
We now study the general convex optimization problems. First, we consider the

easiest case: no constraints. Namely, the optimization problem is

min
x∈Rn

f(x)

where f(x) is a convex function.

Recall that, the optimality condition for convex functions is

For convenience, we assume that D = Rn, the objective function f(x) is

differentiable and has a finite minimum point x∗ (and the minimum value f ∗). For

some simple cases, we can compute the minimum point by solving the equation

∇f(x∗) = 0. However, in general we cannot expect that closed-form solutions

always exist. So we introduce some algorithms to find optimal solutions.

Analogously to the simplex method, we would like to move from a solution x to a

better “neighbor” y. The convexity guarantees that

f(y) ≥ f(x) + ∇f(x)T(y − x) .

As we hope y is better, i.e., f(y) < f(x), it requires that ∇f(x)T(y − x) < 0.

Lecture 9. Descent Method

9.1 Unconstrained optimization problems

Theorem

Suppose f : D ⊆ Rn → R is a convex function. Then x∗ is a global minimum

point of f iff

∀ y ∈ D, ∇f(x∗)T(y − x∗) ≥ 0 .

In particular, if D = Rn, then x∗ is a global minimum point iff ∇f(x∗) = 0.

9.2 Descent method



Conversely, we know that if the directional derivative ∇f(x)Tv < 0, then there

exists ε > 0 such that f(x + εv) < f(x). So ∇f(x)Tv < 0 is a reasonable

requirement for the moving direction v.

This inspired the so-called descent method: start from a solution x0 and move to

xk+1 = xk + tkvk iteratively, where tk is the step size to be determined and vk is the

moving direction satisfying ∇f(xk)Tvk < 0.

The first question is when we can stop? Of course the ideal stopping criterion is

∇f(xk) = 0 for some k. If so, we know that xk is indeed a minimum point.

However, in practice, we cannot expect this happens. So we usually use stopping

criteria such as ∥∇f(x)∥ < δ, |f(xk+1) − f(xk)| < δ, or 1000 iterations.

The next question is, does this algorithm converge to an optimal solution? In fact,

we claim that if we assume that tk, vk only depend on xk, and the choice of tk

satisfies f(xk+1) < f(xk) for every xk ∉ arg min f(x) (note that the optimal

solution may not be unique), then the value of objective functions {f(xk)}

generated by the descent method converge to the minimum value f ∗. (However,

{xk∗} may not converge and we will give an example later.)

We assume f(x) has a finite minimum value f ∗, and f(xk+1) < f(xk). So f(xk) has

a limit as k goes to infinity. Now we would like to show that the limit is f ∗.

Let c = limk→∞ f(xk). Intuitively, if c > f ∗, as we hope f(xk+1) < f(xk) as long as

f(xk) ≠ f ∗, we can argue that f(xk+1) still decreases too fast even if f(xk) is

sufficiently close to c.

given a starting point x0

repeat

choose a proper step size tk

xk+1 ← xk + tkvk where ∇f(xk)Tvk < 0

k ← k + 1

until ∥∇f(xk)∥ ≤ δ for some sufficiently small δ



Rigorously, let S = {x ∣ c ≤ f(x) ≤ f(x0)}. Then S is a compact set, if we assume

f(∞) = ∞ for convenience (otherwise S may not be necessarily bounded). Let

g(x) : Rn → R be a function defined by

g(y) = f(y + tyvy) − f(y) ,

where ty, vy are the step size and the direction we choose if xk = y. That is, g(y)

measures the difference between f(xk+1) and f(xk) if we set xk = y.

By our assumption f(xk+1) < f(xk) as long as f(xk) ≠ f ∗, and noting that x ∈ S if

f(x) ≥ c > f ∗, we conclude that g(x) > 0 for all x ∈ S. Applying the extreme value

theorem, there exists

δ = min
x∈S

g(x) > 0 ,

which implies that f(xk+1) ≤ f(xk) − δ for every xk ∈ S.This contradicts our

assumption that there exists {xk} such that f(xk) ↓ c, and thus completes the

proof.

We now consider a specific descent method, the gradient descent, where we select

vk = −∇f(xk). Then trivially ∇f(xk)Tvk < 0.

Tip

In fact, it is not necessary to define g as the difference between the function

values. Analogously to the amortised analysis for some data structures, we may

define g to measure the difference between some potential function. So this

argument above is a simplified result of the Lyapunov's global stability theorem

in discrete time.

Suppose dk+1 = ρ(dk) where ρ : Rn → R is a continuous function and ρ(0) = 0.

If there exists a continuous (Lyapunov) function ℓ : Rn → R such that

Then for all d0 ∈ R
n, we have dk → 0 as k → ∞.

For our setting, just select an optimal solution x∗, and set dk = xk − x∗,

ρ(dk) = dk + tkvk and ℓ(dk) = f(dk + x∗) − f ∗.

1. ℓ(0) = 0, ℓ(x) > 0 for all x ≠ 0, (positivity)

2. ℓ(x) → ∞ as ∥x∥ → ∞, (radical unboundedness)

3. ℓ(ρ(x)) < ℓ(x) for all x ≠ 0. (strict decrease)

9.3 Gradient descent



There is an advantage to choose −∇f(xk) since it is the direction of steepest

descent, namely, the value of f decreases most rapidly: For any unit length vector v,

the directional derivative ∇f(x)Tv satisfies

−∥v∥ ⋅ ∥∇f(x)∥ ≤ ∇f(x)Tv ≤ ∥v∥ ⋅ ∥∇f(x)∥

by the Cauchy-Schwarz inequality, and the equality holds iff v = ±∇f(x)/∥∇f(x)∥.

Applying this choice of directions, we obtain the gradient descent method:

We now consider how to choose the step size tk. Intuitively, the choice of step size

can effect the converge rate of the algorithm.

Let's start from an easy example: f(x) = ax2 where a > 0. Since we hope

f(xk+1) < f(xk), it requires that |xk+1| < |xk|, which is equivalent to

|(1 − 2atk)xk| < |xk| .

So tk < 1/a suffices.

Next, consider the multivariate function f(x) = xTQx where Q ⪰ 0. Now

xk+1 = xk − 2tkQxk. So

f(xk+1) = xT

kQxk + 4t2
k(Qxk)TQ(Qxk) − 4tk(Qxk)T(Qxk) .

It is sufficient to find a value of tk such that for all v ∈ R
n, tkvTQv < vTv. We need

the following lemma.

given a starting point x0

repeat

choose a proper step size tk
xk+1 ← xk − tk∇f(xk)

k ← k + 1

until ∥∇f(xk)∥ ≤ δ for some sufficiently small δ

Lemma (Rayleigh quotient)



Note that in this proof we do not really need Q ⪰ 0. This lemma holds for all

symmetric Q. Applying this lemma, it gives that tk < 1/λmax suffices in the gradient

descent method for quadratic functions.

However, for general cases, we cannot expect a universal condition for tk. For

example, consider the function f(x) = |x|. If we choose tk to be a constant t > 0,

no matter what value t is, the algorithm does not work as long as |xk| < t.

We would like to avoid functions similar to |x|, where ∇f(x) changes too

drastically near x∗.

Let Q ⪰ 0 be a positive semi-definite matrix, and λmin and λmax be its

minimum and maximum eigenvalues, respectively. Then for all x ∈ R
n, we

have

λmin∥x∥2
2 ≤ xTQx ≤ λmax∥x∥2

2

Proof

Since Q ∈ Rn×n is symmetric, consider its eigen-decomposition Q = UΛU T,

where Λ = diag{λ1, … ,λn} is the diagonal matrix consisting of Q's

eigenvalues, and U = (u1, … ,un) consists of corresponding unit-length

eigenvectors. It easy to see that UU T = I.

Assume x = Uy (i.e. y = U −1x = U Tx). Then

xTQx = yTU TQUy = yTU TUΛU TUy = yTΛy =
n

∑
i=1

λiy
2
i .

So clearly we have λmin∥y∥2 ≤ xTQx ≤ λmax∥y∥2. Moreover, we have

∥y∥2 = y
T

y = x
TU TUx = x

T
x = ∥x∥2 ,

which completes the proof.

Question

Under which assumptions can we choose a constant as the step size?

9.4 L-smooth functions



We usually use L2-norm, unless otherwise specified.

An L-Lipschitz function is continuous, but may not be differentiable. Intuitively, for

a Lipschitz continuous function, there exists a double cone (white) whose origin

can be moved along the graph so that the whole graph always stays outside the

double cone.

Definition (Lipschitz continuity)

A function f : Rn → R is L-Lipschitz, if for all x, y ∈ dom f,

∥f(x) − f(y)∥ ≤ L∥x − y∥ .

Example

f(x) = kx where x ∈ R is |k|-Lipschitz.

f(x) = wTx where x ∈ Rn is ∥w∥-Lipschitz

f(x) = Qx where x ∈ R
n is λmax(QTQ)1/2-Lipschitz, since

by the bound for the Rayleigh quotient. In particular, if Q is symmetric,

λmax(QTQ)1/2 = max{|λmin(Q)|, |λmax(Q)|} .

∥f(x) − f(y)∥ = ∥Q(x − y)∥ = ((x − y)TQTQ(x − y))
1/2

≤ λmax(QTQ)1/2∥x − y∥



Recall that we hope ∇f(x) does not change rapidly. So we define the following

notion of "smoothness".

We use the notation A ⪰ B if A − B ⪰ 0. Then we have the following equivalent

definitions.

Note that if f : R → R, we can easily prove the “ ⟸ ” direction since the mean

value theorem gives that f ′(x) − f ′(y) = f ′′(z)(x − y) for some z. However, there is

no such theorem for vector-valued functions.

Definition (Smoothness)

A function f : Rn → R is L-smooth if ∇f if L-Lipschitz, i.e., for all x, y,

∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥ .

Example

f(x) = xTQx with Q ⪰ 0 is 2λmax(Q)-smooth (∇f(x) = 2Qx).

Lemma

Suppose f : Rn → R is a twice differentiable function. Then f is L-smooth iff

−LIn ⪯ ∇2f(x) ⪯ LIn for all x ∈ Rn, where In is the n × n identity matrix.

Namely, for all x ∈ Rn, λi(∇2f(x)) ≤ L, where λ1, … ,λn are n eigenvalues.∣ ∣Proof ​

" ⟸ " direction. We would like to restrict the vector-valued function ∇f

to a line. Fix any x, y ∈ R
n. Let φ : [0, 1] → R be a function defined by

φ(t) = ⟨∇f(y) − ∇f(x), ∇f(x + t(y − x))⟩ .

Then, φ(1) = ⟨∇f(y), ∇f(y) − ∇f(x)⟩ and

φ(0) = ⟨∇f(x), ∇f(y) − ∇f(x)⟩. By the mean value theorem, there exists

t ∈ [0, 1] such that φ(1) − φ(0) = φ′(t). Note that

φ′(t) = ⟨∇f(y) − ∇f(x), ∇2f(x + t(y − x))(y − x)⟩

≤ ∥∇f(y) − ∇f(x)∥ ⋅ ∥∇2f(x + t(y − x))(y − x)∥



An L-smooth functions may be not convex. If f is further convex, all absolute

values are not necessary.

Recall that f is convex iff f(y) − f(x) − ⟨∇f(x), y − x⟩ ≥ 0, which shows that f is

underestimated by an affine function. Now, if f is L-smooth, it is overestimated by

by the Cauchy-Schwarz inequality. It implies that

which further gives that

∥∇f(y) − ∇f(x)∥ ≤ ∥∇2f(x + t(y − x))(y − x)∥ ≤ L∥y − x∥ .

The last inequality follows from the third example of Lipschitz functions.

∥∇f(y) − ∇f(x)∥2 = φ(1) − φ(0)

≤ ∥∇f(y) − ∇f(x)∥ ⋅ ∥∇2f(x + t(y − x))(y − x)∥ ,

" ⟹ " direction. Fix any x, v ∈ Rn. Let ψ : R≥0 → R be a function

defined by

ψ(t) = ⟨∇f(x + tv), v⟩ .

Then, by the Cauchy-Schwarz inequality and the L-smoothness, we have

which further gives that 
ψ(t)−ψ(0)

t
≤ L∥v∥2. Taking the limit t → 0 on

both sides, and applying the chain rule, we obtain that

vT∇2f(x)v = ψ′(0) ≤ L∥v∥2 .

Thus, −LIn ⪯ ∇2f(x) ⪯ LIn.

|ψ(t) − ψ(0)| = ⟨∇f(x + tv) − ∇f(x), v⟩

≤ ∥∇f(x + tv) − ∇f(x)∥ ⋅ ∥v∥

≤ tL∥v∥2 ,∣ ∣∣ ∣∣ ∣ ∣ ∣Lemma

Suppose f : Rn → R is a differentiable function. Then f is L-smooth iff for all

x, y ∈ R
n,

f(y) − f(x) − ⟨∇f(x), y − x⟩ ≤
L

2
∥y − x∥2 .∣ ∣



a quadratic function.

Proof ​

" ⟸ " direction. Fix x ∈ R
n. Define

Note that for all y ∈ R
n, g2(y) ≤ 0 ≤ g1(y), and g1(x) = g2(x) = 0. So x

is a local minimum point of g1, which gives that ∇2g1(x) ⪰ 0. Since

∇2g1(y) = ∇2f(y) + LIn, we conclude that ∇2f(x) ⪰ −LIn. Similarly, x

is a local maximum point of g2, and thus ∇2g2(x) = ∇2f(x) − LIn ⪯ 0.

g1(y) = f(y) − f(x) − ⟨∇f(x), y − x⟩+
L

2
∥y − x∥2 ,

g2(y) = f(y) − f(x) − ⟨∇f(x), y − x⟩−
L

2
∥y − x∥2 .

" ⟹ " direction. Fix x, y ∈ R
n. Let

h(θ) = f(x + θ(y − x)) .

It is clear that h′(θ) = ⟨∇f(x + θ(y − x)), y − x⟩, and

f(y) − f(x) = h(1) − h(0) = ∫
1

0

h′(θ) dθ .

Moreover, ⟨∇f(x), y − x⟩ = h′(0) = ∫ 1

0 h′(0) dθ. Therefore, it holds that

f(y) − f(x) − ⟨∇f(x), y − x⟩ = ∫
1

0

h′(θ) − h′(0) dθ .



Recall that, we hope to find the value of the step size t such that f(xk+1) < f(xk).

Now we assume that f is L-smooth. Then

if we set t < 2/L. In particular, if we choose t ≤ 1/L, it gives the following descent

lemma.

Note that

We now have

which completes the proof.

h′(θ) − h′(0) = |∇f(x + θ(y − x)) − ∇f(x)), y − x|

≤ ∥∇f(x + θ(y − x)) − ∇f(x)∥ ⋅ ∥y − x∥

≤ θL∥y − x∥2 .∣ ∣⟨f(y) − f(x) − ∇f(x), y − x⟩ ≤ ∫
1

0

h′(θ) − h′(0) dθ

≤ ∫
1

0

θL∥y − x∥2 dθ =
L

2
∥y − x∥2 ,∣ ∣ ∣ ∣f(xk+1) = f(xk − t ⋅ ∇f(xk))

≤ f(xk) − ⟨∇f(xk), t ⋅ ∇f(xk)⟩+
L

2
∥t ⋅ ∇f(xk)∥2

= f(xk) − t(1 −
Lt

2
)∥∇f(xk)∥2

< f(xk)

Lemma (Descent lemma)

For an L-smooth differentiable function f : Rn → R (not necessarily convex),

and t ≤ 1/L, we have

f(xk+1) ≤ f(xk) −
t

2
∥∇f(xk)∥2 .


