Lecture 9. Descent Method

9.1 Unconstrained optimization problems

We now study the general convex optimization problems. First, we consider the
easiest case: no constraints. Namely, the optimization problem is

min  f(z)

zeR”

where f(x) is a convex function.

Recall that, the optimality condition for convex functions is

Theorem

Suppose f: D C R" — R is a convex function. Then z* is a global minimum
point of f iff

Vy € D, Vf(:c*)T(y —z%)>0.

In particular, if D = R”, then z* is a global minimum point iff V f(z*) = 0.

For convenience, we assume that D = R", the objective function f(zx) is
differentiable and has a finite minimum point z* (and the minimum value f*). For
some simple cases, we can compute the minimum point by solving the equation

V f(xz*) = 0. However, in general we cannot expect that closed-form solutions
always exist. So we introduce some algorithms to find optimal solutions.

9.2 Descent method

Analogously to the simplex method, we would like to move from a solution z to a
better “neighbor” y. The convexity guarantees that

fy) = f(=) + Vi) (y— ).

As we hope y is better, i.e., f(y) < f(z), it requires that V f(z)"(y — z) < 0.



Conversely, we know that if the directional derivative V f(z)Tv < 0, then there
exists € > 0 such that f(z + ev) < f(z). So Vf(z)Tv < 0 is a reasonable
requirement for the moving direction v.

This inspired the so-called descent method: start from a solution &, and move to
.1 = ¢y + t,vy iteratively, where ¢, is the step size to be determined and vy, is the
moving direction satisfying V f(x;) Tv;, < 0.

The first question is when we can stop? Of course the ideal stopping criterion is
V f(xr) = 0 for some k. If so, we know that z, is indeed a minimum point.
However, in practice, we cannot expect this happens. So we usually use stopping
criteria such as |V f(x)|| < 6, |f(xr1) — f(xx)| < 6, or 1000 iterations.

given a starting point xg

repeat
choose a proper step size t;,
X — @), + v, where V() Tv, <0
kE<—k+1

until ||V f(x;)|| < § for some sufficiently small &

The next question is, does this algorithm converge to an optimal solution? In fact,
we claim that if we assume that ¢, v; only depend on xj, and the choice of ¢
satisfies f(xr+1) < f(xr) for every @ ¢ argmin f(a) (note that the optimal
solution may not be unique), then the value of objective functions {f(x)}
generated by the descent method converge to the minimum value f*. (However,
{xr*} may not converge and we will give an example later.)

We assume f(«) has a finite minimum value f*, and f(xx+1) < f(@x). So f(zx) has
a limit as k goes to infinity. Now we would like to show that the limit is f*.

Let ¢ = limy o f(@r). Intuitively, if ¢ > f*, as we hope f(xr+1) < f(xk) as long as
f(zx) # f*, we can argue that f(xx1) still decreases too fast even if f(xx) is
sufficiently close to c.



Rigorously, let S = {x | ¢ < f(x) < f(x()}. Then S is a compact set, if we assume
f(c0) = oo for convenience (otherwise S may not be necessarily bounded). Let
g(x) : R — R be a function defined by

9(y) = fly +tyvy) — f(y),

where t,, v, are the step size and the direction we choose if x; = y. That is, g(y)
measures the difference between f(xr+1) and f(xi) if we set ¢ = y.

By our assumption f(xx+1) < f(xx) as long as f(xx) # f*, and noting that z € S if
f(z) > ¢ > f*, we conclude that g(x) > 0 for all € S. Applying the extreme value
theorem, there exists

d =ming(x) > 0,

zesS

which implies that f(zr4+1) < f(ar) — 0 for every @, € S.This contradicts our
assumption that there exists {«} such that f(xx) | ¢, and thus completes the
proof.

Tip

In fact, it is not necessary to define g as the difference between the function
values. Analogously to the amortised analysis for some data structures, we may
define g to measure the difference between some potential function. So this
argument above is a simplified result of the Lyapunov's global stability theorem
in discrete time.

Suppose di1 = p(dy) where p: R®™ — R is a continuous function and p(0) = 0.
If there exists a continuous (Lyapunov) function £ : R” — R such that

£(0) =0, £(z) > 0 for all =z # 0, (positivity)
l(x) — oo as ||z]| — oo, (radical unboundedness)

L(p(x)) < £(z) for all x # 0. (strict decrease)

Then for all dy € R", we have d;, — 0 as k — oo.
For our setting, just select an optimal solution *, and set dy = & — x*,
p(dy) = di + tyvy and £(dg) = f(dy + =) — f*.

9.3 Gradient descent

We now consider a specific descent method, the gradient descent, where we select
v, = —V f(zr). Then trivially V f(zx) Tvi, < 0.



There is an advantage to choose —V f(x) since it is the direction of steepest
descent, namely, the value of f decreases most rapidly: For any unit length vector v,
the directional derivative V f(z) v satisfies

—lloll - IV f(@)I| < Vf(z) v < |lof| - [V f(=)]]
by the Cauchy-Schwarz inequality, and the equality holds iff v = £V f(z)/||V f(z)]].

Applying this choice of directions, we obtain the gradient descent method:

given a starting point x|
repeat
choose a proper step size t,
T < T — tV f(zg)
kE—k+1
until ||V f(zy)|| < 6 for some sufficiently small §

We now consider how to choose the step size t. Intuitively, the choice of step size
can effect the converge rate of the algorithm.
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Let's start from an easy example: f(z) = ax? where a > 0. Since we hope
f(xzrs1) < f(xr), it requires that |z 1| < |zx|, which is equivalent to
(1 — 2aty)xr| < |z

So t; < 1/a suffices.

Next, consider the multivariate function f(x) = 2" Qx where Q > 0. Now
Tp1 = @ — 2txQxr. SO

f(@ri1) = 2} Qzy + 442 (Qzr) ' Q(Qy) — 4t(Qxr) T (Qy) -

It is sufficient to find a value of ¢, such that for all v € R", ¢t;v' Qv < v'v. We need
the following lemma.

Lemma (Rayleigh quotient)



Let @Q > 0 be a positive semi-definite matrix, and A,;, and A,., be its
minimum and maximum eigenvalues, respectively. Then for all z € R", we

have

AmionH% < mTQx < )‘maX||mH§

Proof

Since Q € R™™ is symmetric, consider its eigen-decomposition Q@ = UAUT,
where A = diag{Ay, ..., A, } is the diagonal matrix consisting of Q's
eigenvalues, and U = (uyq,...,u,) consists of corresponding unit-length
eigenvectors. It easy to see that UU T = 1.

Assume = Uy (i.e. y=U o = Ux). Then

2'Qe =y U QUy =y UTUAU Uy =y Ay = > Ay

i—1
So clearly we have A ||y||? < 2TQx < Amax||y||>. Moreover, we have
Iy’ =y'y=2"U'Uz=2"x = ||,

which completes the proof.

Note that in this proof we do not really need @ > 0. This lemma holds for all
symmetric Q. Applying this lemma, it gives that ¢; < 1/Ap.x suffices in the gradient
descent method for quadratic functions.

However, for general cases, we cannot expect a universal condition for ¢;. For
example, consider the function f(x) = |z|. If we choose ¢} to be a constant ¢ > 0,
no matter what value ¢ is, the algorithm does not work as long as |z| < .

Under which assumptions can we choose a constant as the step size?

9.4 L-smooth functions

We would like to avoid functions similar to |z|, where V f(z) changes too
drastically near x*.



Definition (Lipschitz continuity)
A function f: R® — R is L-Lipschitz, if for all z,y € dom £,

1f(2) = F(WIl < Lllz -yl

We usually use L%-norm, unless otherwise specified.

An L-Lipschitz function is continuous, but may not be differentiable. Intuitively, for
a Lipschitz continuous function, there exists a double cone (white) whose origin

can be moved along the graph so that the whole graph always stays outside the
double cone.
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Example

f(z) = kxz where = € R is |k|-Lipschitz.
f(x) = wTx where & € R" is ||w||-Lipschitz

f(x) = Qx where & € R"™ is Apayx(QT Q)Y/?-Lipschitz, since

(@) - 1)l = 1 - 9)]| = (=~ 9)"Q Q= — v))"”
S Amzab)c(QQ-l-Q2)1/2Hw — yH

by the bound for the Rayleigh quotient. In particular, if @ is symmetric,

)\max(QTQ)l/z = max{l)\min(Q)‘> |)\max(Q)|} C



Recall that we hope V f(z) does not change rapidly. So we define the following
notion of "smoothness".

Definition (Smoothness)
A function f: R"® — R is L-smooth if V f if L-Lipschitz, i.e., for all z, y,

IVf(z) = Vi(y)ll < Lijz -y .

Example

f(x) = T Qx with Q = 0 is 2 max(Q)-smooth (Vf(x) = 2Q=).

We use the notation A > Bif A — B > 0. Then we have the following equivalent
definitions.

Lemma

Suppose f : R" — R is a twice differentiable function. Then f is L-smooth iff
—LI, < V2f(x) < LI, for all ¢ € R", where I, is the n x n identity matrix.
Namely, for all z € R", |\;(V2f(2))| < L, where Ay,..., \, are n eigenvalues.

Note that if f : R — R, we can easily prove the “ <= ” direction since the mean

value theorem gives that f'(z) — f'(y) = f"(z)(z — y) for some z. However, there is
no such theorem for vector-valued functions.

Proof v

< " direction. We would like to restrict the vector-valued function V f
to a line. Fix any @,y € R". Let ¢ : [0,1] — R be a function defined by

p(t) = (Vi) — Vi), Vi@ +tly —=z))).

Then, ¢(1) = (Vf(y), Vf(y) — Vf(z)) and
©(0) = (Vf(x),Vf(y) — Vf(x)). By the mean value theorem, there exists
t € [0, 1] such that p(1) — ¢(0) = ¢'(t). Note that

¢'(t) = (Vf(y) — Vf(=), Vif(z +tly — =) (y —z))
<||Vf(y) — V()| [V f(z+tly —z))(y— )|



by the Cauchy-Schwarz inequality. It implies that

IVF(y) = Vf(@)[I* = (1) - ¢(0)
<IVf(y) = V(@) - IV’ f(z + t(y — 2))(y —2)],

which further gives that
IVf(y) - V@) < [V f(z+t(y — =) (y - 2)| < Llly — |

The last inequality follows from the third example of Lipschitz functions.

" = " direction. Fix any «,v € R". Let ¢ : Ry — R be a function
defined by

P(t) = (Vi(z + tv), v).
Then, by the Cauchy-Schwarz inequality and the L-smoothness, we have

[%(t) — $(0)| = [(Vf(x + tv) — Vf(=), v)|
< [IVF(z +tv) = V()| - [0
< tL|jv]?,

which further gives that ‘M‘ < L||v||*. Taking the limit ¢ — 0 on

both sides, and applying the chain rule, we obtain that
[TV ()| = [#/(0)] < Lijo]?.

Thus, —LI, < V?f(x) < LI,.

An L-smooth functions may be not convex. If f is further convex, all absolute
values are not necessary.

Lemma

Suppose f: R™ — R is a differentiable function. Then f is L-smooth iff for all
x,y € R",

()~ f(@) — (VS(@), v 2)] < ¢y~ 2],

Recall that f is convex iff f(y) — f(x) — (Vf(x), y — x) > 0, which shows that f is
underestimated by an affine function. Now, if f is L-smooth, it is overestimated by



a quadratic function.
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Proof v
"« " direction. Fix & € R". Define

91(3) = F¥) — f(@) ~ (VS(@), y @) + Ly~ =,

9:(4) = f¥) — f(@) ~ (V(@), y— =) — 2]y =|’.

Note that for all y € R", g2(y) < 0 < ¢1(y), and g1(x) = g2(x) = 0. So x
is a local minimum point of g;, which gives that Vg, (x) = 0. Since
V2g:(y) = V2f(y) + LI,, we conclude that V2 f(x) = —LI,. Similarly, «
is a local maximum point of g, and thus V2gy(z) = V2f(z) — LI, < 0.

" — " direction. Fix @,y € R". Let
h(6) = f(z +6(y —x)).

It is clear that A'(8) = (Vf(x + 0(y — x)),y — ), and
1
Fw) ~ f@) = h(1) - h(0) = [ 1(6)as.
0
Moreover, (V f(x),y —x) = h'(0) = f01 h'(0) df. Therefore, it holds that

fly) — f(z) —(Vf(z), y—=) = /0 h'(0) — h'(0)d6.



Note that

|K'(6) = R'(0)| = [Vf(z + 6(y — =) — V(2)), y — |
< |[[Vf(x +6(y — =) - Vi) [y - =|
< OL|ly — x|

We now have

() - f(@) - VS@), y -] < [ W)~ 1(0)] a0
< [ otly—al*a0 = Fly—=|.

which completes the proof.

Recall that, we hope to find the value of the step size ¢ such that f(xy,1) < f(@g)-
Now we assume that f is L-smooth. Then

f@r1) = f(@p —t- Vi(2r))

< fla) — (V@) t- V@) + 2t V@)

= flaw) — t(1— )19 ()

< (@)
if we set t < 2/L. In particular, if we choose t < 1/L, it gives the following descent
lemma.

Lemma (Descent lemma)

For an L-smooth differentiable function f : R® — R (not necessarily convex),
and t < 1/L, we have

f(wki) < few) = 21V 5 @)



