
A linear program may have both equality and inequality constraints. It is easy to

rewrite equality constraints by inequalities. Can we rewrite inequality constraints

by equalities? In fact, the standard form of linear programming only allows equality

constraints and a special type of inequalities.

Now the question is how to convert a linear program into the standard form?

Clearly the third requirement is trivial. We only need to consider the first two

requirement.

First, for the second requirement, consider a simple example

x1 + 2x2 + x3 − x4 ≤ 5. We can add a slack variable s1:

x1 + 2x2 + x3 − x4 + s1 = 5 together with s1 ≥ 0. Note that it is equivalent to the

original inequality. Suppose we have another example 2x1 + x2 − x3 ≥ 1. Then

multiply the inequality by −1 and add a slack variable s2.

Next we consider the first requirement. If a variable has non-positive constraints,

such as x4 ≤ 0, we can easily let y4 = −x4 and substitute −y4 for x4 in the linear

program. If some variable, for example x3, is unconstrained in sign, we can replace

it by x+
3 − x−

3  and require x+
3  and x−

3  to be non-negative.

Lecture 7. Linear Programming

7.1 Linear program and standard form

Definition (Standard form)

We say that a linear program is in standard form if the following are all true:

Namely, the standard form can be expressed as follows:

1. Non-negativity constraints for all variables;

2. All remaining constraints are expressed as equality constraints;

3. The right hand side vector, b, is non-negative.

min
x∈Rn

cTx

s. t. Ax = b, A ∈ R
m×n, b ∈ R

m
≥0 ,

∀ i = 1, 2, … , n, xi ≥ 0 .



The standard form is useful in algorithm design and analysis, especially in the

algorithms based on primal dual method.

We now use the form

Note that the feasible set is a polyhedron since it is the intersection of some

halfspaces.

Example

Consider the following linear program:

By add slack variable and splitting free variables, it can be converted into the

following standard form:

min
x1,x2∈R

−2x1 − 3x2

s. t. x1 ≤ 100
x2 ≤ 200
x1 + x2 ≤ 160 .

min −2(x+
1 − x−

1 ) − 3(x+
2 − x−

2 )
s. t. x+

1 − x−
1 + s1 = 100

x+
2 − x−

2 + s2 = 200
x+

1 − x−
1 + x+

2 − x−
2 + s3 = 160

x+
1 , x−

1 , x+
2 , x−

2 , s1, s2, s3 ≥ 0 .

7.2 Solving linear programming

min
x∈Rn

cTx

s. t. Ax ≤ b, A ∈ R
m×n, b ∈ R

m

∀ i, xi ≥ 0

Example



When a linear program achieve its optimal value f ∗, intuitively the hyperplane

{x ∣ cTx − f ∗ = 0} passes through a vertex of the feasible set. We may use this

observation to solve linear programs geometrically.

First, we define what a vertex and an extreme point are.

Consider the following linear program:

We can sketch its feasible set as follows:

min
x∈Rn

−x1 + 6x2 − 13x3

s. t. x1 + x2 + x3 ≤ 400
x2 + 3x3 ≤ 600
x1 ≤ 200
x2 ≤ 300
x1, x2, x3 ≥ 0 .

Question

Is this observation always true?

Fundamental Theorem of Linear Programming

Theorem (Fundamental theorem of linear programming)

Suppose a linear program has an optimal solution. Then there exists an

optimal solution at a vertex (extreme point).

Definition (Vertex)



An important fact is that, these two types of points are equivalent for polyhedra.

A point x ∈ R
n is a vertex, if at least n linearly independent constraints are

tight at x.

Definition (Extreme point)

A point x ∈ Rn is called an extreme point of a convex set C, if there does not

exist u ≠ v ∈ C and θ ∈ (0, 1) such that x = θu + θ̄v. In other words, x cannot

be expressed by a convex combination of other points in C.

Proposition

For any polyhedron P = {x ∣ Ax ≤ b}, x ∈ P  is a extreme point if and only if

x is a vertex.

Proof ​

Suppose A = ∈ R
m×n and b = ∈ R

m.

⎛⎜⎝aT

1

⋮

aT

m

⎞⎟⎠ ⎛⎜⎝bT

1

⋮

bT

m

⎞⎟⎠Sufficiency: Suppose x ∈ P  is a vertex, then there exists n indices

i1, i2, … , in such that 
~
A = ∈ Rn×n and 

~
b =  satisfying

~
Ax = ~

b. The n constraints are linearly independent, so 
~
A is invertible.

Assume x is not an extreme point, that is, there exists u ≠ v and

θ ∈ (0, 1) such that x = θu + θ̄v. After substituting we have

θ(
~
Au) + θ̄(

~
Av) = ~

b. Note that u,v ∈ P . So it holds that 
~
Au ≤ ~

b and
~
Av ≤ ~

b. Thus, we conclude that 
~
Au = ~

Av = b. Since 
~
A is invertible, it

yields u = v, which leads to a contradiction.

⎛⎜⎝aT

i1

⋮

aT

in

⎞⎟⎠ ⎛⎜⎝bT

i1

⋮

bT

in

⎞⎟⎠Necessity: Assume x is an extreme point but not a vertex in P . Let

I = {i ∣ aT

i x = bi}. Since x is not a vertex, there does not exist linearly

independent n constraints that are tight at x. Hence there exists

d ≠ 0 ∈ Rn, such that aT

i d = 0 for all i ∈ I.



However, a polyhedron may not contain any vertex.

We now prove the fundamental theorem of linear programming.

Let P  be the feasible set of a linear programming

Let u = x + εd,v = x − εd. We argue that u,v ∈ P  for some sufficiently

small ε > 0 as follows.

Taking ε = minj∉I εj > 0, we have u ≠ v ∈ P . Hence x is an extreme

point, which leads to a contradiction.

∀ i ∈ I, note that aT

i u = aT

i v = aT

i x = bi (since aT

i d = 0).

∀ j ∉ I, we have aT

j x < bj. Then there exists εj > 0 such that

aT

j u ≤ bj and aT

j v ≤ bj.

Proposition

A polyhedron P = {x ∣ Ax ≤ b} has extreme points if and only if P  does not

contain a line, and P ≠ ∅.

Proof ​

Necessity: Assume there exists a line ℓ ⊆ P  and ℓ = {x = u + tv ∣ t ∈ R}

for some u ≠ v.

1. If x is on the line ℓ, it's obvious that x cannot be an extreme point.

2. If x is not on the line ℓ, we claim that x + v and x − v are also in P .

For any θ ∈ (0, 1) and t ∈ R, θx + θ̄(u + tv) ∈ P  by convexity. Let

t = 1
θ̄

. It follows that θx + θ̄u + v ∈ P . Thus, since P  is closed,

lim
θ→1

 (θx + θ̄u + v) = x + v ∈ P .

Similarly, we have x − v ∈ P . Hence, x cannot be an extreme point.

Sufficiency: If P  contains no extreme point, then there exists d ≠ 0 such

that Ad = 0. Thus, for all x ∈ P , we have

A(x + td) = A + tAd = Ad ≤ b for all t ∈ R, which gives that

{y = x + td ∣ t ∈ R} ⊆ P .



and Q be the set of optimal solution. Assume Q ≠ ∅. Since x ≥ 0, there is no line in

P  and thus no line in Q. Note that Q is also a polyhedron since

Q = P ∩ {x ∣ cTx = f ∗} where f ∗ is the optimal value of the objective function. By

the above proposition, we know that Q has an extreme point x∗. Now it suffices to

show that x∗ is also an extreme point in P .

Suppose x∗ is not an extreme point in P , then there exists u,v ∈ P  and θ ∈ (0, 1)

such that x∗ = θu + θ̄v. We have

cTx∗ = cT(θu + θ̄v) = θ(cTu) + θ̄(cTv) ≥ θ(cTx∗) + θ̄(cTx∗) = cTx

since x∗ is an optimal solution. Thus, cTu = cTv = cTx∗. It implies that u,v ∈ Q,

which leads to a contradiction.

The fundamental theorem of linear programming gives us an algorithm to solve

linear programs by enumerating all (≤ (m
n
)) vertices of the feasible set.

However, consider the n-dimensional cube [0, 1]n. Only 2n constraints produce a

polyhedron of 2n vertices.

We now introduce a (usually) efficient algorithm: the simplex method. We remark

here that the simplex method is not a polynomial-time algorithm. However, it runs

fast except for some artificially designed cases.

The key idea is that when we find a vertex of the feasible set, move from the

current vertex to a "better" neighbor, where two vertices are neighbors if they share

n − 1 tight constraints.

Assume x = 0 is a feasible set. Then we can start from the origin point x = 0. It is

clear that there are n neighbors of the origin, and each of them has n − 1 zero

coordinates.

How can we know whether a neighbor is "better"? Note that our goal is to compute

min∑ cixi. If xi > 0, the objective function is "better" as long as ci < 0. To this

end, we can choose i such that ci < 0 and increase xi to xi = r until some

min
x∈Rn

cTx

s. t. Ax ≤ b, A ∈ R
m×n, b ∈ R

m

∀ i, xi ≥ 0

7.3 Simplex method



constraint ∑k ajkxk ≤ bj is tight. Now there are n constraints tight:

{

Then we shift coordinates so that (0, … , 0, xi = r, 0, … , 0) becomes the origin

point. It suffices to let y1 = x1, … , yi−1 = xi−1, yi = bj − ∑k ajkxk,

yi+1 = xi+1, … , yn = xn.

x1 = … = xi−1 = xi+1 = … = xn = 0 ,
aj1x1 + … + ajnxn ≤ bj .

Definition (Neighbor)

Two vertices are neighbors if they share n − 1 tight constraints.

Example

Consider the following linear program:

min
x1,x2∈R

−2x1 − 5x2

subject to  2x1 − x2 ≤ 4
x1 + 2x2 ≤ 9
x2 − x1 ≤ 3
x1 ≥ 0
x2 ≥ 0

Suppose we start from (0, 0). Since the coefficient for x2 is negative, we

could increase x2. When x1 = 0, the constraints are x2 ≥ −4, x2 ≤ 9/2,

and x2 ≤ 3. To make the objective function as small as possible, we

should increase the value of x2 until some constraint is tight. Then we

increase x2 to 3 and arrive at (0, 3). Now the constraint x2 − x1 ≤ 3 is

tight. 

At (0, 3), we create a new coordinate system. The point (x1, x2) in the

original coordinate system becomes (x1, 3 − (x2 − x1)).

Let y1 = x1 and y2 = 3 + x1 − x2. We then rewrite the linear

programming as follows



As shown above, the first step is to choose a variable whose coefficient is negative,

and then increase it. What should we do if we have multiple variables who have

negative coefficients?

In fact, the following example shows we may encounter some tricky problems if we

choose a wrong variable. Consider the linear program with the same objective

function as above, but the constraints are

min
y1,y2

−15 − 7y1 + 5y2

subject to  y1 + y2 ≤ 7
3y1 − 2y2 ≤ 3
y2 ≥ 0
y1 ≥ 0
y2 − y1 ≤ 3

Now we repeat the above process. We increase y1 and let

z1 = 3 − (3y1 − 2y2), z2 = y2. The objective function becomes

−22 + 7
3 z1 + 1

3 z2.

Since the coefficients for both z1 and z2 are positive, we know that

(z1, z2) = (0, 0) is an optimal solution. Substituting y and x we have

(y1, y2) = (1, 0) and (x1, x2) = (1, 4).

x1 − x2 ≤ 0 ,
x1, x2 ≥ 0 .

Suppose in the first step, we choose to increase x1. Then the tight constraint

should be x1 − x2 = 0 and x2 cannot increase any more.



Clearly it is possible to fail in this case, which is called degeneracy. One way to

break cycles is to add perturbation in Ax ≤ b, that is, let b′
i = bi + εi where

εi ∼ N (0, σ2) is an i.i.d.(independent and identically distributed) Gaussian random

variable.

Now the question is, what if the origin point x = 0 is not feasible? If there exists a

known feasible solution d such that Ad ≤ b, then let y = d − x and further let

y = y+ − y− to guarantee that all variables are nonnegative.

However, what if there is no known feasible solutions? The following two-phase

simple method gives an algorithm to find a feasible solution of a linear program.

Let y1 = x2 − x1 and y2 = x2. The new constraints are

y1 − y2 ≤ 0 ,
y1, y2 ≥ 0 .

Unfortunately, we choose to increase y2 and repeat the process again and

again……

First, convert the linear program into the standard form: min cTx subject to

Ax = b and x ≥ 0, where b ≥ 0.

Next, add slack variables s1, … , sm for constraints. Then the constraints are

Ax + s = b, x ≥ 0 and s ≥ 0.

Now it is clear that there exists a trivial solution x = 0 and s = b.

Finally, we can check whether s = 0 is possible by solving the following linear

program

min
s∈Rn

s1 + s2 + ⋯ + sm

subject to Ax + s = b , A ∈ R
m×n, b ∈ R

m

∀ i = 1, 2, … , n, xi ≥ 0 ;
∀ j = 1, 2, … , m, sj ≥ 0 .


