Lecture 17. Projected Gradient Descent

17.1 Projection operator and projected gradient descent

To solve the inequality constrained problems, we introduce the projected gradient
descent.

Recall the iteration step in the gradient descent method, zx+1 = zr — nV f(z).
Now we need to minimize f(z) over a feasible set Q. If z; — nV f(z}) is feasible,
then we can run the gradient descent iteration. If x; — nV f(z) is infeasible, a
simple idea is to project it onto 2. This method is called the projected gradient
descent.

Definition (Projection)

The projection of a point onto a set is the point in the set with minimum
distance to the given point. Namely, the projection operator is defined by

Pa(y) = argmin ||z — y| .

xze

The the projected gradient descent step can be given by
zy1 = Po(z, —nVf(xy)) .

Let

o(@) = - (=~ Pale ~nVf(@) ).



the iteration step can be expressed as
Tit1 = Tk — Ng(Tk) -

Recall that, in , we show the following lemma.

Lemma

Let C' be a nonempty, closed and convex set. Given « and y = P (x), for any
z € C, it holds that (x —y,z —y) <0.

Conversely, if there exists y € C such that (x — y,z — y) < 0, we have y = P(x).
Otherwise, let w = P¢o(x). Then we have

(g —w,y—w) <0.
However, we also have (z — y, w — y) < 0, which implies that
-—ww-y)=(@-y,w-y) +{y-w,w-y) <0

if y £ w. Contradiction.
Thus, y = P¢(z) if and only if (x — y,z — y) forany z € C.

Applying this lemma, we can show that g(x) plays a similar role as V f(x) in the
gradient descent.

Lemma



For any « € (),

(Vi(z), g(x)) = 0.

The inequality holds if and only if g(x) = 0.

Proof
Since @ € Q, we have
(@ — Pa(x —nVf(x),z —nVf(x) - Pa(x—nVf(z)) <0,
which gives that
(ng(x),ng(x) —nVf(x)) =n*(g(x), g(x) - Vf(x)) <0.
Thus,

(Vi(), g(x)) > (g(), g(z)).

So we know that —g(z) is a desceding direction. Now we show that if g(x) = 0
then « is a minimum point.
Lemma

x* is a minimum point of f over (, iff g(x) = 0, namely,
x* = Po(x* —nVf(z*)).

Proof
Applying the above lemma, we have #* = Pqo(x* — V f(x*)) if and only if
(" —nVf(x*)—ax*,z—2*) <0
for all z € Q, which is further equivalent to
(Vf(x*),z—x*) > 0.

We conclude this lemma by the first-order optimality conditions of convex

functions.



Hence, in the projected gradient descent, we can stop when g(x;) is small, or
equivalently when @, — @ is small.

17.2 Examples of projection operator

Projected gradient descent is useful when the projection operator can be computed
efficiently. Here we give some examples.

Example 1 (Box constraints)
Q={z|ai<zi<bj, i=1,---,n}

N
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It is easy to see that

a; Yi < a;
[Pa(y)]; = min {b;, max{a;,yi}} = qyi  ai <yi <bi
b; y; > b;

Example 2 (L? constraints, ridge regression)

Q={z| [zl <t}



The projection operator Pgq(y) is to compute

min |z —y|*
subject to  ||z3 < 2

By KKT condition, there exists p > 0 such that
2(z —y)+2ux =0 and pu(lz*—1t)=0

Then we have y = (1 + ).
Hence, Pqo(y) = min {1’ Tl } o

Example 3 (L' constraints, LASSO)

Q={o: ol <t}



NV

Unfortunately, there is no closed form for the projection operator Pgq(y). But
we can compute it efficiently.

By symmetry, we only need to consider the case where y; > 0 for all i. Now
Pa(y) is equivalent to the following optimization problem:

min |z — y|*
subject to Z T, <t
i
x; > 0,V1.
By KKT condition, assume there exist KKT multipliers uq, - - -, u,, such that

(2(xi — yi) + po — pi = 0, Vi

Mo(zwi —t)=0

L pizi =0
pi >0

\inét,wizo

Case 1. ||y||; <t, then pg = p; = 0. Hence z = y.

Case 2. ||y||; > ¢, then

D22(mi — yi) + po — p1 = 2D — Do yi) +nuo — D py = 0, hence
to > 0. Since po(> ) x; —t) = 0, we have Y z; =t.

If u; =0, by 2(z; — y;) + po — p; = 0, we have z; = y; — %,uo.



If u; > 0, by p;z; = 0, we have z; = 0.
Now we have

1 " >1
T; = Yi— 5 Ho 1Y = 5 Ho

0 otherwise

and > x; = t.
We may use the binary search to find po, where the lower bound is 0 and
the upper bound is max y;.

17.3 Comparison with proximal gradient descent

To analyze the convergence of the projected gradient descent, we show that it is a
special case of the proximal gradient descent.

Let I be the indicator function of 2, defined by

wo-{l 238

Clearly I, is a convex function if and only if € is a convex set.

Then we can show that the proximal operator for I is simply the projection onto
Q:

1
proxy, (y) = argmin ||z — y||? + In(2)

- 2
— argmin | - |
zc()
= Pa(y) .

Since

migzl f(z) <= min f(z)+ Ioz,
S T

and for any n > 0,
epi1 = Po(ey —nVf(xr)) = proxy, (er — n'V f(2r)) = prox,, (zr —nVf(zk)),

we find that the projected gradient descent for min,cq f(z) is the same as
proximal gradient descent for min, f(x) + Io(x).
By extending the results on of to



o(x) = f(x) + In(x) : R® — R U {400}, the convergence analysis for proximal
gradient descent applies also to projected gradient descent.

Theorem

Let 2 be a nonempty convex set, and f be an L-smooth convex function over
Q. Suppose x* is a minimum of f over (2. Then the sequence {zx;} produced
by projected gradient descent with constant step size n € (0,1/L] satisfies

f(®ri1) < f(xr) and

|+ — ao]|?

flan) ~ flat) < 2

Furthermore, if f is also u-strongly convex, then

ki1 — 2> < (1 — pnm)®(l2* — =0



