
Recall the gradient descent method, where we optimize

~
f(x) = f(xk) + ⟨∇f(xk), x − xk⟩+

1

2η
∥x − xk∥2

and let xk+1 ← arg min
~
f(x). A natural question is, can we use other functions

instead of quadratic functions to approximate f(x)? Clearly, we hope the

approximate function is easy to optimize, and somehow adapt the “geometry” of

the problem.

The mirror descent framework allows us to do precisely this. Specifically, given an

objective function f, we assume that there exists a convex function g to

approximate f. Then we use the Bregman divergence with respect to g to replace

the squared Euclidean norm in 
~
f and still let xk+1 ← arg min

~
f(x), where the

Bregman divergence is defined by

Dg(x, y) = g(x) − g(y) − ⟨∇g(y), x − y⟩

and thus 
~
f can be expressed by

~
f(x) = f(xk) + ⟨∇f(xk), x − xk⟩+

1

η
Dg(x, xk) .

Lecture 20. Bregman Divergence and Mirror

Descent

20.1 Mirror descent: the proximal point view



Dropping the constant terms (that only depends on xk but not on x), the update

step of the mirror descent is given by

xk+1 = arg min
x

{⟨∇f(xk), x⟩+
1

η
Dg(x, xk)} ,

or equivalently,

xk+1 = arg min
x

{η ⟨∇f(xk), x⟩+ Dg(x, xk)} .

We now introduce more on Bregman divergence.

Here are some examples.

Remark

What is the “right” choice of g to minimize the function f? A little thought

shows that the “best” g should equal f , because adding Df(x, xk) to the linear

approximation of f at xk gives us back exactly f. Of course, the update now

requires us to minimize f(x), which is the original problem. So we should

choose a function g that is somehow “similar” to f, and make the update step

tractable.

Bregman divergence

Definition (Bregman divergence)

Let g : Rn → R be a continuously differentiable and strictly convex function.

Then the Bregman divergence from y to x with respect to function g is defined

by

Dg(x, y) = g(x) − g(y) − ⟨∇g(y), x − y⟩ .

Example

1. Euclidean distance. Let g(x) = 1
2 ∥x∥2

2. Then the Bregman divergence with

respect to g is

Dg(x, y) =
1

2
∥x∥2

2 −
1

2
∥y∥2

2 − ⟨y, x − y⟩ =
1

2
∥x − y∥2

2 .



Since g is a strictly convex function, for any fixed y, we know that Dg(x, y) is also a

(strictly) convex function in the first argument x. But it is not convex in the second

argument y in general.

Consider a well-known puzzle: given k points x1, … , xk, the goal is to find a point

y to minimize the total (squared) distances from y to x1, … , xk. A natural idea is to

choose the mean of x1, … , xk. For example, in a triangle, the centroid is the point

that minimizes the sum of the squared distances of a point from the three vertices.

The Bregman divergence encodes a kind of (squared) distances that the mean of

distribution works.

2. Negative entropy. Let

Δn−1 ≜ {x ∈ Rn ∣ ∑n
i=1 xi = 1 and xi > 0 for all i = 1, … , n} be the

(open) standard (n − 1)-simplex, and g(x) : Δn−1 → R = ∑n
i=1 xi log xi

be the negative entropy function over Δn−1. Then the Bregman

divergence with respect to g is

This is called the relative entropy, or Kullback-Leibler divergence (KL

divergence) between probability distribution x and y, measuring the

expected number of extra bits required to code samples from distribution 

x using a code optimized for y rather than the code optimized for x.

Dg(x, y) = g(x) − g(y) − ⟨∇g(y), x − y⟩

=
n

∑
i=1

xi log xi −
n

∑
i=1

yi log yi −
n

∑
i=1

(1 + log yi)(xi − yi)

=
n

∑
i=1

xi(log xi − log yi) −
n

∑
i=1

(xi − yi)

=
n

∑
i=1

xi log
xi

yi

.

Remark

It is clear that Dg(x, x) = 0 for all x ∈ Rn. Since g is strictly convex, by the first

order condition for convexity, we know that Dg(x, y) > 0 if x ≠ y.

Furthermore, if g is μ-strongly convex, then Dg(x, y) ≥ μ

2 ∥x − y∥2
2 by

definition. So the Bregman divergence somehow measures the (squared)

distance from y to x. But we should note that in general the Bregman

divergence is NOT symmetric. For example, see KL divergence.



Perhaps a surprising result is that Bregman divergence is an exhaustive notion for

such (squared) distances. In other words, if a kind of distance satisfies the above

lemma, then it must be a Bregman divergence. See, e.g., 1 or 2 for proof details.

The Bregman divergence is also a right way to describe the (squared) distance

from a point to a convex set. Recall that, in Lecture 4, we show the following

lemma, which means ∠xyz is obtuse.

Lemma

Suppose x is a random variable over an open set with distribution μ. Then

min
y∈S

Ex∼μ[Dg(x, y)]

is optimized at y∗ = x̄ ≜ Ex∼μ[x] = ∫
x∈S

x dμ.

Proof

For any y ∈ S, we have

This must be nonnegative, and equal 0 if and only if y = x̄.

 Ex∼μ[Dg(x, y)] − Ex∼μ[Dg(x, x̄)]

= Ex∼μ[(g(x) − g(y) − ⟨∇g(y), x − y⟩) − (g(x) − g(x̄) − ⟨∇g(x̄), x − x̄⟩)]

= g(x̄) − g(y) + ⟨∇g(y), y⟩− ⟨∇g(x̄), x̄⟩+ Ex∼μ[−⟨∇g(y), x⟩+ ⟨∇g(x̄), x⟩]

= g(x̄) − g(y) + ⟨∇g(y), y⟩− ⟨∇g(x̄), x̄⟩+ ⟨∇g(x̄) − ∇g(y), E[x]⟩
= g(x̄) − g(y) + ⟨∇g(y), y − x̄⟩

= Dg(x̄, y) .

Lemma

Let C be a nonempty, closed and convex set. Given x and y = PC(x), for any

z ∈ C, it holds that ⟨x − y, z − y⟩ ≤ 0.



We now establish a similar result using Bregman divergence. If x∗ is the projection

of x0 onto a convex set C, namely,

x
∗ = arg min

x∈C

Dg(x, x0) .

Then for all y ∈ C, it holds that

In Euclidean case, it also means that the angle ∠yx∗x0 is obtuse, by the generalized

Pythagorean theorem (law of cosines) c2 = a2 + b2 − 2ab cos γ. The proof is a simple

application of the law of cosines for Bregman divergence. Since

x
∗ = arg min

x∈C

Dg(x, x0) ,

we have

⟨∇Dg(x, x0)
x=x∗ , y − x∗⟩ ≥ 0

for all y ∈ C. Note that ∇Dg(x, x0) = ∇g(x) − ∇g(x0). So the above inequality is

equivalent to

⟨∇g(x∗) − ∇g(x0), y − x∗⟩ ≥ 0 .

Then the proof concludes with the following lemma (by setting x = y, y = x∗, and

z = x0).

Dg(y, x0) ≥ Dg(y, x∗) + Dg(x∗, x0) . (♠)∣Lemma (Law of cosines for Bregman divergence)

Dg(x, y) + Dg(y, z) = g(x) − g(y) − ⟨∇g(y), x − y⟩+ g(y) − g(z) − ⟨∇g(z), y − z

= g(x) − g(z) − ⟨∇g(z), x − z⟩− ⟨∇g(z), y − x⟩− ⟨∇g(y), x

= Dg(x, z) + ⟨∇g(z) − ∇g(y), x − y⟩



A different view of the mirror descent framework is the one originally presented by

Arkadi Nemirovski and David Yudin. Recall that in the gradient descent, we update

the iterate by xk+1 = xk − η ∇f(xk). However, the gradient was actually defined as

a linear functional on Rn (a linear map from the vector space Rn into its underlying

field R). Hence, ∇f(x) naturally belongs to the dual space of Rn. The fact that we

represent this functional as a vector is a matter of convenience, and highly depends

on the choice of coordinates. In fact, that’s why the gradient descent is not affinely

invariant.

In the vanilla gradient descent method, we only consider Rn with L2-norm, and

this normed space is self-dual, so it is perhaps reasonable to combine points in the

primal space (the iterates xk) with objects in the dual space (the gradients f(xk)).

But when working with other normed spaces, adding a linear map ∇f(xk) to a

vector xk might not be the right thing to do.

Instead, Nemirovski and Yudin propose the following:

How do we choose these mirror maps? Again, this comes down to understanding

the geometry of the problem, the kinds of functions and feasible sets Ω we care

about. We usually choose a proper differentiable and strongly convex function

g(x) : Rn → R, and define the mirror map by ∇g : Rn → Rn, that is,

x ↦ ∇g(x) .

Since g is differentiable and strongly convex, its gradient is “monotone”, and thus

the inverse mirror map exists. We can use these maps in the Nemirovski-Yudin

process, namely, we set

20.2 Mirror descent: the mirror map view

1. we map our current point xk to a point yk in the dual space using a mirror

map.

2. Next, we take the gradient step yk+1 ← yk − η ∇f(xk).

3. We map yk+1 back to a point in the primal space x′
k+1 using the inverse of the

mirror map from Step 1.

4. If we are in the constrained case, this point x′
k+1 might not be in the convex

feasible region Ω, so we still need to project x′
k+1 back to a close point xk+1 in

Ω.



yk = ∇g(xk) and xk+1 = ∇g−1(yk+1) .

The name of the process comes from thinking of the dual space as being a mirror

image of the primal space.

But why this view and the proximal point view give the same algorithm? We

consider the update rule in the proximal point view

xk+1 = arg min
x

{⟨∇f(xk), x⟩+
1

η
Dg(x, xk)} ,

and consider the gradient of Bregman divergence

∇Dg(x, xk) = ∇g(x) − ∇g(xk) .

Since x ↦ ⟨∇f(xk), x⟩+ 1
η

Dg(x, xk) is a convex function, we obtain that

∇(⟨∇f(xk), x⟩+
1

η
Dg(x, xk))

x=xk+1
= 0 ,

which is

∇f(xk) +
1

η
(∇g(xk+1) − ∇g(xk)) = 0 .

Rearranging terms it gives a step of update in the dual space

∇g(xk+1) = ∇g(xk) − η ∇f(xk) .∣



Given any vector space V  over a field F, the (algebraic) dual space V ∗ is defined as

the set of all linear map φ : V → F (linear functional). Since linear maps are vector

space homomorphisms, the dual space may be denoted hom(V , F). The dual space 

V ∗ itself becomes a vector space over F when equipped with an addition and scalar

multiplication satisfying:

for all ϕ, ψ ∈ V ∗, x ∈ V , and a ∈ F.

If V  is finite-dimensional, then V ∗ has the same dimension as V . In particular, Rn

can be interpreted as the space of columns of n real numbers, its dual space is

typically written as the space of rows of n real numbers. Such a row acts on Rn as a

linear functional by ordinary matrix multiplication. This is because a functional

maps every n-vector x into a real number y. Then, seeing this functional as a

matrix M, and x as an n × 1 matrix, and y a 1 × 1 matrix (trivially, a real number)

respectively, if Mx = y, then by dimension reasons, M must be a 1 × n matrix,

that is, a row vector. So there is an isomorphism between Rn (and any finite-

dimensional vector space V ) and its dual space.

However, it is not a canonical isomorphism. Informally, an isomorphism is a map

that preserves sets and relations among elements. When this map or this

correspondence is established with no choices involved, it is called canonical

isomorphism. When we defined V ∗ from V  we did so by picking a special basis (the

dual basis), therefore the isomorphism from V  to V ∗ is not canonical. But for the

double dual V ∗∗ of a finite-dimensional vector space V  (the dual of the normed

vector space V ∗), there is a canonical isomorphism. Indeed, the following map

π : V → V ∗∗ defined as follows is a canonical isomorphism. For any v ∈ V ,

π(v) ∈ V ∗∗ is a map from V ∗ to F given by

∀ φ ∈ V ∗ : V → F , π(v)(φ) ≜ φ(v) .

Given a norm ∥ ⋅ ∥ on a vector space V , its dual norm, denoted by ∥ ⋅ ∥∗, is a

function (a norm) of a linear functional φ belonging to V ∗ defined by

∥φ∥∗ ≜ sup {|φ(v)| : v ∈ V , ∥v∥ ≤ 1} .

In particular, for Rn, a linear functional can be represented by a vector with inner

Dual space and dual norm

(φ + ψ)(x) = φ(x) + ψ(x)
(aφ)(x) = a(φ(x))



product. Thus, the dual norm is given by

∥u∥∗ = sup{⟨u, v⟩ : ∥v∥ ≤ 1} .

By Cauchy-Schwarz inequality, the dual norm of the L2-norm is again the L2-norm.

In general, the dual for the Lp-norm is the Lq-norm, where 1/p + 1/q = 1 and we

assume 1/∞ = 0 for convenience.

Similar to the double dual space, for a finite-dimensional space with norm ∥ ⋅ ∥, we

have (∥ ⋅ ∥∗)∗ = ∥ ⋅ ∥.

We now focus on how to implement mirror descent. We need to show that the

inverse gradient (∇g)−1 can be computed efficiently.

For any convex function f with domain D ⊆ Rn, the gradient of f at some point x

is a vector (actually a covector) v satisfying

f(y) ≥ f(x) + ⟨v, y − x⟩

for all y ∈ D. More generally, the subgradients of f is the set of all such vectors,

namely,

∂f(x) = {v ∈ Rn ∣ f(y) ≥ f(x) + ⟨v, y − x⟩ for all y} .

Rearranging terms we obtain

⟨v, y⟩− f(y) ≤ ⟨v, x⟩− f(x)

for all y ∈ D. Note that x ∈ D. It gives that

max
y∈D

⟨v, y⟩− f(y) = ⟨v, x⟩− f(x) .

Thus we can rewrite the subgradients as

∂f(x) = {v ∈ Rn ∣ max
y∈D

{⟨v, y⟩− f(y)} = ⟨v, x⟩− f(x)} .

We can now introduce the convex conjugate of a function.

20.3 Convex conjugate

Definition (Convex conjugate)

Let f : D ⊆ Rn → R ∪ {∞} be a convex function. Its convex conjugate is the

function f ∗(v) : Rn → R ∪ {∞} given by



Note that for any fixed y, ⟨v, y⟩− f(y) is an affine function of v. Thus f ∗(v) is a

convex function of v (by the convexity of pointwise supremum).

In fact, f ∗ is defined on the dual space of Rn. Roughly speaking, for each v ∈ Rn,

one can think of it as the hyperplane {(x, z)T ∈ Rn+1 ∣ z = ⟨v, x⟩} with the normal

vector (−v, 1)T. Then f ∗(v) gives the longest (directed) vertical distance between

the hyperplane and the graph of f(x). In other words, f ∗(v) is how far down you

can translate the hyperplane so that the entire hyperplane is just below the graph

of f(x), namely, becomes the supporting hyperplane of the epigraph. So this

definition can be interpreted as an encoding of the convex hull of the function's

epigraph in terms of its supporting hyperplanes.

f ∗(v) ≜ sup
y∈D

⟨v, y⟩− f(y) .

Example

We now see some examples.

1. Let f(x) = ⟨a, x⟩− b be an affine function. Its convex conjugate is

f ∗(v) = {b , v = a

+∞ , v ≠ a .

2. Let f(x) = 1
2 ∥x∥2 be a quadratic function. Its convex conjugate is

f ∗(v) = sup
x∈Rn

{⟨v, x⟩−
1

2
∥x∥2} =

1

2
∥x∥2 .



It is easy to see that v ∈ ∂f(x) (in particular, v = ∇f(x) if f is differentiable at x) if

and only if f ∗(v) = ⟨v, x⟩− f(x). Otherwise (v ≠ ∇f(x)) we have

f ∗(v) > ⟨v, x⟩− f(x), which gives the following Fenchel’s inequality.

It is still not easy to compute (∇f)−1 by Fenchel’s inequality. We need the

following direct corollary.

Proving the theorem in full generality (the domain of f is given by D ⊆ Rn)

requires a bit of care. But it is relatively straightforward to show that the result

holds on the interior of D. For simplicity, we only consider the case where D = Rn.

The proof consists of two parts: (1). proving that f(x) ≥ f ∗∗(x) for all x; (2).

proving that f(x) ≤ f ∗∗(x).

3. Let f(x) = x log x. Its convex conjugate is

f ∗(v) = sup
x∈R

vx − x log x = vev−1 − f(ev−1) = ev−1 .

4. Let f(x) = ex. It convex conjugate is

f ∗(v) = sup
x∈R

vx − ex =
⎧⎪⎨⎪⎩v log v − v , v > 0

0 , v = 0
+∞ , v < 0 .

Theorem (Fenchel’s inequality)

For all x ∈ D and v ∈ Rn, we have

f(x) + f ∗(v) ≥ ⟨v, x⟩ .

The equality holds if and only if v = ∇f(x) (or v ∈ ∂f(x) in general).

Theorem (Fenchel-Moreau theorem)

For any convex function f : Rn → R, we have f = f ∗∗.

Proof



Now we can show that

By definition we have

f ∗∗(x) = sup
v∈Rn

⟨v, x⟩− f ∗(v) .

Note that −f ∗(v) = infy∈Rn f(y) − ⟨v, y⟩. In particular,

−f ∗(v) ≤ f(x) − ⟨v, x⟩ .

Thus, f ∗∗(x) ≤ supv∈Rn {⟨v, x⟩+ f(x) − ⟨v, x⟩} = f(x).

For any x ∈ Rn, let u = ∇f(x) (or u ∈ ∂f(x) for general non-differentiable f).

Then by Fenchel’s inequality we have

⟨u, x⟩ = f(x) + f ∗(u) .

So

f ∗∗(x) = sup
v∈Rn

⟨v, x⟩− f ∗(v) ≥ ⟨u, x⟩− f ∗(u) = f(x) .

Corollary

If f : Rn → R is strictly convex, then

(∇f)−1 ≡ ∇f ∗ .

More generally, if the domain of f is D ⊆ Rn, then

(x ∈ D, v ∈ ∂f(x)) ⟺ x ∈ ∂f ∗(v) ∩ D .

Proof

Let v = ∇f(x). By Fenchel’s inequality we have

f(x) + f ∗(v) = ⟨v, x⟩ .

By Fenchel-Moreau theorem, it is equivalent to

f ∗(v) + f ∗∗(x) = ⟨v, x⟩ ,

which gives x = ∇f ∗(v) if we apply Fenchel’s inequality again.



Now we put convex conjugate together with Bregman divergence. Let g : Rn → R

be a differentiable and strictly convex function. Then g∗ : Rn → R is also

differentiable and strictly convex. The Bregman divergence with respect to g and g∗

are

Dg(x, y) = g(x) − g(y) − ⟨∇g(y), x − y⟩ ,

and

Dg∗(u, v) = g∗(u) − g∗(v) − ⟨∇g∗(v), u − v⟩ .

Let u = ∇g(x) and v = ∇g(y) in the Bregman divergence with respect to g∗. Then

we have

g(x) + g∗(u) = ⟨u, x⟩ and g(y) + g∗(v) = ⟨v, y⟩ .

Thus Bg∗(u, v) simplifies to

Dg∗(u, v) = ⟨u, x⟩− g(x) − ⟨v, y⟩+ g(y) − ⟨y, u − v⟩ = g(y) − g(x) + ⟨u, x − y⟩ ,

which gives the following result.

We now consider the convergence analysis of mirror descent. Similar to the

analysis for gradient descent, we hope to establish the connection between f(xk)

and f(x∗) in terms of Bregman divergence. The basic ingredient is equation (♠). In

Example

Consider f(x) = x log x on (0, 1). We know that f ∗(v) = ev−1. If we take

v = ∇f(x) = log x + 1, then

x = ev−1 = ∇f ∗(v) .

Theorem

Let g : Rn → R be a differentiable and strictly convex function. Then for any

x, y ∈ Rn it holds that

Dg∗(∇g(x), ∇g(y)) = Dg(y, x) .

20.4 Convergence of mirror descent



general, given any convex function L(x), let x∗ be the following minimizer

x∗ = arg min
x∈C

{L(x) + Dg(x, x0)} .

Then for all y ∈ C, it holds that

L(y) + Dg(y, x0) ≥ L(x
∗) + Dg(y, x

∗) + Dg(x
∗, x0) .

Recall the mirror descent update

xk+1 = arg min
x

{η ⟨∇f(xk), x⟩+ Dg(x, xk)} .

It gives that for all y,

η ⟨∇f(xk), y⟩+ Dg(y, xk) ≥ η ⟨∇f(xk), xk+1⟩+ Dg(y, xk+1) + Dg(xk+1, xk) .

Rearranging terms we obtain that

η ⟨∇f(xk), y − xk⟩ ≥ η ⟨∇f(xk), xk+1 − xk⟩+ Dg(y, xk+1) + Dg(xk+1, xk) − Dg(y, xk) .

Note that f(y) ≥ f(xk) + ⟨∇f(xk), y − xk⟩, and

Hence we have

f(y) − f(xk) ≥
1

η
(Dg(y, xk+1) − Dg(xk, xk+1) − Dg(y, xk))

for all y. Now we can give the following lemma.

Dg(xk, xk+1) + Dg(xk+1, xk) = −⟨∇g(xk+1), xk − xk+1⟩− ⟨∇g(xk), xk+1 − xk⟩

= ⟨∇g(xk+1) − ∇g(xk), xk+1 − xk⟩

= −η ⟨∇f(xk), xk+1 − xk⟩ .

Theorem

Let f be a convex and L-Lipschitz function with respect to some norm ∥ ⋅ ∥,

and g be a σ-strongly convex function with respect to the same norm. Suppose

Dg(x∗, x0) can be bounded by R. Then by selecting

η =
σ

L
√ 2R

σT
,

it holds that

min
k=0,…,T−1

f(xk) ≤ f(x
∗) + L√ 2R

σT
.



In other words, if we would like to obtain an (approximate) answer that is less

than f(x∗) + ε, it is sufficient to run the mirror descent O(L2R/ε2) steps.

Note that this results holds even for non-differentiable f. We only need to replace

∇f(xk) by some subgradient v ∈ ∂f(x) in the previous analysis.

To see the advantage of mirror descent, suppose f is L-Lipschitz with respect to

some norm (which means the gradient of f can be bounded by L with respect to its

Proof

By previous analysis we have

f(x
∗) − f(xk) ≥

1

η
(Dg(x

∗, xk+1) − Dg(xk, xk+1) − Dg(x
∗, xk)) .

Summing over both sides from 0 to T − 1, it implies that

T−1

∑
k=0

f(x) ≤ Tf(x
∗) +

1

η
(Dg(x

∗, x0) − Dg(x
∗, xT ) +

T−1

∑
k=0

Dg(xk, xk+1)) .

The remaining part is to bound ∑ Dg(xk, xk+1).

We assume f is differentiable for convenience. Then f is L-Lipschitz with

respect to some norm ∥ ⋅ ∥ if and only if its gradients are bounded by L with

respect to the dual norm ∥ ⋅ ∥∗. Otherwise there exists x, v ∈ Rn such that

⟨∇f(x), v⟩ > L. So f is not L-Lipschitz for x and x + δv with sufficiently small

δ > 0.

Since g is σ-strongly convex with respect to the same norm ∥ ⋅ ∥, we have

Thus we obtain that

Dg(xk, xk+1) = η ⟨∇f(xk), xk − xk+1⟩− Dg(xk+1, xk)

≤ ηL∥xk − xk+1∥ −
σ

2
∥xk+1 − xk∥2

≤
η2L2

2σ
.

1

T

T−1

∑
k=0

f(xk) ≤ f(x∗) +
Dg(x∗, x0)

ηT
+

ηL2

2σ

≤ f(x∗) +
R

ηT
+

ηL2

2σ

= f(x
∗) + L√ 2R

σT
.



dual norm), and g is σ-strongly convex with respect to the same norm. Then f is

L√2/σ-Lipschitz with respect to the Bregman divergence. We can choose a

particular norm and a particular Bregman divergence to capture the geometry of

the problem.

We now give an example. Suppose Δn−1 is the (open) n-dimensional probability

simplex, and we use KL-divergence for which g is 1-strongly convex with respect to

the L1 norm. The dual norm of the L1-norm is the L∞-norm. Then we can bound

Dg(x∗, x0) by using KL�divergence, and it is at most log n if we set x0 = 1
n
1 and x∗

lies in the probability simplex. Suppose the objective function f is L-Lipschitz with

respect to L1-norm (and thus is L√n-Lipschitz with respect to L2-norm). So the

mirror descent requires O(L2 log n) time to approximate x∗, which is smaller than

that of subgradient descent by an order of O(L2n). Note the saving of n term is

from the norm of gradient by replacing the L2-norm by the L∞-norm (decreasing

by an order of √n), at a slight cost of increasing Dg(x∗, x0) by log n.

Furthermore, if f is L-smooth with respect to some norm ∥ ⋅ ∥ (the gradient of f is

L-Lipschitz continuous), namely,

∥∇f(x) − ∇f(y)∥∗ ≤ L∥x − y∥ ,

then the convergence rate can be better.

This result gives O(1/T ) convergence rate to obtain an (approximate) optimal

value.

Theorem

Let f be a convex and L-smooth function with respect to some norm ∥ ⋅ ∥, and

g be a σ-strongly convex function with respect to the same norm. Suppose

Dg(x∗, x0) can be bounded by R. Then by selecting

η =
σ

L
,

it holds that

min
k=0,…,T−1

f(xk) ≤ f(x∗) +
LR

σT
.

Proof
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We start again from

Now we bound Dg(xk, xk+1) by |f(xk) − f(xk+1)|. Since f is L-smooth and g is

σ-strongly convex, we have

f(xk+1) − f(xk) ≤ ⟨∇f(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2

and

Dg(xk+1, xk) ≥
σ

2
∥xk+1 − xk∥2 .

Thus it follows that

by selecting η = σ/L. Plugging in inequality (⋆) it gives that

f(x∗) − f(xk+1) ≥
1

η
(Dg(x∗, xk+1) − Dg(x∗, xk)) .

The remaining part is the same as the previous proof. Summing over both

sides from 0 to T − 1, we obtain that

1

T

T

∑
k=1

f(xk) ≤ f(x
∗) +

Dg(x, x0)

η T
≤ f(x

∗) +
LR

σT
.

f(x∗) − f(xk) ≥
1

η
(Dg(x∗, xk+1) − Dg(xk, xk+1) − Dg(x∗, xk)) . (⋆)

Dg(xk, xk+1) = η ⟨∇f(xk), xk − xk+1⟩− Dg(xk+1, xk)

≤ η(f(xk) − f(xk+1) +
L

2
∥xk+1 − xk∥2) −

σ

2
∥xk+1 − xk∥2

= η (f(xk) − f(xk+1))
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