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Abstract. At present, face 3D reconstruction has broad application
prospects in various fields, but the research on it is still in the devel-
opment stage. In this paper, we hope to achieve better face 3D recon-
struction quality by combining a multi-view training framework with
face parametric model FLAME, and propose a multi-view training and
testing model MFNet (Multi-view FLAME Network). We build a self-
supervised training framework and implement constraints such as multi-
view optical flow loss function and face landmark loss, and finally obtain a
complete MFNet. We propose innovative implementations of multi-view
optical flow loss and the covisible mask. We test our model on AFLW
and facescape datasets and also take pictures of our faces to reconstruct
3D faces while simulating actual scenarios as much as possible, which
achieves good results. Our work mainly addresses the problem of com-
bining parametric models of faces with multi-view face 3D reconstruction
and explores the implementation of a FLAME-based multi-view training
and testing framework for contributing to the field of face 3D reconstruc-
tion.
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1 Introduction

Face 3D reconstruction [13] mainly focuses on the reconstruction of human facial
regions, and broadly speaking, also includes hair, ear, neck, and other regions.
The human face is a special 3D object that has not only more complex shape
and texture features, but also strong prior constraints. This poses a great chal-
lenge to face 3D reconstruction on one hand, and on the other hand, it also
provides feasible technical approaches to reconstruct the face 3D structure from
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2D information, and the face parametric model is one of them. The face para-
metric model is a statistical model based on a large number of faces, and its
core idea is that faces can be matched one-to-one in the 3D feature space and
can be obtained by weighted linear summation of orthogonal bases for a large
number of other faces. The most widely used model is 3DMM [1,2], but it has
two core problems: (1) 3DMM is in a low-dimensional space and thus the face
detail characterization is weak; (2) 3DMM only reconstruct the front face region
without neck or hindbrain. Therefore, we choose FLAME [11], which has a bet-
ter characterization of details and more complete reconstruction. FLAME has
three parameters: shape, pose, and expression, which can more accurately clas-
sify faces into more dimensions, and the face reconstructed by FLAME includes
the whole head. However, there is not much research work on FLAME so far, and
there is a gap in the field of multi-view training using FLAME. Our work fills
this gap and makes an exploratory contribution to FLAME-based multi-view
training.

In the past decade, deep learning technologies have become a dominant trend
in face 3D reconstruction. Some works [7,15] use neural networks to regress
end-to-end to compute the inputs needed for face parameterization models, but
are limited to single-view, while our proposed MFNet can utilize features from
multiple views and fuse them to obtain more complete face information. In this
paper, we use FLAME as a powerful tool to reconstruct fine-grained 3D face
models with low cost and only 2D RGB images.

Our main contributions are listed as follows:

– We innovatively combine multi-view training with FLAME, propose a multi-
view self-supervised framework, and implement a complete multi-view train-
ing and testing process. Our proposed model MFNet achieves good results
on both test datasets and actual captured images.

– We propose a multi-view optical flow loss for our multi-view training frame-
work and propose a novel implementation of the technical details such as
covisible mask.

2 Related Work

2.1 Parametric model

In 1999, Blanz and Vetter et al. [1,2] proposed the 3D Morphable Model (3DMM)
for the human face, which is the most widely used 3D face reconstruction model.
Subsequent studies related to 3DMM have been published in the next decade,
either by adding coefficients to the original model, such as Pascal Paysan et
al. [9] updated the expression coefficients of the 3DMM model for BFM (Basel
Face Model) model in 2017, or build larger datasets, such as James Booth et
al. [4] built a dataset of 9663 faces, or propose better ways to optimize the so-
lution coefficients, such as adding deep learning ideas to the coefficient solution



in recent years to achieve better results [3,19], or make nonlinear adjustments
to the model, such as the nonlinear 3DMM model proposed by Luan Tran et al.
[18], but none of them have departed from the original framework of 3DMM.
This also leads to the fact that these changes do not solve the two core prob-
lems of 3DMM mentioned above. Therefore, we choose FLAME[11] as our face
parametric model.

FLAME was proposed by Li Tianye et al., referring to the expression of the body
model SMPL[12], combining linear blend skinning (LBS) and the corresponding
corrected blendshape. Not many researches have been done on FLAME[7,15],
and they are all limited to single-view. We want to utilize the features and data
from multiple perspectives, so we propose a self-supervised multi-view training
framework and achieve better reconstruction results.

2.2 Multi-view reconstruction

There are many works based on face parametric models, but very few of them[16,21]
are trained using multi-view data, and the only ones are based on 3DMM.
MVFNet[21] is the first work that proposed the idea of multi-view paramet-
ric model training, but it is based on 3DMM and the implementation is very
rough, which leads to poor results. MGCNet[16] makes some improvements on
its basis, proposing novel multi-view loss functions, using multi-view training,
but only using a single image for testing. It does improve the quality of the face
reconstruction, but the reconstructed faces were still rough and incomplete. The
field of FLAME-based multi-view training remains a gap. To the best of our
knowledge, MFNet is the first work on 3D face reconstruction using multi-view
training and testing framework based on the face parametric model FLAME.

3 Method

3.1 Overall architecture

The overall architecture for our proposed is show in Figure 1. Resnet is a highly
mature technology that has performed well in numerous image recognition and
classification. So we extract features from each input image by a shared weight
Resnet50, and then concatenate the features together and put them into a fully
connected layer to regress a set of flame parameters for the person. Also, we
separate a pose and texture feature from Resnet50 for each perspective for sub-
sequent reconstruction work and calculate loss.

3.2 FLAME

After extracting features from the multi view images in the input batch through
Resnet50 and converting them into fully connected layers, we can obtain the
desired FLAME model input vectors β⃗, pose θ⃗, expression ψ⃗. Next, the FLAME
model acts as a decoder to convert these hidden layer vectors into three-dimensional



Fig. 1. Architecture of MFNet.

facial information.These three-dimensional information mainly consists of two
parts, the first is the information of each vertex, such as coordinate TP , Normal
vector Nuv and faces F , and the second is landmark coordinates of the face. The
equation of the FLAME model is as follows:

M(β⃗, θ⃗, ψ⃗) =W (TP (β⃗, θ⃗, ψ⃗),J(β⃗), θ⃗,W) (1)

3.3 Feature extraction

We use part of DECA[7] as the pretrained model of Resnet50 for better feature
extractoin and finetune it. In order to obtain better feature information, we
use a fully connected layer to fuse the features extracted by Resnet50 from
three perspectives together for consideration, thereby obtaining a more accurate
model.

3.4 Differentiable renderer

After getting the 3D information of the face through FLAME model, we need to
use 3D rendering to get the 2D image.Our shadow facial image B(alpha, l,NUV )
is calculated based on the following equation:

B(α, l,Nuv)i,j = A(α)i,j ⊙
9∑

k=1

lkHk(Ni,j) (2)

In the equation 2, A(α) represents UV albedo map, NUV is the normal vector of
the face surface output by FLAME. Bi,j ∈ R3, Ai,j ∈ R3, Ni,j ∈ R3 represents



the various attributes of pixel (i, j) in the UV coordinate system. ⊙ represents
Hadamard product.

In addition, we also need to extract texture from the original input image and
obtain vertex coordinates TP and faces F to calculate the correspondence be-
tween points in the 3D mesh and the 2D texture map UV . Then, the texture map
I ′uv is obtained from the original input image by using this correspondence UV ,
and the missing part in the middle is supplemented by bilinear interpolation.
We extract the texture of multi views and perform simple fusion to obtain I ′uv,
which contains information from multi views. Finally, we use facial mask Mface

to get UV texture map Iuv:

Iuv =Mface ⊙ I ′uv (3)

Given the geometric parameters (β⃗, θ⃗, ψ⃗), albedo α, lighting condition l, and
camera parameter c of the mesh, we can render different two-dimensional face
images Ir from various perspectives:

Ir = R(M,B, c, Iuv) (4)

3.5 Loss function

Multiview optical loss The optical flow loss[22] calculates the optical flow
between the rendered facial image and the original image. The design of the
optical flow loss is based on an intuitive fact. That is, the coordinates of a point
on a correct 3D model projected onto a 2D plane should be the same as the
original image. We hope that these two points can coincide, so the distance
should be as close to zero as possible. And that’s exactly what the optical flow
loss does(Figure 2).

Fig. 2. Optical flow estimation. From left to right are original image, rendered image
and the optical flow. We use RAFT[17] to extract optical flow.

However, due to the occlusion of the face, the reconstruction of the invisible
part of the image view becomes very blurry. So we proposed an implementation
method for a covisible mask. It can mask the blurry parts, so that these parts
do not participate in the calculation of the optical flow loss. For the input face
image, we first generate a projected two-dimensional face mask MF according
to the position of the three-dimensional face model. Then we use face landmarks



to roughly extract the parts that can be seen from two viewpoints and get MB.
The bounding box MB composed of keypoints and the face mask MF can be
combined to obtain a better covisible mask MC:

MCa,b =MBa,b ⊙MFb (5)

Here we show the usage of the covisible mask(Fig. 3). In order to reduce the
estimation error of the optical flow for the uninterested region, we also mask the
complex regions such as the mouth, so that the covisible mask basically achieves
our expected goal.

Fig. 3. Covisible mask. From left to right are original images, rendered images and
covisible masked images.

Given the image Ib and the rendered image Ia→b, the optical flow estimator
F, the covisible mask MCa,b, we can calculate the multi-view optical flow loss
function Lmultiop:

Lmultiop(Ib, Ia→b) = |F(MCa,b ⊙ Ib,MCa,b ⊙ Ia→b)| (6)

Single View Keypoint Loss We project the 3D face keypoints to the 2D
image and re-projecte them back to compared them. We hope that this can
provide stronger face constraints for the model and prevent it from ignoring the
constraints of the face itself:

Lsinglelmk(ka, ka→a) =
∑

i∈MFa

∥ka(i)− ka→a(i)∥1 (7)

Eye and lip keypoint loss Since the eye and lip area of the face is relatively
complex, we implemented an eye keypoint loss and a lip keypoint loss to achieve
better face reconstruction results. We compute the relative offset between the
keypoints ka(i) and ka(j) of the upper and lower eyelids and lips on a certain
view a, and measure the difference between their offset and the offset between
the corresponding re-projected keypoints ka→a(i) and ka→a(j) of the 3D model:



Leye(ka, ka→a) =∑
(i,j)∈Ea

∥ka(i)− ka(j)− (ka→a(i)− ka→a(j))∥1 (8)

Llip(ka, ka→a) =∑
(i,j)∈Pa

∥ka(i)− ka(j)− (ka→a(i)− ka→a(j))∥1 (9)

Regularized loss We need to regularize some vectors to prevent overfitting,
including shape vector β⃗ regularization, expression vector ψ⃗ regularization and
albedo α regularization:

Lreg = ∥β⃗∥2 + ∥ψ⃗∥2 + ∥α∥2 (10)

Total loss The total loss function is shown below:

Ltotal = λ1Lmultiop + λ2Lsinglelmk + λ3Leye + λ4Llip + λ5Lreg (11)

4 Experiments

In this section, we first introduce our implementation details for conducting the
experiments, including the datasets and evaluation metrics(Sec. 4.1). Then we
make qualitative and quantitative comparisons to other 3D face reconstruction
methods(Sec. 4.2 and Sec. 4.3). Finally, we demonstrate the effectiveness of the
proposed method with extensive ablation studies in Sec. 4.4.

4.1 Implementation Details

Training Datasets Our training is performed on Multi-PIE dataset, which
contains over 750,000 images recorded from 337 subjects using 15 cameras in
different directions 963 under various lighting conditions. We take frontal-view
images as anchorsand randomly select side-view images (left and right) to form
a three view triplet which is the input of our model. In this way, we take 36k
training triplets.

Evaluation Datasets We mainly perform quantitative and qualitative evalu-
ations on the facescape benchmark containing in-the-wild and in-the-lab data.
14 recent methods are evaluated on the dimensions of camera pose and focal
length, which provides a comprehensive evaluation.



Hyper-parameters setting In actual training, we set the hyper-parameters
in equation (11) to λ1 = 1, λ2 = 1, λ3 = 1, λ4 = 0.5, λ5 = 1e− 04. learning rate
= 1e− 3. Train epochs on multi-PIE are 10.

4.2 Qualitative Results

We first present our reconstruction results, as shown in Figure 4. It can be seen
that MFNet’s reconstructed facial model performs well in various perspectives.

Fig. 4. MFNet reconstruction. From left to right are input images, MFNet reconstruc-
tion.

Next, we compared the reconstruction results of DECA and MFNet. We used
DECA and our model to reconstruct 2000 images from AFLW2000-3D respec-
tively. Some of them are shown in Figure 5. Through observation, it can be
found that DECA has problems in predicting facial edges in certain situations,
but MFNet can reconstruct more accurately due to the involvement of multiple
perspectives.

Fig. 5. Qualitative experiment of DECA
and MFNet.

Fig. 6. MFNet reconstruction.

We also set up three-viewed cameras on site to take images of the people around
us, obtaining multi-view images that are close to the real environment. We tested
the reconstruction effect of MFNet on these images and added texture, as shown
in the Figure 6.



Table 1. Comparison with other single-view methods.

methods
0-5 5-30 30-60 60-90

CD MNE CR CD MNE CR CD MNE CR CD MNE CR

extreme3dface[20] 5.02 0.16 0.62 5.512 0.18 0.56 7.91 0.20 0.40 25.3 0.26 0.27
PRNet[8] 2.61 0.12 0.83 3.11 0.11 0.83 4.25 0.11 0.78 3.88 0.14 0.75

Deep3DFaceRec[6] 2.30 0.07 0.83 2.50 0.07 0.83 3.56 0.08 0.77 6.81 0.14 0.62
RingNet[15] 2.40 0.08 0.99 2.99 0.09 0.99 4.78 0.10 0.98 10.7 0.18 0.97
DFDN[24] 3.67 0.09 0.87 3.27 0.09 0.86 7.29 0.12 0.84 27.4 0.30 0.57
DF2Net[24] 2.92 0.12 0.57 4.21 0.13 0.56 6.54 0.15 0.46 19.7 0.30 0.30
UDL[5] 2.27 0.09 0.69 2.59 0.09 0.68 3.45 0.10 0.64 6.32 0.17 0.49

facescape opti[23] 2.81 0.09 0.84 3.17 0.09 0.82 4.08 0.10 0.78 6.57 0.16 0.67
facescape deep[23] 2.70 0.08 0.87 3.69 0.09 0.86 4.22 0.09 0.85 9.09 0.15 0.70

MGCNet[16] 2.97 0.07 0.84 2.94 0.07 0.85 2.78 0.07 0.81 4.20 0.09 0.74
3DDFA V2[10] 2.49 0.07 0.86 2.66 0.07 0.86 3.17 0.07 0.83 3.67 0.09 0.79
SADRNet[14] 6.60 0.11 0.90 6.87 0.11 0.89 6.39 0.10 0.84 8.62 0.16 0.82

LAP[25] 4.19 0.11 0.94 4.47 0.12 0.93 6.15 0.14 0.87 13.7 0.20 0.68
DECA[7] 2.88 0.08 0.99 2.64 0.07 0.99 2.88 0.08 0.99 4.83 0.11 0.99
MFNet 3.98 0.11 0.99 4.07 0.11 0.99 3.60 0.10 0.99 5.25 0.12 0.99

4.3 Quantitative Results

At present, there are few benchmarks suitable for multi-view reconstruction test
for face parametric models. Therefore, in order to conduct a broader comparison,
we test our model on a single view setting and compare it with other algorithms.
Due to the original intention of designing MFNet for multi view input methods,
this testing method inevitably reduces the reconstruction effect of MFNet. As
shown in Table 1, MFNet can not perform best on a single-view testing, but it
has already surpassed most models.

To demonstrate the complete performance of MFNet, we also compared it with
other models on facescape-lab dataset, which is a multi-view dataset. MFNet
used inputs from three views, and others randomly selected one view as input.
As can be seen in Table 2, the performance of the complete MFNet model is
comprehensively ahead of other models..

It can be seen that on the facescape-lab dataset, when MFNet was tested with
a complete multi-view input, its various indicators showed significant improve-
ment compared to DECA and also other single-view models, indicating that our
multi-view training gives MFNet better reconstruction ability and achieves our
expected goals.

4.4 Ablation Study

In this section, we conduct an ablation study on the mentioned loss function. In
the ablation experiment, we remove one Loss function, keep other Loss function



Table 2. comparison of MFNet and other single-view models.

method
facescape-lab

CD MNE CR

DECA[7] 5.25 0.16 0.97
LAP[25] 9.76 0.20 0.85

SADRNet[14] 7.21 0.18 0.89
DFDN[24] 14.10 0.32 0.93

Deep3DFaceRec[6] 5.28 0.15 0.80
extreme3dface[20] 15.38 0.26 0.66

PRNet[8] 4.97 0.15 0.85
facescape opti[23] 5.14 0.16 0.76

DF2Net[24] 7.39 0.17 0.67
MFNet 4.89 0.14 0.99

unchanged, and train the same epochs on the same training set. Testing is per-
formed on the fasescape-wild dataset. The results are shown in Table 3. We can
see that the whole MFNet has the best performance.

Table 3. Ablation study of loss function.

methods
0-5 5-30 30-60 60-90

CD MNE CR CD MNE CR CD MNE CR CD MNE CR

- multiop 4.29 0.12 0.98 4.43 0.12 0.99 3.62 0.09 0.99 5.12 0.12 0.99
- singlelmk 6.54 0.14 0.99 5.85 0.13 0.99 12.2 0.18 0.97 38.6 0.25 0.93

- eye 140 0.33 0.99 423 0.38 0.98 61.8 0.24 0.96 5.91 0.14 0.99
- lip 6.95 0.13 0.99 11.2 0.15 0.98 13.7 0.17 0.94 13.6 0.18 0.95
- reg 23.3 0.19 0.99 32.3 0.19 0.99 7.39 0.12 0.99 8.75 0.16 0.99

MFNet 3.98 0.11 0.98 4.06 0.11 0.98 3.60 0.10 0.99 5.25 0.12 0.99

We also reconstruct each ablation model on the alfw dataset as shown in Figure 7.

In general, the ablation experiment shows that the performance of the model has
declined after the removal of some loss function, which shows that the design of
our loss function is reasonable.

5 Conclusion

In this paper, we innovatively combine multi-view training with FLAME, pro-
pose a multi-view self-supervised framework and implement a complete multi-
view training and testing process. Our proposed model MFNet achieve good re-
sults on both test datasets and actual captured images. For the implementation
of MFNet, we propose a multi-view optical flow loss for our multi-view training



Fig. 7. Ablation study of loss function. From left to right are the images with reg, lip,
lmk, eye, multiop removed respectively, and the last column is the reconstruction of
MNFet.

framework and propose a novel implementation of the technical details such as
covisible mask. Experiments show that our model outperforms other methods in
face reconstruction and detail capture, which indicates that the combination of
multi-view and FLAME is reasonable.
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