Projected Gradient Descent

1 Projection operator and projected gradient descent

To solve the inequality constrained problems, we introduce the projected gradient
descent.

Recall the iteration step in the gradient descent method, zx+1 = xr — nV f(zk).
Now we need to minimize f(x) over a feasible set Q. If z, — nV f(z) is feasible,
then we can run the gradient descent iteration. If xx — nV f(x) is infeasible, a
simple idea is to project it onto 2. This method is called the projected gradient
descent.

Definition (Projection)

The projection of a point onto a set is the point in the set with minimum
distance to the given point. Namely, the projection operator is defined by

Pa(y) = argmin ||z — y|| .

xzc)

The the projected gradient descent step can be given by
Lrtr1 = PQ (ZBk — an(a:k)) .

Let

o(@) = (=~ Pale - nVS()).



the iteration step can be expressed as
T =k — ng(Tk) -

Recall that, in , we show the following lemma.

Lemma

Let C be a nonempty, closed and convex set. Given ¢ and y = P¢(x), for any
z € C, it holds that (x — y,z — y) <0.

Conversely, if there exists y € C such that (z — y,z — y) < 0, we have y = P¢(x).
Otherwise, let w = P¢(x). Then we have

(x —w,y—w) <0.
However, we also have (z — y,w — y) < 0, which implies that
(x—-—w,w—-y)=(x-y,w—y)+(y—w,w—y) <0

if y # w. Contradiction.
Thus, y = Pe() if and only if (x — y, z — y) for any z € C.

Applying this lemma, we can show that g(«) plays a similar role as V f(x) in the

gradient descent.

Lemma



For any x € (2,

(Vi(z), g(z)) = 0.

The inequality holds if and only if g(x) = 0.

Proof
Since ® € (), we have
(@ — Pa(z —nVf(x),z —nVf(z) - Pa(z —nVf(z)) <0,
which gives that
(ng(x),ng(x) —nVf(x)) =n(g(z), g(z) - Vf(z)) <0.
Thus,

(Vf(z), g(x)) > (g(x),g(x)) .

So we know that —g(«) is a desceding direction. Now we show that if g(x) = 0
then « is a minimum point.

Lemma

x* is a minimum point of f over €, iff g(x) = 0, namely,
z* = Po(z* —nVf(z*)).

Proof
Applying the above lemma, we have * = Pq(x* — V f(x*)) if and only if
(" —nVf(x*) —x*,z—x*) <0
for all z € Q, which is further equivalent to
(Vf(x*),z—x*) > 0.

We conclude this lemma by the first-order optimality conditions of convex
functions.



Hence, in the projected gradient descent, we can stop when g(z;) is small, or

equivalently when @, — @ is small.
Tip

The projected gradient descent @1 = Pg (2, — nV f(e;)) can be also viewed

as @1 = argminco(V (), 2 — @) + 212 — @l

2 Examples of projection operator

Projected gradient descent is useful when the projection operator can be computed
efficiently. Here we give some examples.

Example 1 (Box constraints)
Q={z|a;<z; <b;, i=1,---,n}

N

ﬂ .

It is easy to see that

a; Yi < a;
[Pa(y)]; = min {b;, max{a;,y;}} = { ¥ a; < y; < b;
b Yi > b;

Example 2 (L? constraints, ridge regression)

Q={z|[lzls <t}



The projection operator Pgq(y) is to compute

min [z —y]*
subject to  ||z|3 < ¢2

By KKT condition, there exists p > 0 such that
2e—y)+2ue=0 and pu(|al|>—¢) =0
Then we have y = (1 + ).

Hence, Pq(y) = min {1’ m } o

Example 3 (L' constraints, LASSO)
Q={z: |z <t}



N/

Unfortunately, there is no closed form for the projection operator Pg(y). But
we can compute it efficiently.

By symmetry, we only need to consider the case where y; > 0 for all i. Now
Pa(y) is equivalent to the following optimization problem:

min [z — y|*
subject to Z x; <t
i
x; > 0,Vi.
By KKT condition, assume there exist KKT multipliers uq, - - -, s, such that

(2(x; — yi) + po — pi = 0, Vi
po(d_wi—t) =0

q pizi =0

n; >0
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Case 1. ||y||1 <t, then py = p; = 0. Hence x = y.

Case 2. ||y||; > ¢, then

>22(@i — i) + po — w1 =202 T — Xowi) +npo — Do ps = 0, hence o > 0.
Since po(>_ x; —t) =0, we have > z; = t.

If u; =0, by 2(z; — y;) + po — p; = 0, we have z; =y, — %,uo-



If Wi > 0, by HiZ; = 0, we have T; — 0.

Now we have

1 ) 1
2, = Vi Ho if y; 2 3 Ko
0 otherwise
and » z; =t.

We may use the binary search to find uo, where the lower bound is 0 and
the upper bound is max y;.



