and f(x) = x2, then h(x) = e−x2
 is neither convex nor

concave.

If g(x) = − logx and f(x) = ex + 1, then h(x) = − log(ex + 1) is concave.

(log-sum-exp) If g(x) = logx and f(x) = ex1 + ex2 + … + exn , then

h(x) = log(ex1 + … + exn)



We should explain more on the log-sum-exp function. This function is very useful

for approximately computing the maximum of x1, … ,xn (

h(x) ≈ max{x1,x2, … ,xn}).

We usually hope the objective function of the optimization problem is

differentiable. However max is not. So log-sum-exp gives a good approximation of

max (log-sum-exp is a smooth function).

Given a series of points x1, …xn, the softmax function exi

∑j e
xj  returns a probability

distribution. Moreover, the distribution is equal to the gradient of the log-sum-exp.

Suppose g : Rℓ → R, f : Rn → Rℓ or f = (f1, f2, … , fℓ), fi : Rn → R, ∀ 1 ≤ i ≤ ℓ.

Let

h(x) = g(f1(x), f2(x), … , fℓ(x)) .

Then we have the following theorem by defining "increasing" as: g(x) ≥ g(y) if

xi ≥ yi for all 1 ≤ i ≤ ℓ.

is convex.

Vector composition

Theorem

h is convex if g is convex and one of the following proposition is true:

g is increasing and fi is convex for all i;

g is decreasing and fi is concave for all i.

h is concave if g is concave and one of the following proposition is true:

g is increasing and fi is concave for all i;

g is decreasing and fi is convex for all i.

Minimization over convex sets

Theorem

Suppose f(x, y) is convex, and C ≠ ∅ is convex, then g(x) ≜ infy∈C f(x, y) is

convex. (e.g., g(x) = dist(x,C) = infy∈C∥x − y∥.)



Now we consider the problem of the triangle inequality for general Lp-norms,

which we omitted before. Let us first prove ∥u + v∥2 ≤ ∥u∥2 + ∥v∥2 as warm-up.

To verify the triangle inequality for all p, we need a generalized version of Cauchy-

Schwarz. We first introduce the monotonicity for Lp norms.

Proof

We prove this theorem by verifying the Jensen's inequality. In other words, we

want to show that

∀x1,x2 ∈ dom g, g(θx1 + θ̄x2) ≤ θg(x1) + θ̄g(x2) .

By the definition of g, for any ϵ > 0, there exist y1, y2 ∈ C such that

f(xi, yi) < g(xi) + ϵ. Therefore,

Since f is convex and C is convex, we have

θf(x1, y1) + θ̄f(x2, y2) ≥ f (θx1 + θ̄x2, θy1 + θ̄y2) ≥ g(θx1 + θ̄x2) .

Therefore, for any ϵ > 0,

g(θx1 + θ̄x2) < θg(x1) + θ̄g(x2) + ϵ .

Taking the limit ϵ → 0, it certifies the Jensen's inequality.

θf(x1, y1) + θ̄f(x2, y2) < θ (g(x1) + ϵ) + θ̄ (g(x2) + ϵ)

= θg(x1) + θ̄g(x2) + ϵ .

6.2 Applications of convexity

∥u + v∥2
2 = ⟨u + v,u + v⟩

= ∥u∥2 + ∥v∥2 + 2⟨u, v⟩

≤ ∥u∥2 + ∥v∥2 + 2∥u∥ ⋅ ∥v∥ by Cauchy-Schwarz inequality

= (∥u∥ + ∥v∥)2

Proposition

Let x ∈ Rn. Then ∥x∥p1 ≥ ∥x∥p2  if 1 ≤ p2 ≤ p2.

Proof



Recall the detail of the proof of L2-norm, we can notice that the key point is to

apply the Cauchy-Schwarz inequality: for any two vectors x, y ∈ Rn,

∥x∥2 ⋅ ∥y∥2 ≥ ⟨x, y⟩.

When considering general Lp-norm, we wonder if there also exists an inequality in

form of ∥x∥□ ⋅ ∥y∥□ ≥ ⟨x, y⟩. In fact, there exists an important inequality called

Hölder's inequality.

If p2 = ∞, ∥x∥p2
= max{|x1|, … , |xn|} ≤ ∥x∥p1

.

If p1 < ∞. First we normalize x. Let q = ∥x∥p1
 and ~x = x/q (namely,

~xi = xi/q), then we have ∥~x∥p1
= 1. Thus,

∥~x∥p2
= (∑ |~xi|

p2)
1
p2

= (∑ (|~xi|
p1)p2/p1)

1
p2

≤ (∑ |~xi|
p1)

1
p2 = 1 = ∥~x∥p1

.

Theorem (Hölder' inequality)

Let p and q be two conjugate exponents, i.e., 1/p + 1/q = 1. Then for any two

vectors u, v ∈ Rn, the following inequality holds:

∥u∥p ⋅ ∥v∥q ≥ ⟨u, v⟩ .

Proof ​

Without loss of generality, we assume that ui, vi ≥ 0 for any i. If ∑i uivi = 0,

the inequality obviously holds. Otherwise, we first normalize these two

vectors. Let

~u =
u

∥u∥p

, ~v =
v

∥v∥q

.

Then ∥~u∥p = ∥~v∥q = 1. So our goal is to prove that ⟨~u, ~v⟩ = ∑i
~ui

~vi ≤ 1.

We first claim that

∀x, y > 0, x
1
p y

1
q ≤

x

p
+

y

q
.



Now we are going to show the triangle inequality for Lp norms, which is also

called the Minkowski inequality.

Taking the logarithm on both sides, it is equivalent to the following inequality:

∀x, y > 0,
1

p
log(x) +

1

q
log(y) ≤ log( x

p
+

y

q
).

By the Jensen's inequality, the above inequality holds since f(x) = log(x) is

concave.

Next, applying this claim to x = ~up
i  and y = ~vqi , we have ~ui

~vi ≤ 1
p

~up
i + 1

q
~vqi .

Summing them up we have

∑
i

~ui
~vi ≤ ∑

i

( 1

p
~ui
p +

1

q
~vi
q) =

1

p
(∑

i

~up
i)+

1

q
(∑

i

~vqi) =
1

p
+

1

q
= 1 .

Theorem (Minkowski inequality)

For any two vectors u, v ∈ Rn, and any p such that 1 ≤ p ≤ ∞, the following

inequality holds:

∥u∥p + ∥v∥p ≥ ∥u + v∥p .

Proof

Assuming 1 < p < ∞, we have

By the Hölder's inequality,

∥u + v∥p
p = ∑

i

|ui + vi|
p = ∑

i

|ui + vi| ⋅ |ui + vi|
p−1

≤ ∑
i

|ui| ⋅ |ui + vi|
p−1 + |vi| ⋅ |ui + vi|

p−1 .



After defining and discussing properties of convex sets and convex functions, we

now introduce what type of optimization problems we should consider in this

course.

Recall that, in general, an optimization problem is to find the minimum value of

f(x) where x satisfies g(x) = 0 and h(x) ≤ 0. Namely, it can be written as the

following forms.

Therefore, we conclude that ∥u + v∥p ≤ ∥u∥p + ∥v∥p

∑
i

|ui| ⋅ |ui + vi|
p−1 + |vi| ⋅ |ui + vi|

p−1

≤ ∥u∥p(
n

∑
i

(|ui + vi|
p−1)

p
p−1 )

p−1
p

+ ∥v∥p(
n

∑
i

(|ui + vi|
p−1)

p
p−1 )

p−1
p

= ∥u∥p(
n

∑
i

|ui + vi|
p)

p−1
p

+ ∥v∥p(
n

∑
i

|ui + vi|
p)

p−1
p

= ∥u∥p∥u + v∥p−1
q + ∥v∥p∥u + v∥p−1

q .

6.3 Convex optimization problems

Definition (Optimization Problem)

The following problem P  is the standard form of an optimization problem.

minimize f(x)   objective function

subject to  gi(x) = 0, 1 ≤ i ≤ k ; constraint functions

hj(x) ≤ 0, 1 ≤ j ≤ ℓ . constraint functions

The domain of P  is given by

D = dom f ∩ (∩ dom gi) ∩ (∩ domhj) .

The feasible set of P  is given by

Ω = {x ∈ D ∣ ∀ i , gi(x) = 0 and ∀ j ,hj(x) ≤ 0} .

The optimal value of P  is

f ∗ = inf
x∈Ω

f(x) or f ∗ = min
x∈Ω

f(x) if exists .



For convenience, we usually allow f ∗ to take the extended value ±∞.

Conventionally,

In particular, in this course, we mainly consider the convex optimization.

Clearly, the domain of P  is convex, since all domains of f, gi and hj are convex

and the domain of P  is their intersection.

We also note that the feasible set Ω is a convex set, since the solution sets

{x ∣ gi(x) = 0} is affine, the 0-sublevel sets {x ∣ hj(x) ≤ 0} are all convex, and Ω is

their intersection.

The optimal solution of P  (if exists) is

x∗ = arg min
x∈Ω

f(x) .

f ∗ = ∞ if P  is infeasible (i.e., Ω = ∅);

f ∗ = −∞ if f(x) is unbounded below over Ω;

x∗ is an optimal solution iff x∗ ∈ Ω and f(x∗) = f ∗

x∗ is a locally optimal point if there exists δ > 0 such that f(x) ≥ f(x∗) holds

for all x ∈ D ∩ B(x∗, δ).

Definition (Convex optimization problem)

Given an optimization problem P , it is called a convex optimization, if the

objective function f is convex, every equality constraint gi is affine, and every

inequality constraint hj is convex.

Proposition

1. For a convex optimization problem, any local minimum is also a global

minimum.

2. The set of optimal solutions Ωopt = {x∗ ∣ ∀x ≠ x∗, f(x) ≥ f(x∗)} is also

convex.

3. In particular, if f is strictly convex, there is at most one optimal solution.

Proof of item 2



In fact, we can show that the c-sublevel set of a function, defined by

{x ∣ f(x) ≤ c} ,

is convex if f is a convex function. (Exercise!)

Similarly, we can also define the c-level set of f as {x ∣ f(x) = c} and define the c-

superlevel set of f as {x ∣ f(x) ≥ c}. The c-superlevel set of a concave function is

convex.

Thus, another proof of item 2 is to note that Ωopt is the intersection of two convex

sets: Ω and the f ∗-sublevel set of f.

Now we can say that a convex optimization problem is to compute the minimum

value of a convex function over a convex set. However, the converse statement is

not true. Calculating the minimum of a convex function on a convex set is not

always a convex optimization problem. Consider the following example:

Here are some canonical types of convex optimization problems.

For any two optimal solutions x, y ∈ Ωopt, for all θ ∈ [0, 1], θx + (1 − θ)y ∈ Ω

since Ω is convex. By the Jensen's inequality, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) = f ∗ .

Obviously, f(θx + (1 − θ)y) ≥ f ∗. Therefore, θx + (1 − θ)y ∈ Ωopt.

Example

The following optimization problem has convex objective function and convex

feasible set. But it is not a convex optimization problem.

The feasible set Ω is just {(x1,x2) ∣ x1 + x2 = 0,x1 ≤ 0}, which is a convex set.

However, g(x) = (x1 + x2)2 is not affine and h(x) = x1

x2
2+1

 is not convex. Hence

this problem is not convex.

min f(x1,x2) = x2
1 + x2

2

subject to g(x) = (x1 + x2)2 = 0

h(x) =
x1

x2
2 + 1

≤ 0 .

Linear programming



A linear programming is a convex optimization where the objective function and

constraint functions are all affine (linear).

A quadratic programming is a convex optimization where the objective function is

quadratic and constraint functions are all affine.

A quadratically constrained quadratic programming is a convex program where the

objective function and inequality-constraint functions are all quadratic functions.

The linear least square regression is a typical QP or QCQP. Given y ∈ Rn,x ∈ Rn×p,

our goal is to find w ∈ Rp to minimize ∥y − Xw∥. By the direct calculation, we have

w∗ = (XTX)−1XTy

Example (Linear programming)

min
x∈Rn

cTx

s. t. A1x = b1, A1 ∈ R
m×n, b1 ∈ R

m ;

A2x ≤ b2, A2 ∈ R
ℓ×n, b2 ∈ R

ℓ .

Quadratic programming

Example (Quadratic programming)

min
x∈Rn

1

2
xTQx + cTx (convex iff Q ⪰ 0)

s. t. A1x = b1, A1 ∈ Rm×n, b1 ∈ Rm ;

A2x ≤ b2, A2 ∈ Rℓ×n, b2 ∈ Rℓ .

Quadratically constrained quadratic programming

Example (Quadratically constrained quadratic programming)

Note that it is convex iff Q ⪰ 0 and Qi ⪰ 0 for all i.

min
x∈Rn

1

2
xTQx + cTx

s. t.
1

2
xTQix + wT

i x + di ≤ 0

Ax = b, A ∈ R
m×n, b ∈ R

n



since

∇∥y − Xw∥2 = ∇(y − Xw)T(y − Xw) = 2XTXw − 2XTy

and the optimal solution w∗ satisfies ∇∥y − Xw∗∥2 = 0.


