Supporting and Separating Hyperplane
Theorem

We would like to present a fundamental property of convex sets. Roughly
speaking, we would like to show that every convex set C C R¢ can be
characterized by its ‘supporting hyperplanes’, and every two convex sets can be

separated by a hyperplane.
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4.1 Projection to convex sets

Given a set C' C R", the distance between a point « and C is defined by

dist(z,C) = inf ||z —y| .
yeC
We define the (metric) projection of « onto C as the closest points in C to .

Definition (Projection)

Let C C R" be a nonempty, closed and convex set. Then for any « € R"”, the
projection of @ onto C'is defined as

Pco(x) £ argmin ||z — vy .
yeC

That is, & — Pco()|| = dist(x, C).



Is this well-defined?

Clearly, if @ € C then Po(x) = «. Now we assume that x ¢ C.

We first show that the minimizer exists. Since C # (), select any z € C and let

r = ||& — z||. Then B(xz,r) N C # 0. Since C is closed, B(x,r) N C is bounded and
closed, and thus compact. Note that

inf ||& —y||= inf — vyl .

jnf e -yl = o . lz-yl
By the extreme value theorem, the infimum can be achieved by some y € C.
Next, we show that the minimizer is unique. Suppose there are two points
Y1 # Yz € C such that dist(z, C) = || — y1|| = || — y2||- Let y. = %(y1 + ys).
Since C is convex, y. € C and thus ||& — y.|| > dist(x, C). However, we have
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which yields that
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Thus the minimizer is unique, and P¢ () is well-defined.

Lemma

Let C' be a nonempty, closed and convex set. Given « and y = P¢(x), for any
z € C, it holds that (x —y,z —y) < 0.



Proof
Note that for all t € (0,1), y +t(z —y) € C. So
lz —y —t(z—y)|* = [z - y|I*.

Thus, —2t(x — y,z — y) +t2||z — y||* > 0 for all t € (0, 1), which concludes
that (x —y,z —y) <0.

Corollary

Let C' C R™ be a nonempty, closed and convex set. For any « ¢ C, there exists
w € R™\ {0} such that
sup (w, z) < (w,x) .

zeC

Geometrically, this means C' and @ ¢ C can be strictly separated by a hyperplane.
This is a special case of the separating hyperplane theorem we will discuss shortly.

Proof

Let y = Pco(x), and w = & — y. Since & ¢ C, w # 0. Then we have for any
zeC,

<’UJ, z— y> < 07
which is equivalent to

<w7z> < <w,y> = <wam> - <w7w> .



Taking the supremum over C, it gives that

sup @U,Z>f§ @D,$>——<Uhtv><:<tvﬁt>.
zeC

In fact, the hyperplane orthogonal to @ — P () separates « and C. We can also
generalize this lemma to two convex sets.

Theorem (Strictly separating hyperplane theorem)

Let C, D C R" be two disjoint closed convex sets, and at least one of them is
bounded. Then there exists w € R" \ {0} such that

sup (w,x) < inf (w,y).
zecC yeC

Namely, there exists w # 0 and b such that

VeeC, wa+b<0 and VyeD, w'y+b>0.

The idea is to find @ € C,y € D such that || — y|| = dist(C, D), and show that
w = y — x (the hyperplane orthogonal to y — «) is a desired one.

4.2 Supporting hyperplane theorem

Definition
The interior of a set C' is defined as:
int(C) = {x € C|Je> 0,B(zx,¢) C C}.
The closure of a set C' is defined as
c(C) 2 {z cR" | Iz, -+, Tp, - € C,nli_{f)lown =z}.
The boundary of a set C' is defined as
bd(C) or OC £ cl(C) \ int(C)

or equivalently,

OC £ {z € R" |Ve>0,B(z,e)NC # 0 AB(z,e) £ C}.



Theorem (Supporting hyperplane theorem)

Given a nonempty convex set C' C R", and a point &, € 0C, there exists
w # 0 € R* such that P = {x € R" | w'x = w'=x,} is a supporting hyperplane
of C at &(, namely,

Ve e Ca <’UJ,£B> < <'lU, w0> :

wle < w'xg

= W

Proof v

If int(C) = 0, then C lies in an affine set of dimension less than n.
Otherwise, there exists n + 1 affinely independent points in C, which
implies that C contains a n-simplex. However, the interior of the simplex is
nonempty, which contradicts int(C) = (). Now choose any hyperplane that
the affine set lies on and we are done.

If int(C) # 0, let C. = {z | B(z,¢) C cl(C)}. Note that zo ¢ C. and C. is
closed. By the corollary in Section 4.1, for all £ < 0, there exists a
hyperplane strictly separates C. and xo, namely, 3w, # 0 such that

wlx < wlzo, Vx € C.. We normalize w. such that ||w.|| = 1.

Next we consider a series of points e = %, k=1,2,...Foreachk, ¢
corresponds to a w,,, and ||w,,|| = 1. Hence, by the Bolzano-Weierstrass
theorem, there exists a convergent subsequence of {w,, }. Denote by w its
limit. Then we show that this w is the coefficient of the desired
hyperplane.

For any « € int(C), there exists NV > 0 such that

Vk> N, wETka: < w;rkazo.



Thus, w'z < w'x, by taking the limit on both sides.
For any y € 0C, there exists a sequence {y; € int C'}icny — y by convexity.
(Why?) Since w'y;, < w'z for each k, we can conclude that w'y < w'zy.

Proposition

Let C C R" be a convex set with nonempty interior, & € dC be a boundary
point. Then there exists a sequence {xy € int C}ren such that limg,o xr = .

Proof v

By definition, there exists {y; € C}xen such that limy ., yx = . Since
int(C) # 0, choose any point z € int(C'), thus there exists » > 0 such that
B(z,r) C C. That is, for any w € R™ with ||w| < r, 24+ w € C. So by
convexity, for any k € Nand ¢ € (0,1),

Yyet+t(z+w—yr) =yr+t(z—yr) +twe C,

which implies that B(yy, + t(z — yx), rt) C C. Thus, yi + t(z — yi) € int(C).
Let @), = yi + +(z — yx). We have z, € int(C) for all k € N, and

limk_,oo L — .

Corollary of the supporting hyperplane theorem

Any nonempty closed convex is the intersection of some halfspaces.

In fact, for any closed convex C # 0,

C = N{H | H is a closed subspace containing C} = N{H : H is a supporting halfspace} .

We will not give the formal proof of this proposition in our lecture. However, let us
try to understand this proposition intuitively.

For a 2-dimension convex set. We can find a tangent line at each boundary point,
and the set only lies in a single side of the line. For all of these boundary points, we
can get a lot of tangent lines, and an area bounded by these lines. Hence, the
proposition tells us this area is just the original convex set.
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When considering high dimensional spaces, we can just use the supporting
hyperplane theorem. For each boundary point zy € 9C, let

P={z|w'z=w"zy},
and make C lie in the halfspace of w'z < wTxo. Thus, this proposition tells us that

C= ﬂ {z|w'z<w'z}.
zo€0C

Remark

Note that the number of those halfspaces may be infinite and even
uncountable.

4.3 Separating hyperplane theorem

We would like to show that any two disjoint (not necessarily bounded or closed!)
convex sets can be separated by a hyperplane. Note that the hyperplane may not



separate these two sets strictly.
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Theorem (Separating hyperplane theorem)

Let C and D be two disjoint convex sets. Then there exists a hyperplane
{z|w'z+b=0,w # 0} separating C and D, namely, for all z € C,
w'z+b<0andforallx € D, w'z +b> 0.

Proof

Consider the set
C-D=2{u—v|uecC,vec D}.

It suffices to separates C — D and {0}. This is because, if there exists a
hyperplane w # 0 such that Va2 € C — D, w'z < 0. Then for all u € C and
v € D, we have wTu < w'v. Finally, let b = — sup,.c w' u.

Case 1: 0 ¢ 0(C — D). By the corollary in Section 4.1, there is a
hyperplane separating {0} and cl (C — D).

Case 2: 0 € 9(C — D). Applying the supporting hyperplane theorem, we
can find a supporting hyperplane for C — D at 0, which separates {0} and
C — D.

4.4 Farkas’ lemma



We now present an application of the separating hyperplane theorem. This lemma
will help us prove the strong duality in

Theorem (Farkas' lemma)

Let A € R™™ b € R". Then exactly one of the following sets is empty:

{x eR™| Az = b,z > 0};
{ycR" | ATy <0,bTy > 0}.

Recall the conic combination and the cone hull.
i)

Cone(s)
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The two sets can also be understood in the following ways:

The first set is non-empty means that b locates in a cone hull of {ay,...,a,}:
Let A = (a4,...,a,). If there exists & > 0 such that Az = b, then
b==za;+ - +z,a, ccone(a,...,a,).

The second set is non-empty means that there exists y € R" such that the
hyperplane {x | y "« = 0} separates b and the column vectors of A.

The Farkas’ lemma tells us there exists a separating hyperplane passing
through 0 unless b € cone(ai,...,an).

Proof

First, we prove that if the first set is nonempty, the second one must be empty.
Otherwise, there exist @ and y such that:

0<by=(Azx)y=2"ATy<0.

Next, we prove that if the first set is empty, the second one must be nonempty.
It is easy to find a hyperplane to separate cone({ay,...,a,}) and b by the
strictly separting hyperplane theorem in Section 4.1. (Why?) Hence, there



exists y and ¢ such that
Vz € cone(A), z'y+t<0 and b'y+t>0.

The key problem is how to make the separating hyperplane pass through the
original point. Actually, we can show that the hyperplane {z | y"z = 0} is also
a separating hyperplane.

For all a; and \; > 0, \;a; € cone(A). Then \;a;y +t < 0, which is
equivalent to @, y + t/\; < 0. Taking the limit as \; — oo, it gives a] y < 0

In addition, 0 € cone(A) implies that t < 0. Thus by > 0.

Therefore, the hypeplane {z | y"z = 0} is a desired hyperplane, and the
second set is nonempty in this case.

Overall, exactly one of the two sets must be nonempty whenever the first one
is empty or nonempty.

Why is cone(A) closed?



